Additivity of multiple threats

1	Superadditive and subadditive dynamics are
2	not inherent to the types of interacting threat
3	
4	V Haller-Bull ^{1,2,3¶*} and M Bode ^{1,3&}
5	1. ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville,
6	Australia
7	2. AIMS@JCU, Australian Institute of Marine Science, Townsville, Australia
8	3. School of Mathematical Sciences, Queensland University of Technology, Brisbane,
9	Australia.
10	
11	
12	*Corresponding author:
13	Email: <u>v.haller@hdr.qut.edu.au</u>
14	
15	
16	

Additivity of multiple threats

17 Abstract

Species and ecosystems usually face more than one threat. The damage caused by these 18 multiple threats can accumulate nonlinearly: either subadditively, when the joint damage of 19 combined threats is less than the damages of both threats individually added together, or 20 superadditively, when the joint damage is worse than the two individual damages added 21 together. These additivity dynamics are commonly attributed to the nature of the 22 threatening processes, but conflicting empirical observations challenge this assumption. 23 Here, we provide a theoretical demonstration that the additivity of threats can change with 24 25 different magnitudes of threat impacts. We use a harvested single-species population model to integrate the effects of multiple threats on equilibrium abundance. Our results 26 reveal that threats do not always display consistent additive behavior, even in simple 27 systems. Instead, their additivity depends on the magnitudes of the two threats, and the 28 population parameter that is impacted by each threat. In our model specifically, when 29 multiple threats impact the growth rate of a population, they display superadditive 30 dynamics at low magnitudes of threat impacts. In contrast, threats that impact the carrying 31 capacity of the environment are always additive or subadditive. These dynamics can be 32 understood by reference to the curvature of the relationship between a given parameter 33 (e.g., growth) and equilibrium population size. Our results suggest that management 34 actions can achieve amplified benefits if they target threats that affect the growth rate, and 35 low-magnitude threats, since these will be in a superadditive phase. More generally, our 36

Additivity of multiple threats

- results suggest that cumulative impact theory should focus on the magnitude of the impact
- on the population parameter, and should be cautious about attributing additive dynamics to
- ³⁹ particular threat combinations.

40 Keywords

threat interactions, superadditivity, subadditivity, multiple threats, threat management,

42 prioritization

43 Introduction

Species and ecosystems across the globe are exposed to a large variety of threats. When considering an ecosystem, for example, coral reefs, there can be a variety of threat sources, including local, direct impacts such as fishing; land-based impacts such as water quality; and global impacts such as coral bleaching (1, 2). The damages caused by these threats are rarely straightforward since they can interact and display nonlinear behaviors (3), which can either magnify, reduce, or erase the benefits of management actions (2, 4, 5).

When multiple threats occur simultaneously (6), the damage they cause to an ecosystem feature (e.g., a species' population) is a result of each individual threat, and the interaction between them (5, 7). Interactions can occur in a variety of ways; here, we focus solely on interactions that occur within a single population. The accumulated effects of multiple threats are not always additive, meaning two threats aren't always twice as bad as one, but

Additivity of multiple threats

55	rather can display super- or subadditive behavior. The existence of non-additive threat
56	interaction dynamics has been shown repeatedly (7-10). Subadditivity occurs when the
57	damages caused by the combined threats, D(A&B), are smaller than the sum of the effects
58	of the individual threats, $D(A\&B) \le D(A)+D(B)$ (11). Similarly, superadditivity is defined
59	as the joint damage being larger than the sum of the individual effects, D(A&B) >
60	D(A)+D(B) (11). To give an example: in a controlled laboratory experiment, a mollusk
61	Dolabrifera brazier experienced a decrease in population size of 10% at high salinity, and
62	a decrease in population size of 25% when exposed to high UV radiation. If the joint
63	damage of these two threats was additive, then we would expect a decrease of 35% when
64	both threats are present. However, the decrease in the presence of both threats was
65	measured at a superadditive 80% (12).

The majority of studies on threat interactions rely on experimental or observational 66 methods. The main aim of these studies is to identify which threat combination (e.g., 67 salinity and light, or salinity and temperature) displays which type of additivity. However, 68 the studies often disagree about the type of additivity, even when considering the same 69 study species and threats. As with the *D. brazier* example, interacting threats are generally 70 investigated using field or laboratory experiments (7). Crain, Kroeker (7) reviewed 202 71 studies on these interaction types in marine systems and found that 26% of threat 72 combinations are additive, while 36% are superadditive and 38% are subadditive. There 73 was also variation within threat combinations: all threat combinations that had been 74 thoroughly investigated displayed all three additivity types (7). For example, 34 75

Additivity of multiple threats

76	independent factorial experiments that investigate the impact of UV light and fishing found
77	additive impacts in 17 cases, subadditive impacts in 5 cases and superadditive impacts in
78	12 cases (7). So far, this variation is explained by context dependence (7), including the
79	number of threats considered and the trophic level of the species experiencing the threat.
80	Here, we investigate an alternative explanation for the observed variation: additivity of
81	joint damages of threats can change with varying magnitude of threat impacts.
82	Investigating different magnitudes of threat impacts is difficult in both observational and
83	experimental studies because any experiment would need to be structured factorially, with
84	the species or community being exposed to the threats individually and in combination,
85	across a range of magnitudes. For example, Schlöder and D'Croz (13) investigated the
86	effect of temperature and nitrate on two coral species, Pocillopora damicornis and Porites
87	lobate. In this experiment, 60 coral pieces were grown for 30 days in isolation and the
88	frequency and volume of their zooxanthellae was measured. The magnitude of the threat
89	was only classified in two (nitrate) or three (temperature) categories, resulting in six
90	possible scenarios and leaving five replicates per species. Even an increase to three levels
91	in nitrate would result in an increase of the combinations to nine combinations and 90 coral
92	fragments if keeping the replication constant. This makes the investigation of many
93	different magnitudes of threat impacts very challenging; modelling studies need to be used
94	to address these kind of questions more holistically. Simulations of threats at many trophic
95	levels, including all of their impacts and magnitudes, as well as utilising large sample sizes
96	can be analysed to draw conclusions that are more generalizable. In contrast, models can

