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Abtract– Numerous methods for inferring species-level phylogenies under the coalescent

model have been proposed within the last 20 years, and debates continue about the relative

strengths and weaknesses of these methods. One desirable property of a phylogenetic estima-

tor is that of statistical consistency, which means intuitively that as more data are collected,

the probability that the estimated tree has the same topology as the true tree goes to 1.

To date, consistency results for species tree inference under the multispecies coalescent have

been derived only for summary statistics methods, such as ASTRAL and MP-EST. These

methods have been found to be consistent given true gene trees, but may be inconsistent

when gene trees are estimated from data for loci of finite length (Roch et al., 2019). Here

we consider the question of statistical consistency for four taxa for SVDQuartets for general

data types, as well as for the maximum likelihood (ML) method in the case in which the

data are a collection of sites generated under the multispecies coalescent model such that

the sites are conditionally independent given the species tree (we call these data Coalescent

Independent Sites (CIS) data). We show that SVDQuartets is statistically consistent for all

data types (i.e., for both CIS data and for multilocus data), and we derive its rate of conver-

gence. We additionally show that ML is consistent for CIS data under the JC69 model, and

discuss why a proof for the more general multilocus case is difficult. Finally, we compare the

performance of maximum likelihood and SDVQuartets using simulation for both data types.
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Advances in sequencing technology over the last 20 years have led to widespread avail-

ability of large-scale sequence data sets from multiple loci for which the goal is to obtain an

estimate of the species-level phylogenetic relationships among the taxa under consideration.

Analysis of such data has presented significant computational challenges, however, because

inference methods must include models that capture variation at two distinct scales. First,

a model for the process by which the phylogenetic histories of individual loci vary given

the overall species tree must be developed. The coalescent process (Kingman, 1982b,c,a) is

usually used for this purpose. Second, the mutation process arising along the locus-specific

phylogenies, typically called gene trees, must be modeled. This is usually accomplished us-

ing standard nucleotide substitution models (Liò and Goldman, 1998). Together, these two

model components are often referred to as the multispecies coalescent (MSC). Numerous

methods for inference of species trees under the MSC have been developed (reviews of these

methods can be found in several places, e.g., Liu et al. (2009) and Kubatko (2019)).

Inference of the species phylogeny under the MSC is challenging because the gene trees are

not directly observed, and must therefore be integrated over when computing probabilities

associated with the DNA sequence data. Consider a species tree with M species labeled

1, 2, . . . ,M , and suppose that mj individuals are sampled within each species j. Thus,

M =
∑M

j=1mj is the total number of sequences in the data set. Using the framework of

the MSC, we denote the probability density of gene tree history h and associated vector of

coalescent times th, conditional on species tree topology S and vector of speciation times τ ,

by f(h,th)|(S,τ) (see Rannala and Yang (2003) for a description of how to compute this density).

We further define a site pattern to be an assignment of states i1i2 · · · iM to the M tips of

the tree, such that ik ∈ {A,C,G, T} for k = 1, 2, . . . ,M, and we denote the probability of

site pattern ph = i1i2 · · · iM arising from gene tree history (h, th) by ph(i1i2···iM)|(h,th). This

probability is the usual phylogenetic likelihood along a gene tree, computed assuming one

of the standard nucleotide substitution models. The probability of observing site pattern
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p = i1i2 · · · iM from the species tree is then given by

pi1i2···iM|(S,τ) =
∑
h∈H

∫
th

ph(i1i2···in)|(h,th)f(h,th)|(S,τ)dth (1)

where the sum is taken over all gene tree histories H with corresponding branch lengths

th appropriately integrated out. See Chifman and Kubatko (2015) for full details of the

calculations.

