
Dynamic pseudo-time warping of complex single-cell trajectories

Van Hoan Do∗4, Mislav Blažević∗1, Pablo Monteagudo4, Luka Borozan1, Khaled
Elbassioni2, Sören Laue3, Francisca Rojas Ringeling4, Domagoj Matijević1, and Stefan

Canzar†4

1Department of Mathematics, University of Osijek, Croatia
2Khalifa University of Science and Technology, Abu Dhabi, UAE

3Friedrich-Schiller-Universität Jena, Germany
4Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

Single-cell RNA sequencing enables the construction of trajectories describing the dynamic
changes in gene expression underlying biological processes such as cell differentiation and devel-
opment. The comparison of single-cell trajectories under two distinct conditions can illuminate
the differences and similarities between the two and can thus be a powerful tool. Recently devel-
oped methods for the comparison of trajectories rely on the concept of dynamic time warping
(dtw), which was originally proposed for the comparison of two time series. Consequently,
these methods are restricted to simple, linear trajectories. Here, we adopt and theoretically
link arboreal matchings to dtw and propose an algorithm to compare complex trajectories that
more realistically contain branching points that divert cells into different fates. We implement
a suite of exact and heuristic algorithms suitable for the comparison of trajectories of differ-
ent characteristics in our tool Trajan. Trajan automatically pairs similar biological processes
between conditions and aligns them in a globally consistent manner. In an alignment of single-
cell trajectories describing human muscle differentiation and myogenic reprogramming, Trajan
identifies and aligns the core paths without prior information. From Trajan’s alignment, we are
able to reproduce recently reported barriers to reprogramming. In a perturbation experiment,
we demonstrate the benefits in terms of robustness and accuracy of our model which compares
entire trajectories at once, as opposed to a pairwise application of dtw. Trajan is available at
https://github.com/canzarlab/Trajan.

∗equal contribution
†Correspondence: canzar@genzentrum.lmu.de

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

1 Introduction

Single-cell RNA sequencing (scRNA-seq) has allowed the detailed dissection of biological processes
such as differentiation, development and cell reprogramming. By describing the trajectories along
which cells transition to achieve specific cell fates, scRNA-seq can illuminate the dynamic changes
in gene expression underlying these processes [19]. Much can be learned from the comparative anal-
ysis of single-cell trajectories. Comparing gene expression dynamics along trajectories from two
conditions can aid in elucidating the key differences between them and the regulatory programs un-
derpinning the process. For example, comparing the trajectories underlying a given differentiation
process in two species would shed light onto the evolutionary differences between these organisms.
Comparing the trajectory defining a normal developmental process to that affected by a particular
mutation would yield insights into disease mechanisms. Recently, methods have been developed for
this purpose, which make use of dynamic time warping (dtw).

Dynamic time warping is a class of algorithms for comparing two time series that advance at
different speeds [22]. It was originally developed in the context of automatic speech recognition, but
has gained increasing popularity more recently in the comparison of single cell trajectories [1, 6, 9].
Similar to a pairwise sequence alignment that allows for insertions and deletions, dtw finds a
mapping (warping) between similar elements in the two sequences to overcome locally stretched
and compressed sections. In single-cell trajectories, cells are ordered along pseudo-time and can be
aligned based on the expression values of (a subset of) their genes to establish a common pseudo-
time axis along which expression kinetics become comparable between different conditions.

Dynamic time warping can only compare two time series at a time, and thus current methods
for comparing single-cell trajectories are limited to linear trajectories or rely on picking the correct
path from a complex trajectory. Even though not based on dtw, MATCHER [23] is similarly
restricted to two linear trajectories, built from transcriptomic and epigenetic measurements. It is
relevant to mention that complex cell trajectories are common in developmental processes and also
arise in response to genetic perturbations [18]. In these cases, prior information such as a set of
defined markers would be necessary to pick the most relevant path, but this information is often
not available. Another potential caveat of dtw is that it ignores cells that lie on alternative paths
and could potentially amplify the signal used to infer the mapping between trajectories.

We present Trajan, a novel method to compare and align complex trajectories with multiple
branch points diverting cells into alternative fates (Fig. 1). Trajan automatically identifies the
correspondence between biological processes in two trajectories and aligns all of them simultane-
ously, taking into account their overlap. Given that cells that diverted into different fates share a
common ancestry, they cannot be treated as independent from each other. Their independent pair-
wise alignment (using dtw) could introduce inconsistencies with respect to the mapping of common
progenitor cells. Akin to the extension of pairwise alignments to multiple sequence alignment, we
seek the best alignment between all corresponding pairs of paths that agree on common progenitor
cells. To this end, Trajan adopts arboreal matchings [5] to capture globally consistent similarities
between trajectories. Arboreal matchings were originally proposed in the context of phylogentic
trees and here we theoretically link them to dynamic time warping. We develop a suite of exact
and heuristic algorithms that are suitable for the comparison of trajectories of different character-
istics. When aligning single-cell trajectories describing human muscle differentiation and myogenic
reprogramming, Trajan automatically identifies the core paths from which we are able to reproduce
recently reported barriers to reprogramming. In a perturbation experiment, Trajan correctly maps
identical cells in a global view of trajectories, as opposed to a pairwise application of dtw.

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

Aligned Pseudo-time

E
x
p

re
ss

io
n

1.

1.

2.

2.

3.3. 4.

Figure 1: Trajan workflow. 1. Complex trajectories are reconstructed from single-cell RNA mea-
surements using, e.g., Monocle 2. After smoothing and scaling (2.), Trajan aligns entire trajectories
by computing an arboreal matching using a branch-and-cut approach (3.), which transforms (warps)
the individual pseudo-time scales into a shared one along which expression kinetics can be compared
(4.). For simplicity, only the alignment between one pair of paths is shown.

2 Methods

Dynamic time warping is the algorithmic workhorse underlying current methods that compare
linear single-cell trajectories. In the next section we briefly review the concept of dynamic time
warping and show that an attempt to generalize dtw to complex trajectories naturally leads to ar-
boreal matchings between trees, which we have introduced previously in the context of phylogenetic
trees [5]. Proofs of Theorems and Lemmas can be found in the Appendix, Section 6.1.