Additivity of multiple threats

97	evaluate threats and their management in situations where manipulation or experimentation
98	is challenging (5, 14, 15).
99	When a threat on a population occurs it passes through several stages before we see the
100	damage (Fig.1). In this paper, we distinguish between impact and damage. The impact is
101	defined as the actual reduction of a population parameter that the threat causes (Table 1).
102	For example, we could have a cyclone (a threat) occurring at a reef. This cyclone might
103	reduce the amount of habitat available for the fish population, i.e. the carrying capacity is
104	reduced. This reduction of the fishes carrying capacity is the actual impact on the
105	population. Damage on the other hand is the effect of the cyclone that we can measure at

some point after the threat has occurred, usually this is a population reduction.

107 Figure 1. Schematic diagram of threats impacting on populations

108

109

Table 1. Definition and connection of commonly used terms in this paper

Term Definition	
-----------------	--

Additivity of multiple threats

Impact	Impact is the proportion of the population parameter that is reduced by the threat.
Joint impact	Joint impact is the combined impact that two threats have on one population parameter.
Damage (D)	Damage is the change in the population equilibrium that is caused by one or more threats. This damage is what is measured in observational studies.
Joint damage $(D_{1,2})$	Joint damage is the reduction in population equilibrium size that can be measure after two threats have occurred.
Additivity index	The additivity index gives a characteristic of the joint damage in relation to the dame caused by a single threat. It ranges from -1 to 1 and can be categories as additivity types: superadditive ($-1 \le A < 0$), additive ($A = 0$) or subadditive ($0 < A \le 1$).

111

In this study, we analyse the conditions within a population and threats that lead to 112 superadditive and subadditive behaviour. Our aim is to theoretically investigate the 113 additivity of joint threats, and to offer a more nuanced understanding of the factors that 114 influence additivity. We are especially interested in understanding how additivity varies 115 with different magnitudes of threat impacts, and how it depends on the parameters 116 impacted by the threats. We use a suite of single-species population models to simulate 117 damages caused by threats in isolation and combination to identify the interaction 118 behaviour. Then, we identify and explain the conditions that lead to super- and 119 subadditivity. Finally, possible management actions are simulated and their relative 120 benefits depending on the additivity are compared. 121

Additivity of multiple threats

122 Methods

- ¹²³ Our analyses are based on a single-species population model the harvested logistic model
- (Eq. 1) which allows us to derive some results analytically, and to more easily interpret
- them in the context of cumulative threat theory. Threats are modelled as proportional
- reductions (a and b) in two population parameters: the growth rate (r), and the carrying
- capacity (*K*) respectively. So the logistic model

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - hN \tag{Eq. 1}$$

129 becomes

130
$$\frac{dN}{dt} = (1 - a_i) r N \left(1 - \frac{N}{(1 - b_i)K} \right) - hN$$
 (Eq. 2)

in the presence of threat i.

We note that in this model, a single threat i can affect both our population parameters. For example, in coral reef ecosystems sedimentation simultaneously reduces the habitat available to corals (*K*), and increases coral mortality (*r*). Our approach would therefore allow this single threat to interact with itself. In Eq. 1 and Eq. 2, r = growth rate, $(1 - a_i)$) = impact on the growth rate, K = carrying capacity, $(1 - b_i) =$ impact on carrying capacity, h = harvest rate, also $0 \le a_{i,b}b_{i,c}r,h \le 1$ and h < r. A value of zero for either *ai* or *bi* therefore indicates no impact of the threat on the parameter, while a value of one

Additivity of multiple threats

indicates a total loss of the process represented by the parameter. Our analyses focus on the
equilibrium population in the face of multiple threats that each impact the population to
form a new population equilibrium,

142
$$N^*(a_i,b_i) = \left(1 - \frac{h}{(1-a_i)r}\right)(1-b_i)K.$$
 (Eq. 3)

If $N^*(a_i,b_i) < 0$, we consider the population to be extinct and set $N^*(a_i,b_i) = 0$. In the figures a line is added that separates extinct populations.

Furthermore, we define the damage (*D*) to be the reduction in population size caused bythe threat:

147
$$D = N^*(0,0) - N^*(a_i,b_i).$$
(Eq. 4)

Two threats acting upon one parameter could be modelled in two ways: multiplicative

$$(1 - b_1) * (1 - b_2)$$
 or additive $(1 - b_1) + (1 - b_2)$. Both of these are reasonable. Additive
impacts would indicate that the two impacts occur independently with no influence on one
another, while multiplicative would indicate that they change the impact of one another.
One example for non-independence is if they act consecutively, i.e. the impact of threat 2
affects the parameter that has already been impacted by threat 1. Which one is most
appropriate could be dependent on the actual threats and how they affect the physiologic
state of the modelled organisms. However, this is not something that is usually
investigated, so it is hard to determine which one is more appropriate in a given situation.

Additivity of multiple threats

157	Here we present the results of the additive model, however the analysis for the
158	multiplicative version can be found in the supplementary materials. Furthermore, the
159	supplementary materials also provide the results for the equivalent analysis for the
160	Beverton-Holt (S2) and the Ricker model (S3). While there are slight differences in the
161	actual results, all major conclusions in this paper are supported by the results of both
162	analyses.

- ¹⁶³ To categorise the joint damage caused by multiple threats we have created an additivity
- index (A). It is based on the population equilibria in the presence and absence of the
- threats. Basically the additivity index is equal to the sum of the damage caused by each

threat separately, minus the damage caused by both threat simultaneously,

167
$$A = D_1 + D_2 - D_{1,2}.$$
 (Eq. 5)

When A is negative the joint damage is superadditive; when A is positive then the joint damage is subadditive.

