

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Expression

o3e’C oS08 ‘2\ S N eccoececoce
% & o G‘O‘Q‘ Aligned Pseudo-time
.&.i ~_11 ¢ Tee

Figure 1: Trajan workflow. 1. Complex trajectories are reconstructed from single-cell RNA mea-
surements using, e.g., Monocle 2. After smoothing and scaling (2.), Trajan aligns entire trajectories
by computing an arboreal matching using a branch-and-cut approach (3.), which transforms (warps)
the individual pseudo-time scales into a shared one along which expression kinetics can be compared
(4.). For simplicity, only the alignment between one pair of paths is shown.

2 Methods

Dynamic time warping is the algorithmic workhorse underlying current methods that compare
linear single-cell trajectories. In the next section we briefly review the concept of dynamic time
warping and show that an attempt to generalize dtw to complex trajectories naturally leads to ar-
boreal matchings between trees, which we have introduced previously in the context of phylogenetic
trees [5]. Proofs of Theorems and Lemmas can be found in the Appendix, Section 6.1.

2.1 DTW versus arboreal matching

As in classical sequence alignment, dtw matches similar elements in two sequences while preserving
their order. To account for different speeds at which the two sequences advance, however, each
element of one sequence can be mapped to multiple elements in the other sequence (Fig. 2 left).
More formally, given two time series (z;);, (y;)]L, and a distance or similarity measure d(z;, y;) >
0 between the time points x; and y;, a warping is a sequence p = (p1,...,pr) with p; = (ng, my) €
[1:n]x[1:m]for ¢ e [1: L] that satisfies the following three conditions: (i) Boundary: p; = (1,1)
and pr, = (n,m). (ii) Monotonicity: ny <ng <--- <nr and m; < mg < --- <my. (iii) Step size:
pes1 —pe € {(1,0),(0,1),(1,1)} for £ € [1 : L —1]. Note that the example warping in Figure 1 (left)
contains no pair of crossing edges and thus preservers the order of the two sequences.

Figure 2: An example of a warping (left) and an arboreal matching (right) between two time series.

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

The classic dtw aims to find a warping p minimizing the total distance between mapped elements:

L
Cp(.']f, y) = Z d(‘rnga ym;)
(=1

The optimal warping can be computed by a dynamic program that solves:
D(i,j) = d(zi,y;) + min{D(i — 1,j — 1), D(i — 1,5), D(i,j — 1)} (1)

There are various extensions of the classic dtw described above that can be mainly classified as 1)
restricting the range of the mapping to a certain window; 2) assigning different weights to different
types of steps; and 3) using different step patterns, e.g. ppr1 —pe € {(1,1),(1,2),(2,1)} in (iii). In
the following, we consider the widely used classic dtw which is also the default scheme for computing
dtw [24]. Since state-of-the-art methods like Monocle 2 [20] and DPT [11] aim to construct smooth
trajectories, the classic dtw provides the necessary flexibility for most single-cell alignment tasks.

Here, we propose a generalization of classic dtw from paths, i.e., linear trajectories, to trees, i.e.,
complex trajectories: We want to align each path in tree T} to at most one path in 75 and vice versa
and, similar to dtw, preserve the order of nodes along the paths, i.e., no crossing edges. In addition,
we require all alignments to be consistent, that is, every node must be matched to the same node
in all pairwise alignments it is part of. In [5], we have introduced arboreal matchings that formalize
such a consistent path-by-path alignment of trees: An arboreal matching is a matching M, i.e.,
one-to-one correspondence between nodes in trees 77 and T3 such that for any (uq, v1), (ug,v2) € M,
uy 1s a descendant of u; iff vy is a descendant of v.

In contrast to dtw, an arboreal matching M matches each node (cell) to at most one similar
node (cell) in the other tree (trajectory). It is not required to cover all nodes between each pair of
paths, but we can flexibly penalize nodes that remain unmatched by M in the objective function:

oM):= > duv)+ Y du,-)+ D d(-wv), (2)
(u,v)eM ueh veEVa
u unmatched v unmatched
where the cost of leaving node u (v) unmatched is d(u, —) > 0 (d(—,v) > 0). In fact, the arboreal
matching of minimum cost (2) between two paths P = (z1,...,2,) and Q = (y1,...,Ym) can be
solved by a very similar dynamic program as in dtw (1):

D(i,j) = min{D(i = 1,5 = 1) + d(ws, y;), D(i — 1,j) + d(i, =), D(i,j = 1) +d(=,j)}. (3)

An example arboreal matching between two paths is shown in Figure 2 (right). Again, the non-
crossing edges align the two time-series to reveal similarities and unmatched nodes indicate com-
pressed or stretched sections. This makes arboreal matchings as flexible as dtw in the comparison
of two trajectories. More specifically, we will show that by choosing an appropriate penalty for
unmatched vertices, the optimal dtw and the optimal arboreal matching yield similar measures of
similarity or distance of the compared trajectories. Denote by dg,, and dps the optimal value of
the classic dtw and the arboreal matching between two paths P and @), respectively. The following
theorem provides an upper bound on dg,.

Theorem 1. Let D = maxd(z;,y;). If d(z,—) = mag d(z,y) and d(—,y) = max d(z,y), then
irj ye z€

datw < dy < dapw + kD,

where k is the minimum number of edges that need to be removed to transform the optimal warping
to an arboreal matching.

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Next, we develop a lower bound theorem for the classic dtw. An edge (z,y) in the warping p is
called redundant if both vertices x and y are covered by at least two edges in p.