2.1 DTW versus arboreal matching

As in classical sequence alignment, dtw matches similar elements in two sequences while preserving
their order. To account for different speeds at which the two sequences advance, however, each
element of one sequence can be mapped to multiple elements in the other sequence (Fig. 2 left).
More formally, given two time series (xi)

n
i=1, (yj)

m
j=1, and a distance or similarity measure d(xi, yj) ≥

0 between the time points xi and yj , a warping is a sequence p = (p1, . . . , pL) with p` = (n`,m`) ∈
[1 : n]× [1 : m] for ` ∈ [1 : L] that satisfies the following three conditions: (i) Boundary : p1 = (1, 1)
and pL = (n,m). (ii) Monotonicity : n1 ≤ n2 ≤ · · · ≤ nL and m1 ≤ m2 ≤ · · · ≤ mL. (iii) Step size:
p`+1−p` ∈ {(1, 0), (0, 1), (1, 1)} for ` ∈ [1 : L−1]. Note that the example warping in Figure 1 (left)
contains no pair of crossing edges and thus preservers the order of the two sequences.

Figure 2: An example of a warping (left) and an arboreal matching (right) between two time series.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

The classic dtw aims to find a warping p minimizing the total distance between mapped elements:

cp(x, y) :=
L∑
`=1

d(xn`
, ym`

).

The optimal warping can be computed by a dynamic program that solves:

D(i, j) = d(xi, yj) + min{D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)}. (1)

There are various extensions of the classic dtw described above that can be mainly classified as 1)
restricting the range of the mapping to a certain window; 2) assigning different weights to different
types of steps; and 3) using different step patterns, e.g. p`+1 − p` ∈ {(1, 1), (1, 2), (2, 1)} in (iii). In
the following, we consider the widely used classic dtw which is also the default scheme for computing
dtw [24]. Since state-of-the-art methods like Monocle 2 [20] and DPT [11] aim to construct smooth
trajectories, the classic dtw provides the necessary flexibility for most single-cell alignment tasks.

Here, we propose a generalization of classic dtw from paths, i.e., linear trajectories, to trees, i.e.,
complex trajectories: We want to align each path in tree T1 to at most one path in T2 and vice versa
and, similar to dtw, preserve the order of nodes along the paths, i.e., no crossing edges. In addition,
we require all alignments to be consistent, that is, every node must be matched to the same node
in all pairwise alignments it is part of. In [5], we have introduced arboreal matchings that formalize
such a consistent path-by-path alignment of trees: An arboreal matching is a matching M , i.e.,
one-to-one correspondence between nodes in trees T1 and T2 such that for any (u1, v1), (u2, v2) ∈M ,
u2 is a descendant of u1 iff v2 is a descendant of v1.

In contrast to dtw, an arboreal matching M matches each node (cell) to at most one similar
node (cell) in the other tree (trajectory). It is not required to cover all nodes between each pair of
paths, but we can flexibly penalize nodes that remain unmatched by M in the objective function:

c(M) :=
∑

(u,v)∈M

d(u, v) +
∑
u∈V1

u unmatched

d(u,−) +
∑
v∈V2

v unmatched

d(−, v), (2)

where the cost of leaving node u (v) unmatched is d(u,−) > 0 (d(−, v) > 0). In fact, the arboreal
matching of minimum cost (2) between two paths P = (x1, . . . , xn) and Q = (y1, . . . , ym) can be
solved by a very similar dynamic program as in dtw (1):

D(i, j) = min{D(i− 1, j − 1) + d(xi, yj), D(i− 1, j) + d(i,−), D(i, j − 1) + d(−, j)}. (3)

An example arboreal matching between two paths is shown in Figure 2 (right). Again, the non-
crossing edges align the two time-series to reveal similarities and unmatched nodes indicate com-
pressed or stretched sections. This makes arboreal matchings as flexible as dtw in the comparison
of two trajectories. More specifically, we will show that by choosing an appropriate penalty for
unmatched vertices, the optimal dtw and the optimal arboreal matching yield similar measures of
similarity or distance of the compared trajectories. Denote by ddtw and dM the optimal value of
the classic dtw and the arboreal matching between two paths P and Q, respectively. The following
theorem provides an upper bound on ddtw.

Theorem 1. Let D = max
i,j

d(xi, yj). If d(x,−) = max
y∈Q

d(x, y) and d(−, y) = max
x∈P

d(x, y), then

ddtw ≤ dM ≤ ddtw + kD,

where k is the minimum number of edges that need to be removed to transform the optimal warping
to an arboreal matching.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

Next, we develop a lower bound theorem for the classic dtw. An edge (x, y) in the warping p is
called redundant if both vertices x and y are covered by at least two edges in p.

Lemma 1. There exists an optimal warping of the classic dtw without redundant edges.

Given an optimal warping p∗, we assign penalties to unmatched vertices such that dM ≤ ddtw.
Let p∗ be an optimal warping without redundant edges, define

L1(p
∗) := {x ∈ P |x is covered by at least two edges from p∗},

L2(p
∗) := {y ∈ Q|y is covered by at least two edges from p∗}.

Then, we impose penalties

d(−, y) =

d(x, y) if ∃x ∈ L1(p
∗) and (x, y) ∈ p∗,

max
x∈L1(p∗)

d(x, y) otherwise.
(4)

We define penalties d(x,−), x ∈ P , analogously. Since p∗ has no redundant edges, d(−, y) is
uniquely defined. Conversely, if there exist x1, x2 ∈ L1(p

∗) such that (x1, y) ∈ p∗, (x2, y) ∈ p∗, the
non-redundancy of p∗ is violated. We have the following lower bound theorem.

Theorem 2. If d(x,−), d(−, y) are defined as in (4), then dM ≤ ddtw.

In Section 3.1 we illustrate how closely the optimal arboreal matchings based on lower and
upper bound penalty scheme follow the optimal dtw path.