We consider four different types of interacting threats (Table 2). In our first two cases, both threats impact only one parameter, either the carrying capacity ($a_1 = a_2 = 0, b_1, b_2 \neq 0$) or the growth rate ($a_1, a_2 \neq 0, b_1 = b_2 = 0$). In case three and four, threats impact both parameters. Case three only considers interactions between parameters ($a_1, b_1 \neq 0, a_2 = b_2$ = 0) while case four considers both interactions between and within both parameters (a_1 , $a_2, b_1, b_2 \neq 0$).

Additivity of multiple threats

Table 2. Analytical conditions for the four special cases with r=growth rate, a=impact of

Case	Parameters	Additivity index (logistic model)
Both threats only impact the carrying capacity	$a_1 = a_2 = 1$ $0 < b_1, b_2 < 1$	$K(b_2 - 1)(b_1 - 1)(1 - \frac{h}{r})$ ⇒ Always positive
Both threats only influence the growth rate	$0 < a_1, a_2 < 1$ $b_1 = b_2 = 1$	$\left(\frac{1}{a_1} - \frac{1}{a_1 a_2} - \frac{1}{a_2} - 1\right) K \frac{h}{r}$
One threat of the growth rate and one on the carrying capacity	$a_2 = b_1 = 1$ $0 < a_1, b_2 < 1$	$K\left(\frac{h}{r}\left(\frac{b}{a}-1\right)^{2}+(b-1)^{2}\right)$ ⇒ Always positive
Both threats influence both parameters	$\begin{array}{c} 0 < a_1, a_2 < 1 \\ 0 < b_1, b_2 < 1 \end{array}$	$(1 + a_1b_2 - b_2 - a_1)K_{\overline{r}}^{h}$

the threat on growth rate, h=harvest rate and b=impact on carrying

178

We first analytically analyse the additivity index for the different cases. However, since the 179 interaction is not consistent for each case, we cannot find one overall condition rather a set 180 of conditional statements that depend on the case (Table 2). While correct, these statements 181 are difficult to interpret, consequently, we use simulations to further investigate the 182 conditions for additivity through simulations. We simulate 10⁶ random populations 183 (randomly chosen values for r) at different magnitudes (0 to 1) of the threat impact over 184 1000 timesteps, to reach the equilibrium population size. Since the ratio of $\frac{h}{r}$ changes the 185 magnitude of the threat impact at which the additivities occur, we have chosen specific 186 values for $\frac{h}{r}$ and split the simulations according to those values, to enable better 187 visualisation. Those values are $\frac{h}{r} = 0.2$, $\frac{h}{r} = 0.5$ or $\frac{h}{r} = 0.8$. Since r is chosen randomly, h is 188

Additivity of multiple threats

189	assigned to each simulation so that $\frac{h}{r}$ equals the value specified for each group. Equilibria
190	are re-calculated three times for each random population with three different treatments:
191	each one of the threats acting separately, and then the two threats interacting. The
192	additivity index of the two threats for each population is calculated (Eq. 4).
193	Finally, we simulated the effects of management by decreasing one or both threats by 5%
194	and recalculating the long-term population equilibrium. Management actions could be
195	designed to reduce the threat as a whole, for example reducing fishing pressure, or to
196	reduce the impact on one population parameter, for example fishing technique is changed
197	so that less habitat destruction is caused. For simplicity, it is assumed here that a
198	management action reduces the impact of a threat on both population parameters
199	simultaneously and equally. The benefit is recorded for random populations and across the
200	magnitude of threat impacts of all cases (~100,000 data points per case)

201
$$Benefit = \frac{N^*(a_managed,b_managed) - N^*(a,b)}{N^*(1,1)}$$
(Eq. 6)

202 **Results**

The results of the simulations agree with the results of the analytical analysis; consequently both are appropriate for analysing the threat interactions. However, caution has to be given to the defined parameter space to prevent negative population sizes.

Additivity of multiple threats

206	Cases 1 and 2 both concentrate on one of the population parameters (Fig 2). These two
207	cases show very different patterns in the joint damages. Two threats on the carrying
208	capacity always cause a joint damage that is additive until the extinction line (at which
209	point at least one threat can cause extinction) where the joint damage becomes necessarily
210	subadditive. The threats on the growth rate, however, display a joint damage that is
211	additive at low magnitudes of threat impacts and superadditive at high magnitudes of threat
212	impacts. Within the area of extinctions there will again be subadditive joint damage.
213	Generally, it can be said that the additivity index decreases from zero towards negative one
214	until it hits the extinction line, then the additivity index starts to increase until it reaches
215	positive 1. As harvest levels increase (Fig 2), the extinction line moves closer towards the
216	origin, as extinction occurs at lower threat levels.

Figure 2. Additivity indices for 10⁶ simulations of random values for h and r split into 217 three cases depending on the parameter impacted by the threats. The four cases 218 represent: a-c: Case 1; Two threats that only influence the carrying capacity ($a_1 = a_2$ 219 = 0, $b_1, b_2 \neq 0$); d-f: Case 2; Two threats that only influence the growth rate (a_1, a_2 220 \neq 0, $b_1 = b_2 = 0$); g-i: Case 3; Each parameter is only influenced by one threat (a_1 , 221 $b_1 \neq 0$, $a_2 = b_2 = 0$); j-l: Case 4; Both threats influence both parameters(a_1, a_2, b_1, b_2 222 \neq 0). The columns indicate the level of harvest relative to the population growth rate. 223 Between the origin and the extinction line, the population of organisms persists in the 224 present of the threats, from the extinction line onwards, the population will go extinct 225 in the presence of at least one threat in isolation. The interpretation of an additivity 226

Additivity of multiple threats

227	index of zero has to be done carefully, since the graph aligns all values in the range
228	– $0.02 < 0 < 0.02$ as zero. While there are truly additive impacts, the line from
229	additive to subadditive is less distinct and more like a gradual decrease in A.