Note that Equation (1) implies that each site in the sequence alignment is an independent

observation from the model; that is, each site represents a draw from the distribution of gene

trees given the species tree as specified by the MSC, with subsequent mutation along the

sampled gene tree according to one of the standard nucleotide substitution models. We use

the term coalescent independent sites (CIS) to distinguish data of this type from SNP data,

which do not usually include invariable sites. Under this model, a sample of N CIS can be

viewed as a sample from the multinomial distribution, where the number of categories is

the number of possible sites patterns, 4M, and the category probabilities are given by the

site pattern probabilities. Thus, assuming that the sites are independent conditional on the

species tree, the log likelihood of species tree (S, τ) is given by

L
(

(S, τ)

)
=

4M∑
q=1

xq log(pq) (2)

where xq is the observed number of sites with pattern q, pq is the probability of site pattern

q under the model, q = 1, 2, . . . , 4M, and
∑4M

q=1 xq = N . We note that the site pattern proba-

bilities are functions of the parameters in the MSC model, including both the branch lengths

and the effective population sizes along each branch. This likelihood has been mentioned

earlier by Xu and Yang (2016).

The likelihood for multilocus data is more complicated, because in that case sites within a

locus share the same gene tree and are thus correlated with one another, unless we condition

on the gene tree. Suppose that there are G loci and that locus g has length ng. Let phj|(h,th)

denote the probability that the site pattern observed for site j within a particular locus arises
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from gene tree history (h, th). Then, the multilocus likelihood of species tree (S, τ) is

L
(

(S, τ)

)
=

G∏
g=1

(∑
H

∫
th

( ng∏
j=1

phj|(h,th)

)
f(h,th)|(S,τ)dth

)
(3)

The outermost product is taken over the G loci, and assumes that the loci are independent,

conditional on the species tree. Comparing the terms inside this outer product to the expres-

sion in Equation (1), we see that within the integral over the gene tree branch lengths, the

product over the ng sites within each gene must be taken. These sites are conditionally inde-

pendent given the gene tree and branch lengths, but are not independent when conditioning

only on the species tree because they share a common gene tree. The product appearing

inside the integral makes it difficult to apply standard asymptotic arguments to this expres-

sion. Even taking the log of this likelihood, which allows the likelihood based on CIS data

(Equation (2)) to be handled in a straightforward way, does not resolve the problem of the

product appearing inside the integral. This also makes clear why computation of the species

tree likelihood for multilocus data under the MSC model is challenging. In fact, we do not

know of any direct implementations that compute this likelihood for trees larger than the

four-taxon case we consider here.

To study the convergence properties of SVDQuartets and of maximum likelihood (ML),

we consider the case in which M = 4 and mj = 1 for all j, that is, we consider four-taxon

trees with one sequence sampled in each species. In this case, there are 44 = 256 possible

site patterns, 15 rooted species trees, and 3 unrooted species trees. When considering ML to

estimate the species tree, we restrict our attention to CIS data and use the likelihood given

in Equation (2), given the difficulty in handling the multilocus likelihood discussed above.

To find the ML estimate of the species tree for CIS data, one needs to be able to compute the

true site pattern probabilities for each possible species tree. Formulas for these site pattern

probabilities were given by Chifman and Kubatko (2015) for simple substitution models (e.g.,

JC69 (Jukes and Cantor, 1969)). Under the JC69 model and using these formulas with a

single value of the effective population size parameter, θ, specified for the entire tree, we can

find the ML estimate of the species tree by considering each of the 15 rooted species trees
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and finding the set of speciation times that maximize the likelihood for each. The tree with

the highest likelihood is the ML estimate. We have implemented this method in R using the

optim function to carry out the optimization for each topology. Our code can be found at

https://github.com/lkubatko/SpeciesTreeConsistency.

To obtain an estimate of the four-taxon species tree for SVDQuartets for any data type

(both CIS and multilocus data) and for the GTR+I+Γ model or any sub-model, let L denote

the set of four taxa under consideration, and suppose that L is partitioned into two sets, L1

and L2, such that |L1| = |L2| = 2. We say that L1|L2 is a split. The split L1|L2 is valid

for tree S if the subtrees containing the taxa in L1 and in L2 do not intersect; otherwise

the split is not valid. For example, consider the tree ((1, 2), (3, 4)). The split 12|34 is valid,

while the splits 13|24 and 14|23 are not valid.