2.2 Limitations of the näıve ILP formulation

Finding the matching minimizing (2) can be phrased as a maximum matching problem that ex-
plicitly forbids the two possible types of ancestry violations: Two edges can be crossing, or two
nodes on the same root-to-leaf path are matched to nodes on different root-to-leaf paths (Figure 3).
The former constraint is equally imposed by dtw, the latter is a consequence of the simultaneous
comparison of multiple paths and prevents arbitrary jumps between biological processes in the
comparison. In our proof-of-concept study [5], we describe feasible arboreal matchings between two

≤ 1 ≤ 1

Figure 3: Pair of crossing edges (blue) extended to a clique of crossing edges (left) and pair of
semi-independent edges (blue) extended to a clique of semi-independent edges (right).

rooted trees T1 = (V1, E1), T2 = (V2, E2), by the following simple ILP:

max
∑|V1|

i=1

∑|V2|

j=1
w(i, j)xi,j (P)

s. t.
∑|V2|

j=1
xi,j ≤ 1 ∀i = 1 . . . |V1|, (5)∑|V1|

i=1
xi,j ≤ 1 ∀j = 1 . . . |V2|, (6)

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

xi,j + xk,l ≤ 1 ∀{(i, j), (k, l)} ∈ I, (7)

xi,j ∈ {0, 1}, (8)

where indicator variables xi,j denote the presence or absence of an edge (i, j), weights w(i, j) :=
d(i,−) + d(−, j) − d(i, j). Pairs of edges (i, j) and (k, l) are compatible if it holds that k is a
descendant of i in T1 iff l is a descendant of j in T2. Set I contains pairs of edges {(i, j), (k, l)} that
are incompatible, i.e., they are either crossing or one-sided independent (Figure 3).

As our experiments in Section 3.3 show, this ILP formulation does not allow to practically align
trajectories comprising as few as 100 single cells. In the following theorem, we identify its weak
LP-relaxation as a theoretical explanation for this empirical performance, since the search space
that needs to be explicitly explored by an ILP solver depends on the strength of the LP relaxation.
Let OPT denote an optimal solution to the above ILP and let w(OPT) be its optimal score. Let
|V1| = n, |V2| = m, and w.l.o.g we assume n ≤ m.

Theorem 3. The integrality gap of the linear programming relaxation of (P) is n− o(1).

2.3 A branch-and-cut algorithm for arboreal matchings

In this section, we introduce a thoroughly engineered branch-and-cut algorithm that allows to
practically compare complex single-cell trajectories. Its main ingredients are (i) cuts that trim
the LP relaxation closer to the convex hull of feasible arboreal matchings (Section 2.3.1), (ii)
polynomial-time algorithms that can find these cuts on demand (Section 2.3.2), (iii) a branch-and-
bound scheme that makes use of modern CPU architectures (Section 2.3.3), and (iv) an in-house
developed, non-commercial, non-linear solver that we use for all continuous optimization problems
(Appendix, Section 6.3). In Section 6.5 in the appendix, we generalize arboreal matchings and our
branch-and-cut algorithm to directed acyclic graphs.

2.3.1 Valid clique constraints

The next theorem motivates the addition of valid inequalities to reduce the integrality gap of the
LP relaxation. Let (PC) be the LP-relaxation of the ILP that we obtain by replacing the pairwise
incompatibilities (7) in (P) by the more general clique inequalities∑

(i,j)∈Qc

xi,j ≤ 1, for each Qc ∈ C,

where C is a set of cliques, i.e., sets of pairwise incompatible edges. Denote by E(T1, T2) the set
of edges between two trees. For each M ⊂ E(T1, T2), let r(M) denote the maximum size of any
feasible (unweighted) arboreal matching contained in M .

Theorem 4. If we can write any set M ⊂ E(T1, T2) as union of at most r(M) cliques, that is,

M =
r(M)⋃
i=1
Qic, then the integrality gap of the linear program (PC) is at most log n+ 1.

Inspired by this theorem, we strengthen the LP relaxation by lifting pairwise incompatibility
constraints (7) to maximal sets (cliques) of pairwise crossing edges and maximal sets (cliques) of
edges that are pairwise semi-independent (Figure 3). As our experiments in Section 3.3 indicate,
these lifted constraints result in stronger bounds that allow us to prune larger parts of the search
space. Due to their exponential number, we add lifted constraints only on demand, that is, if they
cut off the current optimal fractional solution. In the next section, we describe how to assess this
demand in polynomial time.

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

2.3.2 Polynomial-time separation algorithms

In the following, we consider trees T1 = (V1, E1) and T2 = (V2, E2) with roots r1 and r2, sets of
leaves L1 and L2, and parent mappings π1 and π2, respectively. For two vertices p, q ∈ Vi, denote
by [p, q] the unique path in Ti between p and q.

Crossing edges clique constraints A maximal set of pairwise crossing edges between two fixed
root-to-leaf paths [r1, `1], [r2, `2] can be obtained by the following procedure. Starting from an edge
between leaf `1 in T1 and the root of T2, in each step we either move up along [r1, `1] and keep the
node in T2 fixed, or we move down along [r2, `2] and keep the node in T1 fixed. Analogously we can
start from edge (r1, `2). Figure 3 (left) shows one possible outcome of this procedure.

Given a fractional solution x∗ to the current LP relaxation, the separation problem asks to find
a hyperplane that cuts off (separates) x∗ from the polytope without losing any feasible integral
solution, i.e., arboreal matching. Since each maximal set (clique) Qc of edges obtained by the
procedure above are pairwise incompatible, the sum of their fractional values must not exceed 1:∑

(i,j)∈Qc

xi,j ≤ 1 (9)

Among the exponentially many crossing cliques Qc we can identify one for which (9) is (most)
violated efficiently by a dynamic program. For fixed paths P1 = [r1, `1], P2 = [r2, `2], let D[u, v]
denote the maximum (with respect to x∗) clique between [r1, u] and [v, `2]. It can be defined
recursively as the better choice between moving up in P1 or down in P2:

D[u, v] = x∗uv + max
{
D[π1(u), v], D[u, v′]

}
, (10)

where π2(v
′) = v. The maximum x∗-weight clique D[`1, r2] can then be computed by a dynamic

program in time O(|P1||P2|). We can generalize this dynamic program to two trees by considering
all child nodes v′ in the recursion instead of the unique descendant along the path:

Theorem 5. Given a fractional solution x∗ we can determine whether a crossing edge clique
inequality (9) is violated in time O(|V1||V2|).

Semi-independent clique constraints We strengthen the LP relaxation even further by lifting
pairs of semi-independent edges to maximal sets (cliques) of pairwise semi-independent edges. Such
a set consists of edges that are all incident to nodes on a common root-to-leaf path in one tree,
and are incident to nodes in the second tree that all lie on distinct root-to-leaf paths, i.e., are
independent (Figure 3 right). Again, edges in such a clique Qi must satisfy∑

(i,j)∈Qi

xi,j ≤ 1 (11)

Formally, the separation of semi-independent clique constraints with respect to T1 and T2 is given
by the following theorem.