Lemma 1. There exists an optimal warping of the classic dtw without redundant edges.

Given an optimal warping p*, we assign penalties to unmatched vertices such that dys < dgs-
Let p* be an optimal warping without redundant edges, define

Li(p*) := {z € P|z is covered by at least two edges from p*},
Lo(p*) :={y € Q|y is covered by at least two edges from p*}.

Then, we impose penalties

d(z,y) if 3z € Li(p*) and (z,y) € p*,
d(—,y) = max d(z,y) otherwise. @
x€L1(p*)

We define penalties d(xz,—),x € P, analogously. Since p* has no redundant edges, d(—,y) is
uniquely defined. Conversely, if there exist x1,x2 € L1(p*) such that (x1,y) € p*, (z2,y) € p*, the
non-redundancy of p* is violated. We have the following lower bound theorem.

Theorem 2. Ifd(x,—),d(—,y) are defined as in (4), then dy; < dgiy-

In Section 3.1 we illustrate how closely the optimal arboreal matchings based on lower and
upper bound penalty scheme follow the optimal dtw path.

2.2 Limitations of the naive ILP formulation

Finding the matching minimizing (2) can be phrased as a maximum matching problem that ex-
plicitly forbids the two possible types of ancestry violations: Two edges can be crossing, or two
nodes on the same root-to-leaf path are matched to nodes on different root-to-leaf paths (Figure 3).
The former constraint is equally imposed by dtw, the latter is a consequence of the simultaneous
comparison of multiple paths and prevents arbitrary jumps between biological processes in the
comparison. In our proof-of-concept study [5], we describe feasible arboreal matchings between two

Figure 3: Pair of crossing edges (blue) extended to a clique of crossing edges (left) and pair of
semi-independent edges (blue) extended to a clique of semi-independent edges (right).

rooted trees Ty = (V1, E1), To = (Va, E»), by the following simple ILP:

[Vi [Val ..
max Zi:l i w(i, j)xi (P)
[Va| .
S. t. Zj:lxi’j Sl VZZl...|V1|, (5)
V
Z‘._lll zij <1 Vi=1...|Val, (6)

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

i+ g <1 V{(@9), (k, 1)} €T, (7)
Tij € {0, 1}, (8)

where indicator variables x; ; denote the presence or absence of an edge (i,), weights w(i, j) :=
d(i,—) + d(—,j) — d(i,5). Pairs of edges (i,7) and (k,l) are compatible if it holds that k is a
descendant of 7 in T} iff [is a descendant of j in T5. Set Z contains pairs of edges {(, j), (k, 1)} that
are incompatible, i.e., they are either crossing or one-sided independent (Figure 3).

As our experiments in Section 3.3 show, this ILP formulation does not allow to practically align
trajectories comprising as few as 100 single cells. In the following theorem, we identify its weak
LP-relaxation as a theoretical explanation for this empirical performance, since the search space
that needs to be explicitly explored by an ILP solver depends on the strength of the LP relaxation.
Let OPT denote an optimal solution to the above ILP and let w(OPT) be its optimal score. Let
[Vi| = n,|V2| = m, and w.l.o.g we assume n < m.

Theorem 3. The integrality gap of the linear programming relazation of (P) is n — o(1).

2.3 A branch-and-cut algorithm for arboreal matchings

In this section, we introduce a thoroughly engineered branch-and-cut algorithm that allows to
practically compare complex single-cell trajectories. Its main ingredients are (i) cuts that trim
the LP relaxation closer to the convex hull of feasible arboreal matchings (Section 2.3.1), (ii)
polynomial-time algorithms that can find these cuts on demand (Section 2.3.2), (iii) a branch-and-
bound scheme that makes use of modern CPU architectures (Section 2.3.3), and (iv) an in-house
developed, non-commercial, non-linear solver that we use for all continuous optimization problems
(Appendix, Section 6.3). In Section 6.5 in the appendix, we generalize arboreal matchings and our
branch-and-cut algorithm to directed acyclic graphs.

2.3.1 Valid clique constraints

The next theorem motivates the addition of valid inequalities to reduce the integrality gap of the
LP relaxation. Let (PC) be the LP-relaxation of the ILP that we obtain by replacing the pairwise
incompatibilities (7) in (P) by the more general clique inequalities

Z x;; <1, for each Q. € C,
(i,j)EQc

where C is a set of cliques, i.e., sets of pairwise incompatible edges. Denote by E(T1,T5) the set
of edges between two trees. For each M C E(T1,T5), let 7(M) denote the maximum size of any
feasible (unweighted) arboreal matching contained in M.

Theorem 4. If we can write any set M C E(T1,T3) as union of at most r(M) cliques, that is,
(M)

.
M = |J Qi then the integrality gap of the linear program (PC) is at most logn + 1.
=1

(2
Inspired by this theorem, we strengthen the LP relaxation by lifting pairwise incompatibility
constraints (7) to maximal sets (cliques) of pairwise crossing edges and maximal sets (cliques) of
edges that are pairwise semi-independent (Figure 3). As our experiments in Section 3.3 indicate,
these lifted constraints result in stronger bounds that allow us to prune larger parts of the search
space. Due to their exponential number, we add lifted constraints only on demand, that is, if they
cut off the current optimal fractional solution. In the next section, we describe how to assess this
demand in polynomial time.

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

2.3.2 Polynomial-time separation algorithms

In the following, we consider trees 71 = (Vi, E1) and Ty = (Va, E2) with roots 71 and ro, sets of
leaves L1 and Lo, and parent mappings m; and me, respectively. For two vertices p,q € V;, denote
by [p, ¢] the unique path in T; between p and gq.