Case 3 demonstrates the joint damage when both parameter are impacted. This case shows only additive and subadditive damage similar to case 1. However, subadditivity now also occurs without the presence of extinction. Furthermore, it is interesting to note that changes to the impact on the growth rate (a_1) and changes to the impact on the carrying capacity (b_1) do not cause the same change in the additivity index.

In case 4, both threats impact both the carrying capacity and the growth rate. This means 235 that we can compare it directly with case 1 and 2, since they are basically a subset of the 236 simulations displayed within case 4. The only difference is that the results are collapsed 237 into a lower dimensional space. For example, case 1 shows the impact of threat 2 on the 238 carrying capacity on the y-axis and the impact of threat 1 on the carrying capacity on the x-239 axis. In case 4, both impacts are displayed on the y-axis by simple addition. This means 240 that when the impact on the growth rate is very low in case 4 $(a_1 + a_2 = 0)$, then case 4 is 241 equivalent to case 1. Similarly we can find the results from case 2 in case 4 buy setting the 242 impact on the carrying capacity close to zero $(b_1 + b_2 = 0)$. The rest of the case 4 243 compromises a mixture of sub- and superadditivity. Superadditivity occurs only at high 244 impacts on the growth rate, while subadditivity mainly occurs at medium impacts on both 245 the growth rate and carrying capacity. The absolute magnitude of the additivity index still 246

Additivity of multiple threats

247	increases towards the extinction line and decreases after the extinction line with increasing
248	impacts of one or either population parameters.

Next, we consider the relationship between the population parameter and the population 249 equilibrium (Fig 3). When increasing the threats (e.g. from 0 to 1) on the growth rate we 250 can see a decrease in the population equilibrium (Fig 3A). This decrease is first slow then 251 becomes steeper resulting in a concave relationship. On the other hand, when increasing 252 the threat impacts on the carrying capacity the population equilibrium decreases linearly 253 (Fig 3B). Finally, when we increase the impact on both parameters at different levels (Fig 254 3C), we can identify all three; convex (red line), linear (blue lines) and concave (green 255 line) relationships (Fig 3D). 256

Figure 3. Relationships between the threats on (A) growth rate, (B) carrying capacity, 257 (C&D) growth rate and carrying capacity and the population equilibrium. Part A. 258 shows a concave relationship between the threats impacting the growth rate and the 259 population equilibrium for all levels of the carrying capacity. Part B shows a linear 260 relationship between the threats impacting the carrying capacity and the population 261 equilibrium for all magnitudes of the growth rate. Part C shows a contour graph of 262 the population equilibrium with varying threats impacting the growth rate and the 263 carrying capacity. Furthermore, slices are highlighted (lines) that are displayed in 264 Part D. The x-axis in part D represents the magnitude of the impact of the threats on 265 the growth rate. The threats impacting the carrying capacity are also varied and can 266

Additivity of multiple threats

267	be identified usin	g the appropriate	e linear function	to calculate b.	Part D shows that
-----	--------------------	-------------------	-------------------	-----------------	-------------------

depending on the slice we choose from Part C both concave and convex relationships

- can be found when all threat impacts are varied.
- 270 Management benefit per 5% threat impact change displays a large variation from as low as
- 0% increase of the no threat population equilibrium up to 4300% increase (Table 3). Both
- extremes occur when the equilibrium populations are close to zero before management.

Table 3. Statistics summarising all of the simulations used for Fig. 4 divided

according to the cases and extinction status after the management on the threats

Statistic	Case 1	Case 2	Case 3	Case 4
Including extinct	Including extinct populations			
Minimum	0.28	0	0	0
Q1	3.773	0	0	0
Median	5.25	0	4.48	0
Q3	6.71	003.153	6.71	2.22
Maximum	100	2894.1	4374.7	295.59
Excluding extinct populations				
Minimum	0.28	4*10-4	4*10-4	1.5*10-3
Q1	3.773	5.63	4.31	3.191
Median	5.25	12.17	5.41	5.499
Q3	6.71	18.95	7.79	8.912
Maximum	100	2894.1	1803.7	186.74

275

276 Several factors influence the management benefit experienced by a population when

- particular threats are decreased. First, there is the magnitude of the threat impact. The
- ²⁷⁸ impact on the parameter growth rate shows some variation with benefit being higher in the

Additivity of multiple threats

279	extreme case (high and low magnitude) versus the medium magnitude (Fig 4a). On the
280	other hand, the threat impact of the carrying capacity shows a clear decrease of
281	management benefit with a decrease in magnitude. The lowest threat impact doubles or
282	even triplets the management benefit experienced (Fig 4b). The largest amount of variation
283	is explained when we consider the additivity together with the benefit (Fig 4c). More
284	superadditive behavior lead to over ten times the benefit compared to cases where very
285	subadditive damage is displayed.
286	Figure 4. Management benefit (±1.96*SE) when reducing both threats simultaneously
286 287	Figure 4. Management benefit (±1.96*SE) when reducing both threats simultaneously according to the four cases. Panel a) splits the benefit for different magnitudes of
287	according to the four cases. Panel a) splits the benefit for different magnitudes of
287 288	according to the four cases. Panel a) splits the benefit for different magnitudes of threat impact on the parameter carrying capacity. Panel b) splits the benefit for
287 288 289	according to the four cases. Panel a) splits the benefit for different magnitudes of threat impact on the parameter carrying capacity. Panel b) splits the benefit for different magnitudes of threat impacts on the growth rate. Low impact < 0.25; 0.25<
287 288 289 290	according to the four cases. Panel a) splits the benefit for different magnitudes of threat impact on the parameter carrying capacity. Panel b) splits the benefit for different magnitudes of threat impacts on the growth rate. Low impact < 0.25; 0.25< Medium-Low impact < 0.5; 0.5 < Medium-High impact < 0.75; High impact > 0.75.