Theorem 6. Given a fractional solution x∗ we can determine whether a semi-independent clique
inequality (11) is violated in time O(|V1||V2|).

Again, Theorem 6 allows us to cut off large parts of the polytope in polynomial time, without
losing any feasible arboreal matching.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

2.3.3 Obtaining integral solutions

In the previous section we described a tighter relaxation of the original ILP formulation. While
this relaxed LP improves upon previous approaches it still provides only fractional solutions in the
worst case. Trajan implements four different strategies to obtain integral solutions, ranging from
fast, but suboptimal, to more expensive, but optimal methods. With this we try to address the
need for tailored trade-offs between accuracy and speed imposed by different single-cell sequencing
technologies that assay a variable number of genes at varying resolution in hundreds to millions of
cells. We describe heuristic approaches implemented in Trajan in Appendix Section 6.2.

Branch and bound Trajan can compute an optimal arboreal matching by a classical branch and
bound algorithm, whose running time can be exponential in the worst case. We have implemented
several node selection strategies [7], including best first, depth first and a hybrid approach as well
as various common variable selection schemes [3], including most and least fractional variables, and
most constrained variables. The initial primal bound is obtained by the simple greedy approach de-
scribed above or the fixed-parameter tractable algorithm described in Section 2.4. Taking advantage
of modern CPU architectures, Trajan can run multiple instances of our solver in parallel, each one
using a different node and variable selection strategy while sharing the current best primal bound
in memory. In best first mode, Trajan can distribute open subproblems across a user-specified
number of processors. Note that a tighter relaxation can speed up the running time of the branch
and bound exploration since better dual bounds allow for a better pruning of some of the subtrees
in the branch and bound computation graph. This can be seen in the experiments in Section 3.3.

2.4 FPT algorithm for small number of cell fates

For trajectories with a small number of cell fates k we employ a fixed-parameter tractable algorithm,
parameterized by k. It guesses the correspondence between paths in the two trajectories and applies
a dynamic program similar to [13] to align them optimally, in total time O(n2m2k!), where k is
the smaller number of leaves among the two trees comprising n and m nodes, respectively. Even
for large k, our branch and bound solver optionally runs the FPT algorithm for a small number of
path permutations to derive a primal bound on the optimal solution.

3 Results

We have implemented the branch-and-cut algorithm described above and have bundled it with
our non-linear solver (Section 6.3) in our novel trajectory alignment tool Trajan. In addition to
a full branch and bound scheme, Trajan offers heuristic approaches to transform strong bounds
into feasible arboreal matchings as well as an FPT algorithm for small number of cell fates at a
dramatically reduced computational cost. Trajan adopts a strategy similar to [6] to prepare the
output of Monocle 2 (or similar trajectory reconstruction methods) for a meaningful alignment,
including the smoothing and scaling of expression curves.

3.1 Lower and upper bounds on dtw

Here, we illustrate the practical relevance of the upper bound (UB, Theorem 1) and lower bound
(LB, Theorem 2) that the optimal arboreal matching between two paths can provide on the op-
timal dtw. We align two simple trajectories constructed from scRNA-seq data on dendritic cells
stimulated under two conditions (LPS and PAM) collected at 4 time points after stimulation [21].

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

The two linear trajectories and the dissimilarity matrix were obtained from a recent study that
introduced cellAlign [1], a method that aligns two simple trajectories based on dtw. The optimal so-
lutions computed by cellAlign using dtw and by Trajan using the LB penalty scheme are equivalent
(Figure 4). When using the UB penalty scheme, Trajan’s optimal path through the dissimilarity
matrix roughly follows the dtw path and represents a solution with almost 2 times larger score.

Figure 4: The optimal dtw path and two optimal paths computed by Trajan with lower bound (LB)
and upper bound (UB) penalty scheme. The optimal dtw path and Trajan’s LB path coincide (left).
Alignment of myogenic reprogramming and differentiation dynamics (right). Trajan discovers the
core branches of similar cell fates.

3.2 Trajan reproduces barriers in myogenic reprogramming

Here, we re-analyzed two public single-cell datasets: human skeletal muscle myoblast (HSMM)
differentiation and human fibroblasts undergoing MYOD-mediated myogenic reprogramming (hFib-
MyoD). These datasets were previously analyzed in [6], where the authors set out to compare these
related processes in order to identify molecular barriers that hinder the efficient reprogramming of
fibroblasts to myotubes. The authors used known myoblast differentiation markers (CDK1, ENO3,
MYOG) to identify the core path within the complex trajectory constructed from hFib-MyoD, and
they aligned this path to the core path in normal muscle development (HSMM) using dtw. The
authors pointed out that the combined trajectory constructed from cells in both conditions did not
intermix cells and thus did not allow to assess critical commonalities and differences in expression
dynamics. We repeated the single-cell data analysis described in [6] to obtain the corresponding
trajectories from Monocle 2 (Figure 5).

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

Cycling

Partial

Failure

Exited

Exit failure

hFib−MyoD

−1

0

1

2

3

−4 −2 0 2

Component 1

C
om

po
ne

nt
 2

State 1 2 3 4 5

Cycling
Full

Failure
HSMM

−2

−1

0

1

2

−4 0 4

Component 1

C
om

po
ne

nt
 2

State 1 2 3

Figure 5: Trajectories of myogenic reprogramming (left) and differentiation (right). Cycling: un-
differentiated, actively proliferating cells; Exited: cells lacking expression of cell cycle and muscle
contraction genes; Exit failure: cells expressing genes of early myoblast differentiation yet still pro-
liferating; Failure: cells lacking expression of cell cycle genes as well as of muscle contraction genes;
Partial: cells expressing MYOG and multiple muscle contraction genes and lacking expression of
cell cycle genes; Full: full progression to contractile myotubes.

We then sought to align these complex trajectories using our algorithm. We show that Trajan
is able to align the core paths of each complex trajectory, without any previous knowledge or path
picking, using the same distance measure (correlation) as in the original publication. The global
dynamics alignment of HSMM and hFib-MyoD are shown in Figure 4. Interestingly, our approach
not only aligns the core trajectories, but it also aligns the branches corresponding to failure of
reprogramming, which are characterized in both processes by cells that exited the cell cycle, yet
failed to proceed toward differentiation [6], [19].