Crossing edges clique constraints A maximal set of pairwise crossing edges between two fixed
root-to-leaf paths [rq, ¢1], [r2, f2] can be obtained by the following procedure. Starting from an edge
between leaf ¢; in 77 and the root of Ts, in each step we either move up along [r1, ¢1] and keep the
node in 7T fixed, or we move down along [ra, 2] and keep the node in 7T} fixed. Analogously we can
start from edge (ry, f2). Figure 3 (left) shows one possible outcome of this procedure.

Given a fractional solution x* to the current LP relaxation, the separation problem asks to find
a hyperplane that cuts off (separates) z* from the polytope without losing any feasible integral
solution, i.e., arboreal matching. Since each maximal set (clique) Q. of edges obtained by the
procedure above are pairwise incompatible, the sum of their fractional values must not exceed 1:

Z x5 <1 9)

(1,7)€Qc

Among the exponentially many crossing cliques Q. we can identify one for which (9) is (most)
violated efficiently by a dynamic program. For fixed paths Py = [r1,¢1], Py = [ra,{2], let D[u,v]
denote the maximum (with respect to x*) clique between [ri,u] and [v,f2]. It can be defined
recursively as the better choice between moving up in P; or down in Ps:

Dlu,v] =z}, + max { D[m1 (u),v], D[u,v']} (10)

where m2(v') = v. The maximum z*-weight clique D[l1,73] can then be computed by a dynamic
program in time O(|P;||P,|). We can generalize this dynamic program to two trees by considering
all child nodes v’ in the recursion instead of the unique descendant along the path:

Theorem 5. Given a fractional solution x* we can determine whether a crossing edge clique
inequality (9) is violated in time O(|V1]|Va|).

Semi-independent clique constraints We strengthen the LP relaxation even further by lifting
pairs of semi-independent edges to maximal sets (cliques) of pairwise semi-independent edges. Such
a set consists of edges that are all incident to nodes on a common root-to-leaf path in one tree,
and are incident to nodes in the second tree that all lie on distinct root-to-leaf paths, i.e., are
independent (Figure 3 right). Again, edges in such a clique Q; must satisfy

> o<1 (11)
(7'7])692

Formally, the separation of semi-independent clique constraints with respect to 17 and 75 is given
by the following theorem.

Theorem 6. Given a fractional solution x* we can determine whether a semi-independent clique
inequality (11) is violated in time O(|V1]|Val).

Again, Theorem 6 allows us to cut off large parts of the polytope in polynomial time, without
losing any feasible arboreal matching.

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

2.3.3 Obtaining integral solutions

In the previous section we described a tighter relaxation of the original ILP formulation. While
this relaxed LP improves upon previous approaches it still provides only fractional solutions in the
worst case. Trajan implements four different strategies to obtain integral solutions, ranging from
fast, but suboptimal, to more expensive, but optimal methods. With this we try to address the
need for tailored trade-offs between accuracy and speed imposed by different single-cell sequencing
technologies that assay a variable number of genes at varying resolution in hundreds to millions of
cells. We describe heuristic approaches implemented in Trajan in Appendix Section 6.2.

Branch and bound Trajan can compute an optimal arboreal matching by a classical branch and
bound algorithm, whose running time can be exponential in the worst case. We have implemented
several node selection strategies [7], including best first, depth first and a hybrid approach as well
as various common variable selection schemes [3], including most and least fractional variables, and
most constrained variables. The initial primal bound is obtained by the simple greedy approach de-
scribed above or the fixed-parameter tractable algorithm described in Section 2.4. Taking advantage
of modern CPU architectures, Trajan can run multiple instances of our solver in parallel, each one
using a different node and variable selection strategy while sharing the current best primal bound
in memory. In best first mode, Trajan can distribute open subproblems across a user-specified
number of processors. Note that a tighter relaxation can speed up the running time of the branch
and bound exploration since better dual bounds allow for a better pruning of some of the subtrees
in the branch and bound computation graph. This can be seen in the experiments in Section 3.3.

2.4 FPT algorithm for small number of cell fates

For trajectories with a small number of cell fates k£ we employ a fixed-parameter tractable algorithm,
parameterized by k. It guesses the correspondence between paths in the two trajectories and applies
a dynamic program similar to [13] to align them optimally, in total time O(n?m?2k!), where k is
the smaller number of leaves among the two trees comprising n and m nodes, respectively. Even
for large k, our branch and bound solver optionally runs the FPT algorithm for a small number of
path permutations to derive a primal bound on the optimal solution.

3 Results

We have implemented the branch-and-cut algorithm described above and have bundled it with
our non-linear solver (Section 6.3) in our novel trajectory alignment tool Trajan. In addition to
a full branch and bound scheme, Trajan offers heuristic approaches to transform strong bounds
into feasible arboreal matchings as well as an FPT algorithm for small number of cell fates at a
dramatically reduced computational cost. Trajan adopts a strategy similar to [6] to prepare the
output of Monocle 2 (or similar trajectory reconstruction methods) for a meaningful alignment,
including the smoothing and scaling of expression curves.

3.1 Lower and upper bounds on dtw

Here, we illustrate the practical relevance of the upper bound (UB, Theorem 1) and lower bound
(LB, Theorem 2) that the optimal arboreal matching between two paths can provide on the op-
timal dtw. We align two simple trajectories constructed from scRNA-seq data on dendritic cells
stimulated under two conditions (LPS and PAM) collected at 4 time points after stimulation [21].