For each of the three possible splits, the 256 possible site patterns can be arranged into

a 16× 16 matrix in which the rows of the matrix correspond to possible states for the taxa

in L1 and the columns correspond to possible states for the taxa in L2. Such a matrix is

called a flattening matrix, and is denoted FlatL1|L2 . For an empirical data set, the entries of

the matrix are the observed frequencies of the site pattern that corresponds to the row and

column indices, i.e.,

Flat12|34 =



[AA] [AC] [AG] [AT ] [CA] · · · [TT ]
[AA] pAAAA pAAAC pAAAG pAAAT pAACA · · · pAATT
[AC] pACAA pACAC pACAG pACAT pACCA · · · pACTT
[AG] pAGAA pAGAC pAGAG pAGAT pAGCA · · · pAGTT
[AT ] pATAA pATAC pATAG pATAT pATCA · · · pATTT
[CA] pCAAA pCAAC pCAAG pCAAT pCACA · · · pCATT

· · · · · · · · · · · · · · · · · · · · · · · ·

[TT ] pTTAA pTTAC pTTAG pTTAT pTTCA · · · pTTTT


For example, the (3, 2) entry, pAGAC , is the probability of observing nucleotide A for taxon

1, G for taxon 2, A for taxon 3, and C for taxon 4. When the rows and columns of the

matrix correspond to a valid split, the matrix will have rank 10 for data observed perfectly

from the model. When the rows and columns correspond to a split that is not valid, the
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matrix will be rank 16. The SVDQuartets method constructs three matrices (one for each

of the three possible splits for four taxa), and computes the SVD score for each matrix,

SV D(L1|L2) =

√√√√ 16∑
k=11

σ̂2
k (4)

where σ̂k is the kth singular value computed for the matrix of observed site pattern frequen-

cies. For observed data, the magnitudes of the 11th through 16th singular values are expected

to be small when the matrix corresponds to the valid split, and thus the split L1|L2 with

the lowest SV D(L1|L2) is selected. Note that in the case of four taxa, identifying the valid

split is equivalent to inferring the unrooted species tree.

Under either criterion for estimation, we denote the estimator of the species tree by S∗

and the true species tree by S. Intuitively, consistency means that as more data are used

to form the species tree estimate, the probability that S∗ = S goes to 1. SVDQuartets

has been assumed to be statistically consistent, but a formal proof has not been provided.

ML is known to be consistent when used to estimate gene trees, but consistency of ML has

not been formally examined in the species tree case. In the sections below, we prove that

SVDQuartets is consistent for both CIS and multilocus data and that ML is consistent for

CIS data. We derive bounds for the error probability of SVDQuartets, and compare both

methods using both theory and simulations.

Consistency Results

We first define a generative model for multilocus data.

Definition 0.1. We assume that data are generated from the following statistical model:

1. Population and genome sizes are large enough that the fact that genes and sites are

sampled without replacement can be ignored.

2. Define p to be a vector of multinomial probabilities such that if we select a gene at
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random and sample one nucleotide at random from that gene, the unconditional site

pattern distribution X ∼Multinomial(1,p).

3. Define {D}Ni=1
iid∼ F such that E(Di) = 0 and if we select N genes at random, each of

the N genes will have multinomial site pattern probabilities pi where pi
d
= p + Di.

4. Conditional on {D}Ni=1, if Xi are the observed site pattern counts for a sample of ni

nucleotides from gene i, then Xi ∼ Multinomial(ni,pi) and the collection {Xi}Ni=1 is

independent.

Note that when ni = 1 for all i, this model generates CIS data, which may thus be considered

a special case of multilocus data.