After performing the trajectory alignment with Trajan, we constructed gene expression kinetics
plots for a set of genes that were assessed in [6] to investigate whether our alignment was able to
reproduce their reported findings regarding similarities and differences between these two processes.
Indeed, we were able to reproduce their key findings: Proliferation marker CDK1 is downregulated
both in HSMM and hFib-MyoD; Muscle transcriptional regulators (MEF2C, MYOG) are upregu-
lated later and to a lesser extent in hFib-MyoD compared to HSMM; BMP4 is only expressed in
hFib-MyoD and ID family proteins (ID1, ID3) which lie downstream of BMP signaling fail to be
downregulated in hFib-MyoD; IGF pathway genes (IGF2, IGF1R) are expressed at higher levels in
HSMM (Figure 6).

IGF1R IGF2 MEF2C MYOG

BMP4 CDK1 ID1 ID3

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

0

3

6

9

0.0

2.5

5.0

7.5

10.0

0.0

0.5

1.0

1.5

2.0

0

10

20

0

2

4

6

8

0

2

4

6

0.0

0.2

0.4

0.6

1

2

3

4

Pseudo−time (Aligned)

E
xp

re
ss

io
n

DataSet
hFib−myo
HSMM

Figure 6: Gene expression dynamics after trajectory alignment with Trajan.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

We evaluated Trajan using penalty schemes that assign the maximum and average weight of
incident edges as well as the minimum cost implied by the lower bound Theorem 2 over all pairs of
paths (lb). While the maximum scheme (max) is a direct generalization of the cost scheme applied
by Theorem 1, the averaging scheme (avg) tries to capture the expected cost of leaving a vertex
unmatched and is the default scheme applied by Trajan. All schemes correctly picked the correct
core paths in the two trajectories and are robust under subsampling. (Appendix, Figure 8).

3.3 Accuracy of Trajan

Here, we compare the accuracy of Trajan in matching ”correct” cells between complex trajectories
to the path-wise alignment by dtw. To this end, we perturb the hFib-MyoD trajectory output by
Monocle 2 by randomly subsampling 80% of the input cells and 80% of the genes used for ordering
them along pseudo-time. We align isomorphic trajectories (trees) comprising a variable number
of nodes (parameter ncenter in Monocle 2), measuring the difference between nodes by Euclidean
distance. Since we know the true correspondence of nodes between different perturbed trees, we
can count false positive and false negative alignments as a measure of accuracy. In Table 1 we
report the number of false positive (FP) and false negative (FN) alignments of the classic dtw run
on each true pair of paths, and Trajan using different penalty schemes (avg, max, lb). Trajan takes
the entire trees as input, it is not given the correct path-to-path correspondence. Nevertheless,
Trajan almost always finds the true correspondence between cells, compared to the path-wise dtw
scheme, that introduced both FP and FN alignments.

Table 1: Average number of false positive (+) and false negative(−) alignments of Trajan and path-
wise dtw. The average is taken over a variable number of instances comprising a total # of nodes
in the two input trees.

of nodes
of

instances
Trajan DTW

avg+ avg− max+ max− lb+ lb− FP FN

80 435 0.0 0.2 0.0 0.0 12.8 17.7 35.0 32.1
100 435 0.0 0.0 0.0 0.1 12.9 17.6 54.6 50.5
140 190 0.0 0.0 0.0 0.0 18.6 30.0 54.5 50.7
180 190 0.0 0.0 0.0 0.2 31.8 38.9 83.9 76.0
210 45 0.0 0.0 0.0 0.0 33.9 43.9 76.6 70.3

Table 2 reports the running times of the näıve ILP using the commercial solver IBM ILOG CPLEX
12.7 and Trajan coupled with our in-house non-linear solver on a random subset of the instances
introduced above. In addition to the full branch-and-cut implementation (Trajan-BnC), we ran
Trajan switching to the FPT algorithm (Trajan-FPT). On a 2.30GHz Linux system using up to 15
threads, Trajan-BnC is at least 13 times faster than the näıve ILP using CPLEX, while Trajan-FPT
is another 10 times faster then Trajan-BnC. The speedup of Trajan-FPT on this set of instances is
not surprising, since these trees comprise only 3 different leaves (cell fates). CPLEX was not able
to solve instances with more than 200 nodes since it exceeded the memory limit of 320 GB.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

Table 2: Average runtime in seconds of Trajan vs CPLEX

of nodes
of

instances
Trajan-BnC Trajan-FPT CPLEX

avg max dtw avg max lb avg max lb

80 435 3.0 3.2 1.0 0.3 0.3 0.3 41.6 41.3 32.8
140 190 23.2 26.3 6.6 2.8 2.8 2.8 405.8 416.5 185.8
180 45 69.6 73.0 23.7 7.4 7.4 7.4 1381.8 1585.2 1041.0
210 45 120.9 147.4 47.6 12.4 12.4 12.4 - - -

4 Conclusion

We have introduced Trajan, a novel method that allows for the first time the alignment of complex
(non-linear) single-cell trajectories. Originally introduced to compare phylogenetic trees, in Trajan
we adopt arboreal matchings to perform an unbiased alignment enabling the meaningful compar-
ison of gene expression dynamics along a common pseudo-time scale. Trajan does not make any
assumptions concerning the algorithm used to reconstruct the trajectory and can in principle be
coupled with any available reconstruction method. In a future algorithm, an arboreal matching be-
tween cells might prove useful in guiding a joint learning of trajectories for two biological processes.
Furthermore, our generalization to directed acyclic graphs (see Appendix) can be used to align
data-driven ontologies and the manually curated Gene Ontology (GO) to assign genes to existing
GO terms, but also to infer new terms and potentially confirm or correct hierarchical term-term
relationships [8].

5 Acknowledgments

Sören Laue has been funded by Deutsche Forschungsgemeinschaft (DFG) under grant LA 2971/1-1.
Mislav Blažević was supported in part by BAYHOST. Francisca Rojas Ringeling was supported by
the Bavarian Gender Equality Grant (BGF).

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

References

[1] Ayelet Alpert, Lindsay S Moore, Tania Dubovik, and Shai S Shen-Orr. Alignment of single-cell
trajectories to compare cellular expression dynamics. Nature Methods, 15(4):267–270, April
2018.

[2] Roberto Andreani, Ernesto G. Birgin, José Mario Mart́ınez, and Maŕıa Laura Schuverdt.
On augmented lagrangian methods with general lower-level constraints. SIAM Journal on
Optimization, 18(4):1286–1309, 2007.