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

The two linear trajectories and the dissimilarity matrix were obtained from a recent study that
introduced cellAlign [1], a method that aligns two simple trajectories based on dtw. The optimal so-
lutions computed by cellAlign using dtw and by Trajan using the LB penalty scheme are equivalent
(Figure 4). When using the UB penalty scheme, Trajan’s optimal path through the dissimilarity
matrix roughly follows the dtw path and represents a solution with almost 2 times larger score.

A

LPS Distance

Figure 4: The optimal dtw path and two optimal paths computed by Trajan with lower bound (LB)
and upper bound (UB) penalty scheme. The optimal dtw path and Trajan’s LB path coincide (left).
Alignment of myogenic reprogramming and differentiation dynamics (right). Trajan discovers the
core branches of similar cell fates.

3.2 Trajan reproduces barriers in myogenic reprogramming

Here, we re-analyzed two public single-cell datasets: human skeletal muscle myoblast (HSMM)
differentiation and human fibroblasts undergoing MY OD-mediated myogenic reprogramming (hFib-
MyoD). These datasets were previously analyzed in [6], where the authors set out to compare these
related processes in order to identify molecular barriers that hinder the efficient reprogramming of
fibroblasts to myotubes. The authors used known myoblast differentiation markers (CDK1, ENO3,
MYOG) to identify the core path within the complex trajectory constructed from hFib-MyoD, and
they aligned this path to the core path in normal muscle development (HSMM) using dtw. The
authors pointed out that the combined trajectory constructed from cells in both conditions did not
intermix cells and thus did not allow to assess critical commonalities and differences in expression
dynamics. We repeated the single-cell data analysis described in [6] to obtain the corresponding
trajectories from Monocle 2 (Figure 5).

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

State 1«23+ 4 5 State 1 =2 3
3| hFib-MyoD .. HSMM
X 4 ~ Failure
Failure 2 i
2
o~ N \
T 1 5]
g 5
Qo Qo
£ Cycling . % g £ 0
8o i 8
® Exited
- Cyclin
-1 Exit failure yeing Full
-4 2 0 2 B B 0]
Component 1 Component 1

Figure 5: Trajectories of myogenic reprogramming (left) and differentiation (right). Cycling: un-
differentiated, actively proliferating cells; Exited: cells lacking expression of cell cycle and muscle
contraction genes; Exit failure: cells expressing genes of early myoblast differentiation yet still pro-
liferating; Failure: cells lacking expression of cell cycle genes as well as of muscle contraction genes;
Partial: cells expressing MYOG and multiple muscle contraction genes and lacking expression of
cell cycle genes; Full: full progression to contractile myotubes.

We then sought to align these complex trajectories using our algorithm. We show that Trajan
is able to align the core paths of each complex trajectory, without any previous knowledge or path
picking, using the same distance measure (correlation) as in the original publication. The global
dynamics alignment of HSMM and hFib-MyoD are shown in Figure 4. Interestingly, our approach
not only aligns the core trajectories, but it also aligns the branches corresponding to failure of
reprogramming, which are characterized in both processes by cells that exited the cell cycle, yet
failed to proceed toward differentiation [6], [19].

After performing the trajectory alignment with Trajan, we constructed gene expression kinetics
plots for a set of genes that were assessed in [6] to investigate whether our alignment was able to
reproduce their reported findings regarding similarities and differences between these two processes.
Indeed, we were able to reproduce their key findings: Proliferation marker CDK1 is downregulated
both in HSMM and hFib-MyoD; Muscle transcriptional regulators (MEF2C, MYOG) are upregu-
lated later and to a lesser extent in hFib-MyoD compared to HSMM; BMP4 is only expressed in
hFib-MyoD and ID family proteins (ID1, ID3) which lie downstream of BMP signaling fail to be
downregulated in hFib-MyoD; IGF pathway genes (IGF2, IGF1R) are expressed at higher levels in
HSMM (Figure 6).

BMP4 CDK1 20 D1 D3
8
0.6 15 9
s .
0.4 - 6
4 10
02 2 05 3
s _/L
5 0.0 0 N ————— 0.0 0 DataSet
I 1
o IGFIR IGF2 MEF2C MYOG hFib-myo
g

IS

w

6 10.0 = HSMM
20 75
4
50

25

~

0 20 40 60 0 20 40 60 0 20 40 60
Pseudo-time (Aligned)

o
N
3

40 60

Figure 6: Gene expression dynamics after trajectory alignment with Trajan.

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

We evaluated Trajan using penalty schemes that assign the maximum and average weight of
incident edges as well as the minimum cost implied by the lower bound Theorem 2 over all pairs of
paths (Ib). While the maximum scheme (maz) is a direct generalization of the cost scheme applied
by Theorem 1, the averaging scheme (avg) tries to capture the expected cost of leaving a vertex
unmatched and is the default scheme applied by Trajan. All schemes correctly picked the correct
core paths in the two trajectories and are robust under subsampling. (Appendix, Figure 8).