Additivity of multiple threats

295 **Discussion**

296	This study explored the interaction behaviour of two threats acting upon two population
297	parameters in theoretical populations. We found that, contrary to orthodox assumptions,
298	the joint damage of threats is not inherent to the particular threat combination (7, 9). Even
299	in a simple, one-species model, the additivity can exhibit qualitative changes, depending on
300	the affected parameter, and the magnitude of the impact on a threat. Our results therefore
301	suggest that studies or reviews should be careful when they attribute the qualitative type of
302	additivity to particular combinations of threats (4), and be aware that the parameters
303	affected and the magnitude of the impact could be driving the threat behaviour.
304	In our models, superadditivity only occurs if there are several impacts on the growth rate.
305	This can be explained by the concave relationship between the intrinsic growth rate and the
306	equilibrium population size (Fig. 3a). Following this curve toward the origin, we see that
307	the slope increases in response to increasing threats. A threat with twice the impact will

therefore cause more than double the damage to the equilibrium population size. In

309 contrast, the joint damage of threats will be additive when the slope is constant, i.e. a linear

relationship between the population parameter and the population equilibrium. On the

other hand, the additive joint damage when only the carrying capacity is impacted can be

related to the linearity of its relationship to the equilibrium population size (Fig. 3b).

Additivity of multiple threats

313	During this study, we found a few occasions where concavity does not predict all of the
314	interactions that we can find, i.e. this generalization seems to contradict our results. For
315	example, at high magnitude of threat impacts there are subadditive interactions. On closer
316	examination, we found that all of these subadditive data points resulted in extinction. This
317	subadditivity can only be found in the simulation results, the analytical analysis results in
318	negative population sizes, which are not ecologically defined. Consequently, the data
319	points resulting in extinction (negative population sizes, subadditivity) lay outside the
320	realm of definition of the concave function.
321	Interestingly, reducing both parameters simultaneously can cause both super- and
322	subadditivity at varying magnitudes of threat impacts. This is also reflected in the
323	parameter-equilibrium relationships that can be both convex and concave (Fig. 3c-d). This
324	means that at high levels of the growth rate and the carrying capacity the curve is concave,
325	causing superadditivity and at low levels convex, causing subadditivity without extinction.
326	This confirms our results and leads to the conclusion that we can infer the additive
327	behavior from the curvature of the applicable curve.
328	Additivity of multiple threats has been considered in terms of conservation and
329	management of populations repeatedly. In many cases, the opinion is that superadditivity is
330	the worst case for the population (16, 17). However, superadditivity can also be the best
331	case scenario when considered from the perspective of management (18). Our results
332	support this since superadditive threats result in the largest proportional management

Additivity of multiple threats

333	benefit. This can be especially true when we consider local versus global, manageable
334	versus unmanageable, threats. Superadditivity can mean that by reducing a manageable
335	threat we can simultaneously achieve a reduction in the damage caused by the
336	unmanageable threat (5). On the other hand subadditivity would mitigate the benefit from
337	the management of a single threat and, consequently, the management action could be of
338	small use. Following from here is that the management benefits are easiest to predict for an
339	additive threat combination (9).
340	These results in combination with the commonly-conducted cumulative threat mapping (6,
341	19) can be used to prioritise management actions. Prioritising management is especially
342	important in ecosystems that spread over large areas where it is impossible to protect the
343	full extent of a species (20). In such systems prioritising management actions is crucial.
344	When prioritising there are many aspects to consider, such as cost, risk, suitability and
345	resulting benefit (21). The analysis shown here can aid in the assessment of the suitability
346	for management of different areas and likely benefit that can be achieved. Global threats
347	are always difficult to manage for local government so are less suitable. So if a global
348	threat impacts all areas of conservation concern, but different local threats impact specific
349	areas, then according to the analysis here, we might want to protect the areas that are
350	impacted by superadditive threats. Furthermore, the actual benefit that a management
351	action can result in is influenced by all threats to this system. The analysis conducted here,
352	i.e. knowledge of the parameters impacted by each threat can help to estimate likely

Additivity of multiple threats

³⁵³ benefits. Therefore, these findings could streamline some aspects of management
 ³⁵⁴ prioritisations.

The study utilises a simple logistic model that considers one population is isolation. This is 355 not particularly realistic since all species interact with other species and threats can also 356 interact with each other through those species. However, for this study a simple model is 357 used to highlight the complexities that interactions introduce. It is important to note here 358 that a more complex model will result in more complexities in the result not less. The 359 simple model also provides a framework to interpret and explain some of the phenomena 360 that are likely to still play role in more complex communities. The applicability of these 361 results for many populations is also confirmed through the use of the Beverton-Holt and 362 the Ricker model that both showed the same patterns of additivity (S1). Future work will 363 aim to transfer the conclusions and explanations from a single population in this study to 364 more complex community level models. 365

366 Conclusions

This study has provided an overview of the complexity of behaviors that interacting threats can display. Overall, the traditional idea of assigning types of interactions to threat combinations is re-conceptualized to a fluid concept of interactions depending on the parameters impacted. Besdies the large complexities found in this study, clear conclusions can be drawn about the origins of superadditive behavior; several threats that impact the

Additivity of multiple threats

372	growth rate of a population. Furthermore, this characteristic, superadditivity, can be
373	connected to more efficient management and inform a prioritization of locations with
374	different interacting threats More generally, the interaction behavior can be predicted by
375	the curvature of the relationship between the impacted parameter and the equilibrium
376	population size; a convex relationship implies subadditivity, and a concave relationship
377	implies superadditivity. Finally, this study urges ecologists to focus on identifying the
378	parameter and relative magnitude of threat impacts rather than the additivity type as a
379	result of the threat combination.