[3] Ioannis P. Androulakis. MINLP: Branch and Bound Global Optimization Algorithm, pages
1415–1421. Springer US, Boston, MA, 2001.

[4] Sanjeev Arora, László Babai, Jacques Sternd, and Z Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. Journal of Computer and System
Sciences, 54(2):317 – 331, 1997.

[5] Sebastian Böcker, Stefan Canzar, and Gunnar W. Klau. The generalized robinson-foulds
metric. In Workshop on Algorithms in Bioinformatics (WABI), 2013.

[6] Davide Cacchiarelli, Xiaojie Qiu, Sanjay Srivatsan, Anna Manfredi, Michael Ziller, Eliah
Overbey, Antonio Grimaldi, Jonna Grimsby, Prapti Pokharel, Kenneth J Livak, Shuqiang
Li, Alexander Meissner, Tarjei S Mikkelsen, John L Rinn, and Cole Trapnell. Aligning Single-
Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of
Myogenic Reprogramming Outcome. Cell Systems, pages 1–18, September 2018.

[7] Liao Ching-Jong. A new node selection strategy in the branch-and-bound procedure. Com-
puters & Operations Research, 21(10):1095 – 1101, 1994.

[8] Janusz Dutkowski, Michael Kramer, Michal A Surma, Rama Balakrishnan, J Michael Cherry,
Nevan J Krogan, and Trey Ideker. A gene ontology inferred from molecular networks. Nature
Biotechnology, 31(1):38–45, December 2012.

[9] Daniel C Ellwanger, Mirko Scheibinger, Rachel A Dumont, Peter G Barr-Gillespie, and Stefan
Heller. Transcriptional Dynamics of Hair-Bundle Morphogenesis Revealed with CellTrails. Cell
Reports, 23(10):2901–2913.e14, June 2018.

[10] András Frank. Finding minimum generators of path systems. J. Comb. Theory, Ser. B,
75(2):237–244, 1999.

[11] Laleh Haghverdi, Maren Bttner, F Alexander Wolf, Florian Buettner, and Fabian J Theis.
Diffusion pseudotime robustly reconstructs lineage branching. Nature Methods, 13(10):845 –
848, 2016.

[12] Magnus R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and
Applications, 4(5):303–320, 1969.

[13] Zhang K and Shasha D. Simple fast algorithms for the editing distance between trees and
related problems. SIAM J Comput, 18:1245 – 1262, 1989.

[14] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In Integer
Programming and Combinatorial Optimization (IPCO), 2001.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

[15] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

[16] José Luis Morales and Jorge Nocedal. Remark on ”algorithm 778: L-BFGS-B: fortran subrou-
tines for large-scale bound constrained optimization”. ACM Trans. Math. Softw., 38(1):7:1–7:4,
2011.

[17] M. J. D. Powell. Algorithms for nonlinear constraints that use lagrangian functions. Mathe-
matical Programming, 14(1):224–248, 1969.

[18] Xiaojie Qiu, Andrew Hill, Jonathan Packer, Dejun Lin, Yi-An Ma, and Cole Trapnell. Single-
cell mrna quantification and differential analysis with census. Nature methods, 14(3):309, 2017.

[19] Xiaojie Qiu, Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, and Cole
Trapnell. Reversed graph embedding resolves complex single-cell trajectories. Nature methods,
14(10):979, 2017.

[20] Xiaojie Qiu, Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, and Cole
Trapnell. Reversed graph embedding resolves complex single-cell trajectories. Nature Methods,
14(10):979 – 982, 2017.

[21] Alex K. Shalek, Rahul Satija, John J. Trombetta Joe Shuga, Dave Gennert, Diana Lu, Peilin
Chen, Rona S. Gertner, Jellert T. Gaublomme, Nir Yosef, Schraga Schwartz, Brian Fowler,
Suzanne Weaver, Jing Wang, Xiaohui Wang, Ruihua Ding, Raktima Raychowdhury, Nir Fried-
man, Nir Hacohen, Hongkun Park, Andrew P. May, and Aviv Regev. Single-cell rna-seq reveals
dynamic paracrine control of cellular variation. Nature, 498(510):363 – 369, 2014.

[22] T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,
1968. Russian Kibernetika 4(1):81-88 (1968).

[23] Joshua D. Welch, Alexander J. Hartemink, and Jan F. Prins. Matcher: manifold alignment
reveals correspondence between single cell transcriptome and epigenome dynamics. Genome
Biology, 18(1):138, Jul 2017.

[24] Jiaping Zhao and Laurent Itti. shapedtw: Shape dynamic time warping. Pattern Recognition,
74:171 – 184, 2018.

[25] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B:
fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.,
23(4):550–560, 1997.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

6 Appendix

6.1 Proofs of Theorems and Lemmas

Proof of Theorem 1. (sketch) The first inequality is proven by induction on i+ j.
Let p∗ be the optimal warping and k the minimum number of edges that need to be removed

to transform p∗ to a feasible arboreal matching M . Since M has k unmatched vertices, we have

c(M) ≤ cp∗(x, y) + kD.

This implies that dM ≤ ddtw + kD, which also completes the proof of the theorem.

Proof of Lemma 1. Conversely, let p∗ be an optimal warping such that (xi, yj) ∈ p∗ and both xi
and yj are covered by at least two edges in p∗. From the coverage property of the warping we must
have (xi, yj−1) ∈ p∗ or (xi, yj+1) ∈ p∗. If (xi, yj−1) ∈ p∗, we get (xi+1, yj) ∈ p∗ since yj is covered by
at least two edges in p∗ and by the warping conditions. As a results, D(i, j) = D(i, j−1)+d(xi, yj)
and D(i + 1, j) = D(i, j) + d(xi+1, yj) = D(i, j − 1) + d(xi, yj) + d(xi+1, yj). From (1), we obtain
D(i+ 1, j) ≤ D(i, j − 1) + d(xi+1, yj). This implies that d(xi, yj) ≤ 0. Since d(xi, yi) ≥ 0 we must
have d(xi, yj) = 0. As a consequence, we can remove (xi, yj) from p∗ without violating the warping
conditions. The case (xi, yj+1) ∈ p∗ is proven in an analogous manner.

Proof of Theorem 2. Let p∗ be a non-redundant optimal warping. For every vertex x ∈ L1(p
∗) and

y ∈ L2(p
∗) we delete all incident edges but one, which results in an arboreal matching of the same

cost as dtw p∗. Hence, it implies that dM ≤ ddtw.