3.3 Accuracy of Trajan

Here, we compare the accuracy of Trajan in matching ”correct” cells between complex trajectories
to the path-wise alignment by dtw. To this end, we perturb the hFib-MyoD trajectory output by
Monocle 2 by randomly subsampling 80% of the input cells and 80% of the genes used for ordering
them along pseudo-time. We align isomorphic trajectories (trees) comprising a variable number
of nodes (parameter ncenter in Monocle 2), measuring the difference between nodes by Euclidean
distance. Since we know the true correspondence of nodes between different perturbed trees, we
can count false positive and false negative alignments as a measure of accuracy. In Table 1 we
report the number of false positive (FP) and false negative (FN) alignments of the classic dtw run
on each true pair of paths, and Trajan using different penalty schemes (avg, max, 1b). Trajan takes
the entire trees as input, it is not given the correct path-to-path correspondence. Nevertheless,
Trajan almost always finds the true correspondence between cells, compared to the path-wise dtw
scheme, that introduced both FP and FN alignments.

Table 1: Average number of false positive (*) and false negative(™) alignments of Trajan and path-
wise dtw. The average is taken over a variable number of instances comprising a total # of nodes
in the two input trees.

% of nodes . # of Trajan DTW
Instances avgt avg”™ maxt max~ IbT Ib~ FP FN
80 435 0.0 0.2 0.0 0.0 128 17.7 35.0 32.1
100 435 0.0 0.0 0.0 0.1 129 17.6 54.6 50.5
140 190 0.0 0.0 0.0 0.0 18.6 30.0 54.5 50.7
180 190 0.0 0.0 0.0 0.2 31.8 389 83.9 76.0
210 45 0.0 0.0 0.0 0.0 339 439 76.6 70.3

Table 2 reports the running times of the naive ILP using the commercial solver IBM ILOG CPLEX
12.7 and Trajan coupled with our in-house non-linear solver on a random subset of the instances
introduced above. In addition to the full branch-and-cut implementation (Trajan-BnC), we ran
Trajan switching to the FPT algorithm (Trajan-FPT). On a 2.30GHz Linux system using up to 15
threads, Trajan-BnC is at least 13 times faster than the naive ILP using CPLEX, while Trajan-FPT
is another 10 times faster then Trajan-BnC. The speedup of Trajan-FPT on this set of instances is
not surprising, since these trees comprise only 3 different leaves (cell fates). CPLEX was not able
to solve instances with more than 200 nodes since it exceeded the memory limit of 320 GB.

11

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Table 2: Average runtime in seconds of Trajan vs CPLEX

4 of nodes . # of Trajan-BnC Trajan-FPT CPLEX
mstances avg max dtw avg max Ib avg max Ib
80 435 3.0 3.2 1.0 0.3 0.3 0.3 41.6 41.3 32.8
140 190 23.2 263 6.6 2.8 2.8 2.8 405.8 416.5 185.8
180 45 69.6 73.0 23.7 7.4 7.4 7.4 1381.8 1585.2 1041.0
210 45 1209 147.4 47.6 12.4 124 124 - - -

4 Conclusion

We have introduced Trajan, a novel method that allows for the first time the alignment of complex
(non-linear) single-cell trajectories. Originally introduced to compare phylogenetic trees, in Trajan
we adopt arboreal matchings to perform an unbiased alignment enabling the meaningful compar-
ison of gene expression dynamics along a common pseudo-time scale. Trajan does not make any
assumptions concerning the algorithm used to reconstruct the trajectory and can in principle be
coupled with any available reconstruction method. In a future algorithm, an arboreal matching be-
tween cells might prove useful in guiding a joint learning of trajectories for two biological processes.
Furthermore, our generalization to directed acyclic graphs (see Appendix) can be used to align
data-driven ontologies and the manually curated Gene Ontology (GO) to assign genes to existing
GO terms, but also to infer new terms and potentially confirm or correct hierarchical term-term
relationships [8].

5 Acknowledgments

Soren Laue has been funded by Deutsche Forschungsgemeinschaft (DFG) under grant LA 2971/1-1.
Mislav Blazevi¢ was supported in part by BAYHOST. Francisca Rojas Ringeling was supported by
the Bavarian Gender Equality Grant (BGF).

12

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

References

[1] Ayelet Alpert, Lindsay S Moore, Tania Dubovik, and Shai S Shen-Orr. Alignment of single-cell
trajectories to compare cellular expression dynamics. Nature Methods, 15(4):267-270, April
2018.

[2] Roberto Andreani, Ernesto G. Birgin, José Mario Martinez, and Marfa Laura Schuverdt.
On augmented lagrangian methods with general lower-level constraints. SIAM Journal on
Optimization, 18(4):1286-1309, 2007.

[3] Toannis P. Androulakis. MINLP: Branch and Bound Global Optimization Algorithm, pages
1415-1421. Springer US, Boston, MA, 2001.

[4] Sanjeev Arora, Lészl6 Babai, Jacques Sternd, and Z Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. Journal of Computer and System
Sciences, 54(2):317 — 331, 1997.

[5] Sebastian Bocker, Stefan Canzar, and Gunnar W. Klau. The generalized robinson-foulds
metric. In Workshop on Algorithms in Bioinformatics (WABI), 2013.

[6] Davide Cacchiarelli, Xiaojie Qiu, Sanjay Srivatsan, Anna Manfredi, Michael Ziller, Eliah
Overbey, Antonio Grimaldi, Jonna Grimsby, Prapti Pokharel, Kenneth J Livak, Shuqiang
Li, Alexander Meissner, Tarjei S Mikkelsen, John L Rinn, and Cole Trapnell. Aligning Single-
Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of
Myogenic Reprogramming Outcome. Cell Systems, pages 1-18, September 2018.

[7] Liao Ching-Jong. A new node selection strategy in the branch-and-bound procedure. Com-
puters €& Operations Research, 21(10):1095 — 1101, 1994.