Consistency for Maximum Likelihood for CIS Data

While the literature contains numerous proofs of consistency of ML for estimation of gene

trees (e.g., Yang (1994); Rogers (1997); RoyChoudhury et al. (2015); Truszkowski and Gold-

man (2016), described further below), no such proofs have been given for the case of ML

estimation of the species tree, in part because it is not computationally feasible to use ML

for species tree estimation under the coalescent model for trees of arbitrary size as discussed

above. Some recent attention has also been given to evaluating the consistency of methods

other than ML for estimating the species tree, but such work has focused primarily on the

case in which multilocus data are collected and summary statistics methods are used to form

estimators (Roch et al., 2019) or on the concatenation method (Roch and Steel, 2015). In

this section, we formally prove that for CIS data ML estimation of the species tree under the

multispecies coalescent described above is statistically consistent for four-taxon trees. We

follow the proof of Truszkowski and Goldman (2016) for the case of gene trees, as most of

their proof generalizes directly to the species tree case and their proof corrects the omissions

of earlier proofs. We refer the reader to Truszkowski and Goldman (2016) for many of the
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details.

We first review related work for the case of ML estimation of gene trees, i.e., trees

estimated using data from a single locus under one of the standard models of nucleotide

substitution. Early proofs of the consistency of ML estimation for gene trees were given

by Yang (1994) and Rogers (1997), but more recent examinations by RoyChoudhury et al.

(2015) and Truszkowski and Goldman (2016) have found that these proofs are incomplete.

RoyChoudhury et al. (2015) explains the problems with these proofs succinctly; we outline

their argument here as it will apply to our proof for the species tree case given below. First,

note that, assuming identifiability of the gene tree topology, which requires non-zero internal

edges (for a proof, see, e.g., Allman et al. (2008), and note condition (2) in Section 2.1), the

following proposition results from a straightforward application of the Strong Law of Large

Numbers.

Proposition 0.2. Suppose T0 is the true tree and Tj is any other tree. Then there exists N

such that for all n ≥ N

L(T0) > L(Tj) a.s. (5)

Though it is tempting to use Proposition (0.2) to claim consistency of the ML estimate of the

gene tree topology, as noted by RoyChoudhury et al. (2015) and Truszkowski and Goldman

(2016), this result is not sufficient to conclude that ML estimation is consistent. To see why,

consider the typical definition of consistency of the maximum likelihood estimator (MLE)

that states that if T̂ is the MLE then

T̂
P→ T0 (6)

under a metric D(·, ·), where
p→ denotes convergence in probability. In order to guarantee

that (6) holds, we either need to show that for any ε > 0 there exists some constant Cε > 0

such that

sup
Tj :D(Tj ,T0)>ε

{L(T0)− L(Tj)} ≥ Cε, (7)
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so that we are assured there cannot be trees of arbitrarily high likelihood far away from the

true tree, or that the parameter space is compact. Under any reasonable metric, it is easy to

see that the parameter space is not compact because it does not include trees with branches

of length 0, as noted above. Truszkowski and Goldman (2016) provide a corrected proof by

defining the following metric and showing that (7) holds for this metric (see Lemma 3 of

Truszkowski and Goldman (2016)).

Definition 0.3 (Distance between two trees, Truszkowski and Goldman (2016)). For two

taxa a and b in tree S, define their distance, dS(a, b), to be the sum of the lengths of all

edges on the path from a to b. Further, define the distance between two trees S1 and S2

to be D(S1, S2) = maxa,b∈L |dS1(a, b)− dS2(a, b)|. Note that D(·, ·) is a metric as long as all

branch lengths are positive.

We now state and prove a modified version of Truszkowski and Goldman (2016)’s gene

tree consistency result for the case of species trees estimated from a sample of CIS obtained

under the multispecies coalescent.

Theorem 0.4 (Consistency of the ML estimator of the species tree for CIS data). Let S∗N

denote the MLE of species tree S for a sample of N CIS obtained under the multispecies

coalescent. Then D(S∗N , S)→ 0 with probability 1 as N →∞.