Proof of Theorem 3. Let K = max
i,j

w(i, j), hence K is bounded above by w(OPT). Moreover, for

any feasible solution x to the relaxation, we have

|V1|∑
i=1

|V2|∑
j=1

w(i, j)xi,j ≤
|V1|∑
i=1

|V2|∑
j=1

Kxi,j ≤
|V1|∑
i=1

K(

|V2|∑
j=1

xi,j) ≤
|V1|∑
i=1

K = Kn.

Therefore, the optimal value of the LP relaxation is at most n times w(OPT). Our bad instance
consists of the two rooted trees shown in Figure 7, with w(red/blue edges) = 1 and w(·) = 0
otherwise. Any pair of nonzero weight edges are incompatible, so the maximum cost matching is
1. Let x(red edges) = 1

n−1 , xn,1 = 1− 1
n−1 , xn,m = 1

n−11n6=m, and x(·) = 0 otherwise, where 1n6=m
is a binary number such that 1n6=m = 1 iff n 6= m. Hence, x is a feasible solution with cost of
(n − 1)2/(n − 1) + 1 = n if n 6= m and n − 1

n−1 if n = m. Therefore, the optimal value of the LP
relaxation at least n− o(1).

Proof of Theorem 4. Let x∗ be an optimal solution of the LP relaxation with clique constraints.
We show that there exists a feasible arboreal matching with cost at least wx∗

logn+1 , where wx∗ =∑
i,j
w(i, j)x∗i,j . Let l be the smallest integer such that for all e ∈ E(T1, T2), x

∗
e = ne

l , where ne ∈ N.

We will decompose lx∗ = x1 + · · ·+xN , where xi is an incident vector (with ground set E) of some
feasible arboreal matching. Next, we are going to show that N ≤ l(log n + 1). The procedure for
finding xi is inductive. Let yi = lx∗ − (x1 + · · ·+ xi) for i = 1, 2, . . . and y0 = lx∗. Define

Ei = {e ∈ E : yi−1e > 0} for i = 1, 2, . . .

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

n

3

2

1

T1

2 3
. . .

n
. . .

m

1

T2

Figure 7: The integrality gap of the LP relaxation of (P) is n.

Let xi be an incident vector of a maximum feasible arboreal matching in Ei such that xi(Ei) = r(Ei).

By assumption, we can write Ei = E1
i ∪ · · · ∪ E

r(Ei)
i , where Eji is a clique. As the result, we have

x∗(Ei) = x∗(E1
i ∪ · · · ∪ E

r(Ei)
i) ≤ x∗(E1

i) + · · ·+ x∗(E
r(Ei)
i) ≤ r(Ei) = xi(Ei).

Hence,

yi(E) = yi−1(E)− xi(E) = yi−1(Ei)− xi(Ei) ≤ yi−1(Ei)− x∗(Ei)

≤ yi−1(Ei)−
1

l
yi−1(Ei) = (1− 1

l
)yi−1(Ei) = (1− 1

l
)yi−1(E).

Inductively,

yi(E) ≤ (1− 1

l
)iy0(E) = (1− 1

l
)ilx∗(E) ≤ (1− 1

l
)iln.

Hence, we have

yl logn(E) ≤ (1− 1

l
)l lognln ≤ (1/e)lognnl ≤ l.

After at most k(k ≤ l log n) steps we have lx∗ −
k∑
j=1

xj ≤ l. It is easy to see that at most l more

steps are needed to reach integer N such that lx∗ = x1 + · · · + xN , where xi is an incident vector
of some feasible matching. Hence, we have

x∗

log n+ 1
≤ lx∗

N
=

1

N
(x1 + · · ·+ xN).

By an averaging argument, there exists an xi such that wxi ≥ wx∗

logn+1 .

Proof of Theorem 5. For u ∈ V1 and v ∈ V2, let D[u, v] denote the weight of a maximum x∗-weight
clique between [r1, u] and [v, `i], for any leaf `i in the subtree rooted at v. Then

D[u, v] = x∗uv + max

{
D[π1(u), v], max

v′:π2(v′)=v

{
D[u, v′]

}}
16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

and
D[r1, `j] = x∗r1,`j , ∀ leaves `j ∈ T2

Proof of Theorem 6. For a root-to-leaf path [r1, `j] in T1 we assign weights x′j to nodes v in T2 as
follows:

x′j(v) =
∑

u∈[r1,`j]

x∗uv

Note that this can be done in O(|V1||V2|). Then, a x′j-maximum weight independent set of vertices

in T2 gives a maximum semi-independent clique with respect to P1. Let D1
j [v] denote the weight

of a maximum x∗-weight clique between [r1, `j] and an independent set in the subtree of T2 rooted
at v. Then

D1
j [v] = max

x′j(v),
∑

v′:π2(v′)=v

D1
j [v
′]

The maximum x∗-weight clique D2

j [v] between [r2, `j] and an independent set in the subtree of
T1 rooted at v is defined analogously in time O(|V1||V2|). Finally, the maximum weight semi-
independent clique constraint can be computed as

max

{
max
`j∈L1

D1
j [r2], max

`j∈L2
D2
j [r1]

}

6.2 Heuristic approaches implemented in Trajan

A simple greedy approach adds the best, i.e., lowest cost edge to a set of already selected edges
that is not in conflict with any of them. This strategy can be applied to large scRNA-seq sample
comprising hundreds of thousands of cells. Since it completely ignores any optimal fractional
solution, it can return very suboptimal solutions.

In contrast, a randomized rounding scheme takes into account the global dependence of variables
in the LP relaxation: A fractional variable x∗i,j in the optimal solution to the improved LP relaxation
is rounded to 1 with probability xi,j , such that the expected objective function value of the integral
solution is the same as of the optimal fractional solution. Potentially introduced conflicts are
subsequently resolved by greedily retaining the most valuable (with respect to w(i, j)) edges. The
tighter the LP relaxation the better the integral solution will be.