380 Literature cited

Brown CJ, Saunders MI, Possingham HP, Richardson AJ. Managing for
 interactions between local and global stressors of ecosystems. PloS one. 2013;8(6):e65765.

2. Crain CM, Halpern BS, Beck MW, Kappel CV. Understanding and Managing
Human Threats to the Coastal Marine Environment. In: Ostfeld RS, Schlesinger WH,
editors. Year in Ecology and Conservation Biology 2009. Annals of the New York
Academy of Sciences. 11622009. p. 39-62.

Hughes T, Connell J. Multiple stressors on coral reefs: A long-term perspective.
 Limnology and oceanography. 1999;44(3part2):932-40.

Brown CJ, Saunders MI, Possingham HP, Richardson AJ. Interactions between
 global and local stressors of ecosystems determine management effectiveness in
 cumulative impact mapping. Diversity and Distributions. 2014;20(5):538-46.

³⁹² 5. Gurney GG, Melbourne-Thomas J, Geronimo RC, Alino PM, Johnson CR.
³⁹³ Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale
³⁹⁴ Stressors Conserve Reefs under Climate Change? Plos One. 2013;8(11):17.

Additivity of multiple threats

Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D'Agrosa C, et al. A
global map of human impact on marine ecosystems. Science. 2008;319(5865):948-52.

7. Crain CM, Kroeker K, Halpern BS. Interactive and cumulative effects of multiple
 human stressors in marine systems. Ecology Letters. 2008;11(12):1304-15.

³⁹⁹ 8. Judd AD, Backhaus T, Goodsir F. An effective set of principles for practical
⁴⁰⁰ implementation of marine cumulative effects assessment. Environmental Science & Policy.
⁴⁰¹ 2015;54:254-62.

402 9. Darling ES, Côté IM. Quantifying the evidence for ecological synergies. Ecology
 403 letters. 2008;11(12):1278-86.

Piggott JJ, Townsend CR, Matthaei CD. Reconceptualizing synergism and
 antagonism among multiple stressors. Ecology and evolution. 2015;5(7):1538-47.

406 11. Coors A, De Meester L. Synergistic, antagonistic and additive effects of multiple
 407 stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of
 408 Applied Ecology. 2008;45(6):1820-8.

Przeslawski R, Davis AR, Benkendorff K. Synergistic effects associated with
climate change and the development of rocky shore molluscs. Global Change Biology.
2005;11(3):515-22.

Schlöder C, D'Croz L. Responses of massive and branching coral species to the
combined effects of water temperature and nitrate enrichment. Journal of Experimental
Marine Biology and Ecology. 2004;313(2):255-68.

415 14. Fulton EA, Link JS, Kaplan IC, Savina-Rolland M, Johnson P, Ainsworth C, et al.
416 Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish
417 and Fisheries. 2011;12(2):171-88.

Melbourne-Thomas J, Johnson C, Fulton E. Regional-scale scenario analysis for the
Meso-American Reef system: Modelling coral reef futures under multiple stressors.
Ecological Modelling. 2011;222(10):1756-70.

421 16. Paine RT, Tegner MJ, Johnson EA. Compounded perturbations yield ecological
422 surprises. Ecosystems. 1998;1(6):535-45.