[8] Janusz Dutkowski, Michael Kramer, Michal A Surma, Rama Balakrishnan, J Michael Cherry,
Nevan J Krogan, and Trey Ideker. A gene ontology inferred from molecular networks. Nature
Biotechnology, 31(1):38-45, December 2012.

[9] Daniel C Ellwanger, Mirko Scheibinger, Rachel A Dumont, Peter G Barr-Gillespie, and Stefan
Heller. Transcriptional Dynamics of Hair-Bundle Morphogenesis Revealed with CellTrails. Cell
Reports, 23(10):2901-2913.e14, June 2018.

[10] Andras Frank. Finding minimum generators of path systems. J. Comb. Theory, Ser. B,
75(2):237-244, 1999.

[11] Laleh Haghverdi, Maren Bttner, F Alexander Wolf, Florian Buettner, and Fabian J Theis.
Diffusion pseudotime robustly reconstructs lineage branching. Nature Methods, 13(10):845 —
848, 2016.

[12] Magnus R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and
Applications, 4(5):303-320, 1969.

[13] Zhang K and Shasha D. Simple fast algorithms for the editing distance between trees and
related problems. SIAM J Comput, 18:1245 — 1262, 1989.

[14] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In Integer
Programming and Combinatorial Optimization (IPCO), 2001.

13

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[15] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. STAM
Journal on Optimization, 11(3):796-817, 2001.

[16] José Luis Morales and Jorge Nocedal. Remark on ”algorithm 778: L-BFGS-B: fortran subrou-
tines for large-scale bound constrained optimization”. ACM Trans. Math. Softw., 38(1):7:1-7:4,
2011.

[17] M. J. D. Powell. Algorithms for nonlinear constraints that use lagrangian functions. Mathe-
matical Programming, 14(1):224-248, 1969.

[18] Xiaojie Qiu, Andrew Hill, Jonathan Packer, Dejun Lin, Yi-An Ma, and Cole Trapnell. Single-
cell mrna quantification and differential analysis with census. Nature methods, 14(3):309, 2017.

[19] Xiaojie Qiu, Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, and Cole
Trapnell. Reversed graph embedding resolves complex single-cell trajectories. Nature methods,
14(10):979, 2017.

[20] Xiaojie Qiu, Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, and Cole
Trapnell. Reversed graph embedding resolves complex single-cell trajectories. Nature Methods,
14(10):979 — 982, 2017.

[21] Alex K. Shalek, Rahul Satija, John J. Trombetta Joe Shuga, Dave Gennert, Diana Lu, Peilin
Chen, Rona S. Gertner, Jellert T. Gaublomme, Nir Yosef, Schraga Schwartz, Brian Fowler,
Suzanne Weaver, Jing Wang, Xiaohui Wang, Ruihua Ding, Raktima Raychowdhury, Nir Fried-
man, Nir Hacohen, Hongkun Park, Andrew P. May, and Aviv Regev. Single-cell rna-seq reveals
dynamic paracrine control of cellular variation. Nature, 498(510):363 — 369, 2014.

[22] T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52-57,
1968. Russian Kibernetika 4(1):81-88 (1968).

[23] Joshua D. Welch, Alexander J. Hartemink, and Jan F. Prins. Matcher: manifold alignment
reveals correspondence between single cell transcriptome and epigenome dynamics. Genome
Biology, 18(1):138, Jul 2017.

[24] Jiaping Zhao and Laurent Itti. shapedtw: Shape dynamic time warping. Pattern Recognition,
74:171 — 184, 2018.

[25] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B:
fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.,
23(4):550-560, 1997.

14

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

6 Appendix

6.1 Proofs of Theorems and Lemmas

Proof of Theorem 1. (sketch) The first inequality is proven by induction on i + j.
Let p* be the optimal warping and k£ the minimum number of edges that need to be removed
to transform p* to a feasible arboreal matching M. Since M has k unmatched vertices, we have

(M) < cpe(x,y) + kD.
This implies that dy; < dgi, + kD, which also completes the proof of the theorem. O

Proof of Lemma 1. Conversely, let p* be an optimal warping such that (z;,y;) € p* and both x;
and y; are covered by at least two edges in p*. From the coverage property of the warping we must
have (z;,y;-1) € p* or (z4,y;41) € p*. If (z4,yj—1) € p*, we get (x;41,y;) € p* since y; is covered by
at least two edges in p* and by the warping conditions. As a results, D(i,7) = D(4,5 — 1) +d(x;, ;)
and D(i+1,7) = D(i,j) + d(xit1,y5) = D(i,5 — 1) + d(x;,y;) + d(zit1,y;). From (1), we obtain
D(i+1,5) <D(i,j — 1) + d(xi+1,y;). This implies that d(x;,y;) < 0. Since d(z;,y;) > 0 we must
have d(z;,y;) = 0. As a consequence, we can remove (z;,y;) from p* without violating the warping
conditions. The case (z;,y;+1) € p* is proven in an analogous manner. O

Proof of Theorem 2. Let p* be a non-redundant optimal warping. For every vertex = € L1 (p*) and
y € Lo(p*) we delete all incident edges but one, which results in an arboreal matching of the same
cost as dtw p*. Hence, it implies that dy; < dgtep-]

Proof of Theorem 3. Let K = maxw(i, j), hence K is bounded above by w(OPT). Moreover, for
Z’J

any feasible solution z to the relaxation, we have

[Va] V2| Va| V2| V1] [Va| V1]

ZZ w(i,j)a; < ZZKQ:”<ZK]Z:QU” <ZK Kn.