Another approach is to add the following non-linear constraints to the LP to force the variables
xi,j to be either 0 or 1:

∀ i, j : xi,j(1− xi,j) = 0 (12)

From a high level point of view these integrality constraints can be thought of as a rank-1 approach
to the first level of the Lasserre hierarchy [14, 15]. When trying to solve this NP-hard problem using
our non-linear solver (Section 6.3), we obtain integral, but suboptimal solutions. We expect this
method to return slightly better solution than the randomized rounding scheme, since in contrast
to the latter, it enforces integrality at the same time as it solves the relaxed, fractional problem.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

6.3 Non-linear solver

We use our non-linear solver to solve all continuous optimization problems, unless stated otherwise.
It implements the standard augmented Lagrangian approach [12, 17] in order to deal with non-
linear constraints. The augmented Lagrangian approach runs in iterations and maps the constrained
optimization problem to a sequence of unconstrained optimization problems that can have bounds
on the variables. These unconstrained optimization problems are then solved by the quasi-Newton
solver (L-BFGS-B [16, 25]) that can also deal with bounds on the variables. A detailed description
on the individual parts of this quasi-Newton solver can be found in [25].

It has been observed before [2] that when the problem is non-convex an augmented Lagrangian
approach can be superior to interior point methods with respect to the solution quality. It often
returns better local minimal solutions than an interior point solver. Note, that this is the situation
when adding the non-linear integrality constraints (12).

6.4 Supplemental Figure

Figure 8: Alignment of myogenic reprogramming and differentiation dynamics using three different
penalty schemes, from left to right: avg, max, lb. The bottom row shows results for random
subsamples of input cells and ordering genes.

6.5 Arboreal DAG matchings

In this section, we generalize arboreal matchings between rooted trees to directed acyclic graphs
(DAGs) G1 = (V1, E1) and G2 = (V2, E2). As for trees, we define pairs of edges (i, j) and (k, l)
between G1 and G2 to be compatible in an arboreal matching if they preserve the ancestry rela-
tionship, that is, if it holds that k is a descendant of i in T1 if and only if l is a descendant of j in
T2. Adjusting the definition of set I of compatible edges to the descendants relationship given by a
DAG rather than a tree, ILP (P) defines the maximum weight arboreal matching between DAGs.

The lifted clique constraints (9) and (11) are analogously valid for DAGs, but their separation
needs to be adapted. For crossing clique constraints, the dynamic program can be generalized to
DAGs by considering all parents of node u (i.e., π1(u) and π2(v

′) here stand for sets of nodes)

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

instead of the unique parent in a tree.

D[u, v] = x∗uv + max

{
max

u′∈π1(u)

{
D[u′, v]

}
, max
v′:v∈π2(v′)

{
D[u, v′]

}}
and

D[ri, `j] = x∗ri,`j , ∀ roots ri ∈ G1, ∀ leaves `j ∈ G2

The running time of this DP is O(|E1||E2|) and thus remains polynomial.
The semi-independent clique constraints need to be computed for each root-to-leaf path in G1

and G2. For a given root-to-leaf path in G1 (or G2), the independent set in G2 (or G1) can be
represented as a maximum weight antichain which can be reduced to a standard max-flow problem
(see [10]), and hence can be computed efficiently. Since the number of paths in a DAG can be
exponential, our approach to separate clique constraints is exponential in the worst case. In fact, we
show below that we cannot hope for a polynomial time separation algorithm (assuming P 6= NP).
Next, we formally state the problem of identifying the most violated (maximum) semi-independent
clique between two DAGs and show that it is NP-hard.
Problem. Maximum Semi-independent Clique (MSC)
Given two DAGs G1 = (V1, E1) and G2 = (V2, E2) with weights α : V1×V2 → R+. Find a maximum
semi-independent clique with respect to the weights α, that is, find a root-to-leaf path P ∗ in G1 and
an independent set S∗ in G2 such that the total weight

∑
u∈V1(P ∗)

∑
v∈S∗

α(u, v) is maximized.

Here the weights α correspond to the current fractional solution and our goal is to find the
most violated semi-independent clique. We prove NP-hardness of MSC via a reduction from the
maximum label cover problem [4]. Given a bipartite graph G = (A,B,E), with a partition of A and
B into k disjoint sets A1, . . . , Ak and B1, . . . , Bk, respectively, the maximum label cover problems
is to find subsets of vertices A′ ⊆ A and B′ ⊆ B, such that, |A′ ∩ Ai| ≤ 1 and |B′ ∩ Bi| ≤ 1, for
i = 1, . . . , k, so as to maximize the number of edges

E(A′, B′) :=
{
{a, b} ∈ E : A′ ∩Ai = {a} and B′ ∩Bj = {b} for some i, j

}
.

Theorem 7. MSC is NP-hard.

Proof. Starting from an instance of the maximum label cover problem G = (A,B,E) and k disjoint
sets A1, . . . , Ak and B1, . . . , Bk, we construct a corresponding instance of MSC problem as follows.
For every subset Ai, we define a directed graph Di = (Ni, A(Di)), where Ni = {si, si+1} ∪ Ai,
A(Di) =

{
(si, a), (a, si+1)|a ∈ Ai

}
. The whole graph G1 = (V1, E1) is constructed by concatenating

the graphs Di according to the order of their indices. Figure 9 depicts such a construction. Let Pi
be a directed path whose vertex set is Bi. The graph G2 = (V2, E2) is obtained by connecting a
vertex s to one of the endpoints of Pi, i = 1, . . . , k (see Figure 10). The weights α between V1 and
V2 are defined as follows.

α(a, b) =

{
1, (a, b) ∈ E(G),

0, otherwise.

Here, each root-to-leaf path in G1 (from s1 to sk+1) corresponds to a selection of exactly one
element from set Ai, i = 1, . . . , k, and an independent set in G2 corresponds to choosing at most
one element from set Bi, i = 1, . . . , k. Since only the weight of edges between a ∈ A and b ∈ B with
(a, b) ∈ E is nonzero, the maximum semi-independent clique between G1 and G2 with respect to
the weights α is equivalent to the maximum label cover.

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

s1 a21

a11

an1

...

A1

s2 a22

a12

am2

...

A2

s3

. . .

. . .

. . .

a2k

a1k

atk

...

Ak

sk+1

Figure 9: The directed acyclic graph G1 = (V1, E1) associated with an instance A1, . . . , Ak. Each
gray box contains a set Ai.

b11

b21

bn
′

1

B1

b12

b22

bm
′

2

B2

b1k

b2k

bt
′
k

Bk

· · ·

· · ·

· · ·

S

Figure 10: The directed acyclic graph G2 = (V2, E2) associated with an instance B1, . . . , Bk. Each
gray box contains a set Bi.

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522672doi: bioRxiv preprint

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