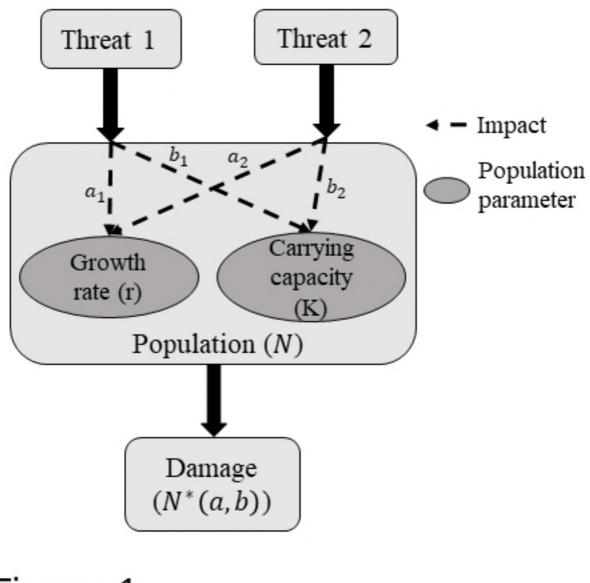
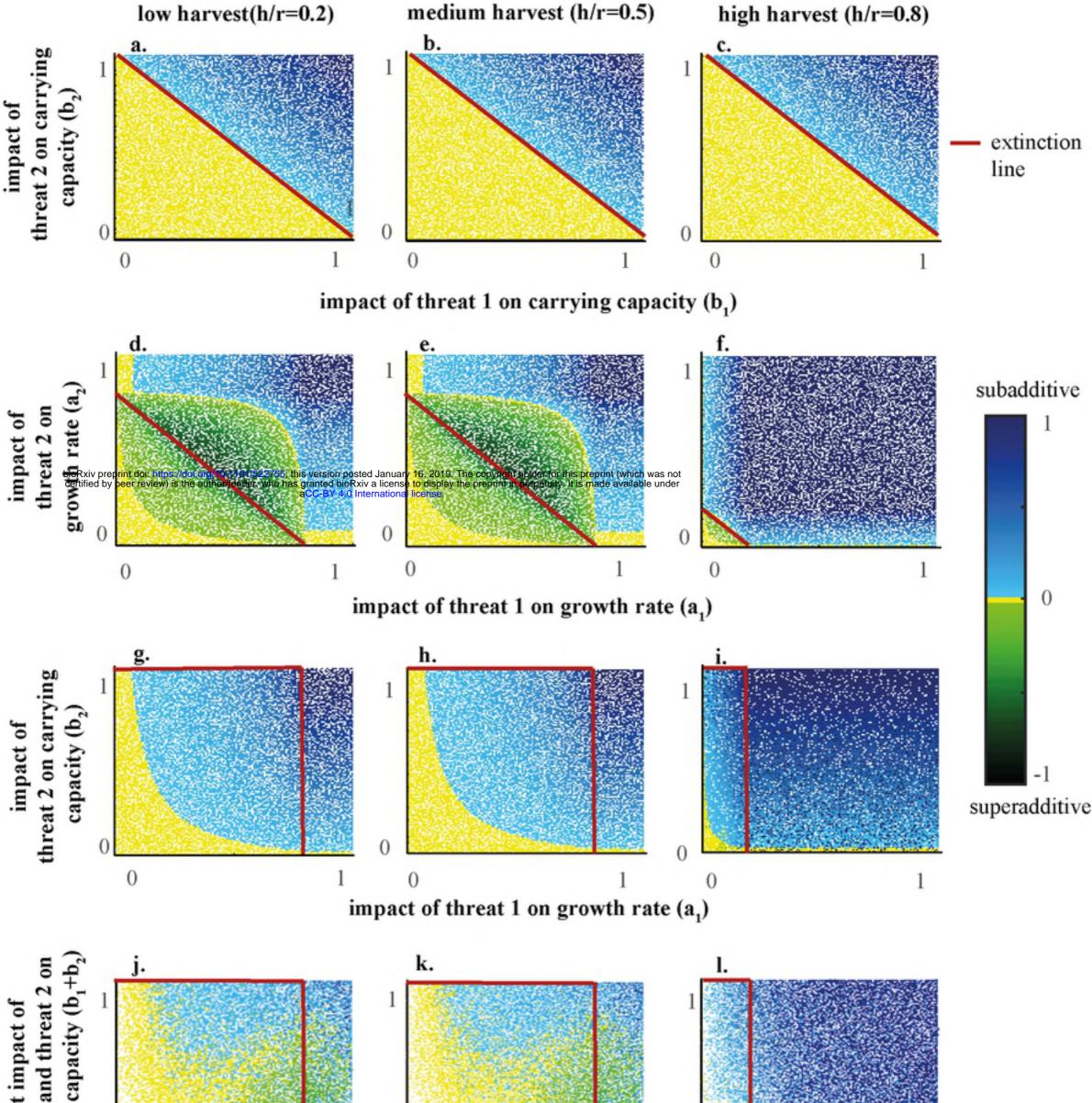
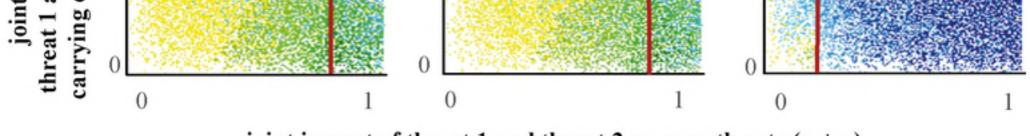
Additivity of multiple threats

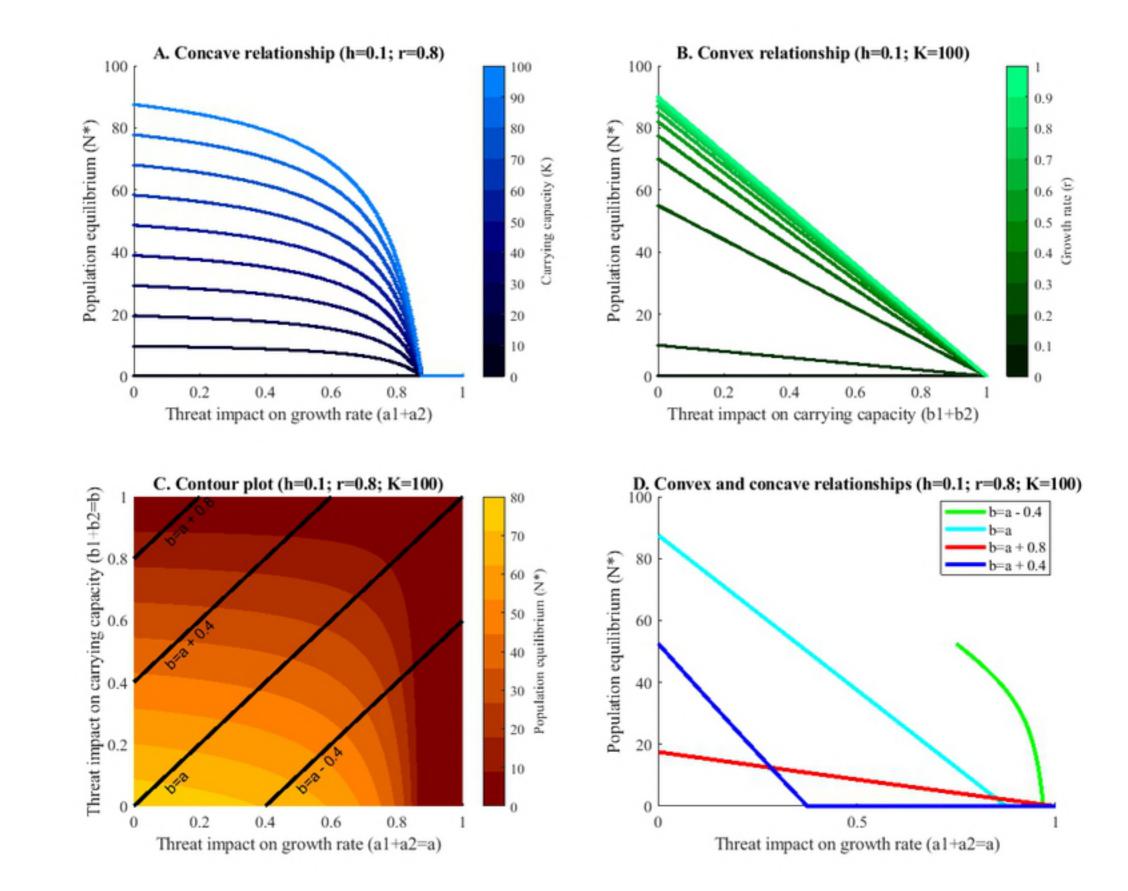
423	17. Folt C, Chen C, Moore M, Burnaford J. Synergism and antagonism among multiple
424	stressors. Limnology and oceanography. 1999;44(3):864-77.
425	18. Scheffer M, Barrett S, Carpenter S, Folke C, Green AJ, Holmgren M, et al.
426	Creating a safe operating space for iconic ecosystems. Science. 2015;347(6228):1317-9.
427	19. Tulloch VJD, Tulloch AIT, Visconti P, Halpern BS, Watson JEM, Evans MC, et al.
427	Why do we map threats? Linking threat mapping with actions to make better conservation
429	decisions. Frontiers in Ecology and the Environment. 2015;13(2):91-9.
	20 Commenting L Wilson VA Wotte M Etter A Visin CL Dessingtone UD Association
430 431	20. Carwardine J, Wilson KA, Watts M, Etter A, Klein CJ, Possingham HP. Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial
431	Priority Setting. PLOS ONE. 2008;3(7):e2586.
433	21. Kukkala AS, Moilanen A. Core concepts of spatial prioritisation in systematic
434	conservation planning. Biological Reviews. 2013;88(2):443-64.