i=1 j=1 i=1 j=1

Therefore, the optimal value of the LP relaxation is at most n times w(OPT). Our bad instance
consists of the two rooted trees shown in Figure 7, with w(red/blue edges) = 1 and w(-) = 0
otherwise. Any pair of nonzero weight edges are incompatible, so the maximum cost matching is
1. Let x(red edges) = ﬁ, Tp1=1-— ﬁ,xmm = ﬁ]ln;ﬁm, and z(-) = 0 otherwise, where 1,4,
is a binary number such that 1,., = 1 iff n # m. Hence, x is a feasible solution with cost of
(n—1)2/(n—1)+1=mnif n # m and n — 1 if n = m. Therefore, the optimal value of the LP

relaxation at least n — o(1). O

Proof of Theorem /4. Let z* be an optimal solution of the LP relaxation With clique constraints.
We show that there exists a feasible arboreal matching with cost at least +1, where wx* =
> w(i,j)xj ;. Let [be the smallest integer such that for all e € E(T1,Ts), x; = ¢, where n. € N.
iJ

We will decompose lz* = 2! 4 - -+ 2™, where 27 is an incident vector (with ground set E) of some
feasible arboreal matching. Next, we are going to show that N < [(logn + 1). The procedure for
finding ' is inductive. Let y' = lz* — (2! +--- +2%) for i = 1,2,... and 3° = Iz*. Define

Ei={ecE:y'>0}fori=12,...

15

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

T1 T2

Figure 7: The integrality gap of the LP relaxation of (P) is n.

Let 2° be an incident vector of a maximum feasible arboreal matching in E; such that ' (E;) = r(E;).
By assumption, we can write F; = E} U+ U EZ(E"), where FY is a clique. As the result, we have

(B = 2" (B U U E[P)) <o (BN + o+ 2t (B]) < (B = 2 (Ey).
Hence,
y(B) =y (B) = 24(B) =y (B) — () <y (B) — 2° ()
<y B - 1y (B) = (1= Dy E) = (- Dy (B)
Inductively,

A 1. 1, . 1,
Y(B) < (1- 1)s’(B) = (1—)2’ (B) < (1 - 7)iIn.
Hence, we have
1
yllogn(E) < (1 _ 7)llognln < (1/e)lognnl <.

k
After at most k(k < llogn) steps we have lz* — Y z; <. It is easy to see that at most [more
j=1
steps are needed to reach integer N such that lz* = ' + - + 2V, where ' is an incident vector
of some feasible matching. Hence, we have

x* lzx 1,4 N
v < = — e .
logn+1~ N N(x +ooe At
By an averaging argument, there exists an x* such that wa’ > 1o§)£11' O

Proof of Theorem 5. For uw € V) and v € Vo, let D]u,v]| denote the weight of a maximum z*-weight
clique between [r1,u] and [v, ¢;], for any leaf ¢; in the subtree rooted at v. Then

D[u,v]::z:zv—i-max{D[m(u),v], max {D[u,v’]}}

v (v)=v

16

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

and
Diri,4;] = xy. ,,V leaves £; € Ty

T1 757 ’

O]

Proof of Theorem 6. For a root-to-leaf path [rq,¢;] in T} we assign weights x; to nodes v in Th as

follows:
.’IJ;(’U) = Z x;kw

u€lry 78]'}

Note that this can be done in O(|V4[[V2]). Then, a 2’-maximum weight independent set of vertices
in T3 gives a maximum semi-independent clique with respect to P;. Let D]l [v] denote the weight
of a maximum x*-weight clique between [r1, £;] and an independent set in the subtree of T5 rooted
at v. Then

Djl- [v] = max { 2’ (v), Z Djl- [v]

v'ma(v')=v

The maximum z*-weight clique D3[v] between [ra,/;] and an independent set in the subtree of
T} rooted at v is defined analogously in time O(|Vi||V2|). Finally, the maximum weight semi-
independent clique constraint can be computed as

1 2
max {ijez?cl Dj[ra], Elezg D; [rl]}

6.2 Heuristic approaches implemented in Trajan

A simple greedy approach adds the best, i.e., lowest cost edge to a set of already selected edges
that is not in conflict with any of them. This strategy can be applied to large scRNA-seq sample
comprising hundreds of thousands of cells. Since it completely ignores any optimal fractional
solution, it can return very suboptimal solutions.

In contrast, a randomized rounding scheme takes into account the global dependence of variables
in the LP relaxation: A fractional variable xf ;in the optimal solution to the improved LP relaxation
is rounded to 1 with probability x; j, such that the expected objective function value of the integral
solution is the same as of the optimal fractional solution. Potentially introduced conflicts are
subsequently resolved by greedily retaining the most valuable (with respect to w(i, 7)) edges. The
tighter the LP relaxation the better the integral solution will be.

Another approach is to add the following non-linear constraints to the LP to force the variables
x;; to be either 0 or 1:

v i,j . xi,j(l — xi,j) =0 (12)

From a high level point of view these integrality constraints can be thought of as a rank-1 approach
to the first level of the Lasserre hierarchy [14, 15]. When trying to solve this NP-hard problem using
our non-linear solver (Section 6.3), we obtain integral, but suboptimal solutions. We expect this
method to return slightly better solution than the randomized rounding scheme, since in contrast
to the latter, it enforces integrality at the same time as it solves the relaxed, fractional problem.