435

436 SUPPORTING INFORMATION

- 437 S1 Multiplicative impact on the logistic model
- 438 S2 Additive and multiplicative impact on the Beverton-Holt model
- 439 **S3** Additive and multiplicative impact on the Ricker model


Figure 1

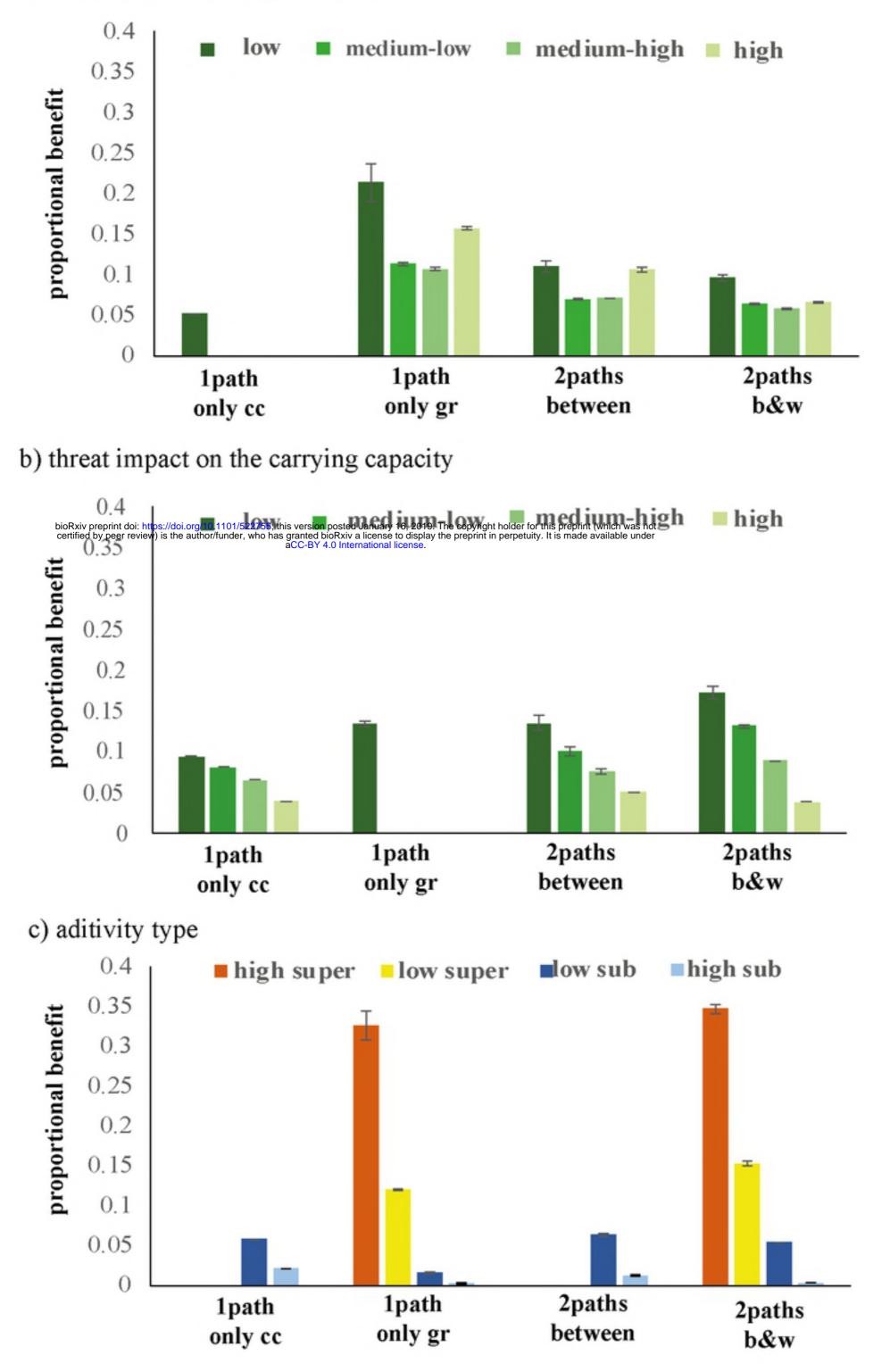

joint impact of threat 1 and threat 2 on growth rate (a_1+a_2)

Figure 2

Figure 3

a) threat impact on the growth rate

Figure 4