17

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

6.3 Non-linear solver

We use our non-linear solver to solve all continuous optimization problems, unless stated otherwise.
It implements the standard augmented Lagrangian approach [12, 17] in order to deal with non-
linear constraints. The augmented Lagrangian approach runs in iterations and maps the constrained
optimization problem to a sequence of unconstrained optimization problems that can have bounds
on the variables. These unconstrained optimization problems are then solved by the quasi-Newton
solver (L-BFGS-B [16, 25]) that can also deal with bounds on the variables. A detailed description
on the individual parts of this quasi-Newton solver can be found in [25].

It has been observed before [2] that when the problem is non-convex an augmented Lagrangian
approach can be superior to interior point methods with respect to the solution quality. It often
returns better local minimal solutions than an interior point solver. Note, that this is the situation
when adding the non-linear integrality constraints (12).

6.4 Supplemental Figure

Figure 8: Alignment of myogenic reprogramming and differentiation dynamics using three different
penalty schemes, from left to right: avg, max, lb. The bottom row shows results for random
subsamples of input cells and ordering genes.

6.5 Arboreal DAG matchings

In this section, we generalize arboreal matchings between rooted trees to directed acyclic graphs
(DAGs) G1 = (V1, Eq) and Gg = (Va, E2). As for trees, we define pairs of edges (4,j) and (k,1)
between GG; and G5 to be compatible in an arboreal matching if they preserve the ancestry rela-
tionship, that is, if it holds that k is a descendant of ¢ in 73 if and only if [is a descendant of j in
T5. Adjusting the definition of set Z of compatible edges to the descendants relationship given by a
DAG rather than a tree, ILP (P) defines the maximum weight arboreal matching between DAGs.

The lifted clique constraints (9) and (11) are analogously valid for DAGs, but their separation
needs to be adapted. For crossing clique constraints, the dynamic program can be generalized to
DAGs by considering all parents of node u (i.e., m1(u) and ma(v’) here stand for sets of nodes)

18

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

instead of the unique parent in a tree.

Dlu,v] =z}, + max{ max {D[u/,v]}, max {D[u,v']}}
v/ emy(u) v :wem (V')
and
Dir;, £;] = mii,ej,v roots r; € G'1,V leaves £; € G

The running time of this DP is O(|E4||E2|) and thus remains polynomial.

The semi-independent clique constraints need to be computed for each root-to-leaf path in G
and Go. For a given root-to-leaf path in Gy (or Gs2), the independent set in Go (or G1) can be
represented as a maximum weight antichain which can be reduced to a standard max-flow problem
(see [10]), and hence can be computed efficiently. Since the number of paths in a DAG can be
exponential, our approach to separate clique constraints is exponential in the worst case. In fact, we
show below that we cannot hope for a polynomial time separation algorithm (assuming P # NP).
Next, we formally state the problem of identifying the most violated (maximum) semi-independent
clique between two DAGs and show that it is NP-hard.

Problem. Mazimum Semi-independent Cliqgue (MSC)
Given two DAGs G1 = (V1, E1) and Gy = (Va, Ea) with weights o : Vi x Vo — R4 Find a maximum
semi-independent clique with respect to the weights o, that is, find a root-to-leaf path P* in G and

an independent set S* in Go such that the total weight Y. Y. «a(u,v) is mazimized.
ueVy(P*)veS*
Here the weights a correspond to the current fractional solution and our goal is to find the
most violated semi-independent clique. We prove NP-hardness of MSC via a reduction from the

mazximum label cover problem [4]. Given a bipartite graph G = (A, B, E), with a partition of A and

B into k disjoint sets Ay, ..., Ar and By, ..., B, respectively, the maximum label cover problems
is to find subsets of vertices A’ C A and B’ C B, such that, |[A'N A;| <1 and |B'N B;| <1, for
i=1,...,k, so as to maximize the number of edges

E(A',B) = {{a,b} € E: AN A; = {a} and B'N B; = {b} for some i, j}.
Theorem 7. MSC is NP-hard.

Proof. Starting from an instance of the maximum label cover problem G = (A, B, E) and k disjoint
sets A1,..., A and By, ..., By, we construct a corresponding instance of MSC problem as follows.
For every subset A;, we define a directed graph D; = (N;, A(D;)), where N; = {s;,si11} U A,
A(D;) = {(si,a), (a,si11)|a € A;}. The whole graph Gy = (V4, E1) is constructed by concatenating
the graphs D; according to the order of their indices. Figure 9 depicts such a construction. Let P;
be a directed path whose vertex set is B;. The graph Gy = (V3, E») is obtained by connecting a
vertex s to one of the endpoints of P;,i =1,...,k (see Figure 10). The weights o between V; and
V5 are defined as follows.

a(a,b):{l’ (a,b) € E(G),

0, otherwise.

Here, each root-to-leaf path in G; (from s; to sxy1) corresponds to a selection of exactly one
element from set A;,i = 1,...,k, and an independent set in G2 corresponds to choosing at most
one element from set B;,7 = 1,..., k. Since only the weight of edges between a € A and b € B with
(a,b) € E is nonzero, the maximum semi-independent clique between G and Gy with respect to
the weights « is equivalent to the maximum label cover. O

19

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522672; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Ay

o

N\
e

©jeler

Ay,

RN
e

Figure 9: The directed acyclic graph G = (Vi, E1) associated with an instance Aq, ..., A;. Each

gray box contains a set A;.

2

By

(<)

By

@4“® @

Figure 10: The directed acyclic graph Gy = (Va, F3) associated with an instance By, ..., Bx. Each

gray box contains a set B;.

20

https://doi.org/10.1101/522672
http://creativecommons.org/licenses/by/4.0/