Our proof follows the general outline given by Truszkowski and Goldman (2016) for the

gene tree case. Two crucial steps in their proof must be verified for the species tree case.

First, the species tree must be identifiable, which has been established by Chifman and

Kubatko (2015) for species trees that satisfy the molecular clock and by Long and Kubatko

(2019) for non-clock species trees and for trees in which the effective population sizes vary

throughout the tree. Second, a particular function of the pairwise distribution of states

at the tips must satisfy a concavity condition. We state and verify this condition in the

following proof.
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Proof. Because the site pattern counts for a random sample of N CIS follow a multinomial

distribution with probabilities given in Equation (1) above, the likelihood function for the

ML estimate of the species tree is similar in form to that in the case of a gene tree. Thus

Proposition (0.2) and most steps in the consistency proof given by Truszkowski and Goldman

(2016) can be verified in a straightforward manner. The only non-trivial condition to be

verified in the species tree case is that Lemma 3 of Truszkowski and Goldman (2016) still

holds for the particular site pattern probabilities that arise in the species tree setting. This

lemma involves some conditions on the pairwise site pattern probabilities, which we define

below.

Following the notation of Truszkowski and Goldman (2016), let fabxy denote the frequency

with which taxon a is observed to have state x and taxon b is observed to have state y, where

x, y ∈ {A,C,G, T}. Let pd
′

xy denote the probability that taxon a has state x and taxon b has

state y, where x, y ∈ {A,C,G, T}, when dS(a, b) = d
′
. To verify Lemma 3 of Truszkowski

and Goldman (2016) it is sufficient to verify that the function

∑
x,y∈{A,C,G,T}

fabxy log(pd
′

xy) (8)

is concave in d
′
. Under the JC69 model (Jukes and Cantor, 1969) and the multspecies coa-

lescent model, Chifman and Kubatko (2015) (see their Supplement A) gave explicit formulas

for the site patterns probabilities on four-taxon trees. Using these with µ = 4/3 as specified

by the JC69 model and θ, the effective population size parameter, set to 0.01, we can sum

over pairs of taxa to find

pd
′

xy =

{
1
4

+ 225
304
e−4d

′
/3, x = y

3
4
− 225

304
e−4d

′
/3, x 6= y

(9)

Ruskino (2018, personal communication) has derived more general expressions as a function

the θ parameter that follow the same general form. Using these expressions, it is straightfor-

ward to verify that the expression in Equation (8) is concave in d
′

and thus that Lemma 3

of Truszkowski and Goldman (2016) holds. This establishes Theorem 0.4, and thus the ML

estimate of the species tree for four taxa is statistically consistent for CIS data.
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We next consider consistency for SVDQuartets.

Consistency and Error Rate for SVDQuartets

Recall that for the SVDQuartets method, we choose the tree with split argminL1|L2
SV D(L1|L2)

as our estimate of the species tree. In this section, we prove that this estimator is consistent

for multilocus data in the following sense and give its rate of convergence.

Theorem 0.5 (Consistency of SVDQuartets). Suppose that the conditions of the model

proposed by Chifman and Kubatko (2015) are satisfied, and L1|L∗2 is the true valid split

among splits with |L1| = |L2| = 2. Fix ε > 0. Assume limN→∞maxi=1...N{ni} = K < ∞,

and that all of the entries of the vector p are strictly between 0 and 1. Then ∃Nε such that

∀N ≥ Nε, P
(
argminL1|L2SV D(L1|L2) 6= L1|L∗2

)
< ε.

We give the details of the proof of Theorem 0.5 in the remainder of this section. The

result follows from consistency of the p̂ij in the flattening matrix and the fact that singular

values of a matrix satisfy a Lipschitz condition with respect to perturbations of the matrix

(see Golub and VanLoan (2013)). The assumption that all of the entries of the vector p are

strictly between 0 and 1 may seem arbitrary, but if this is not true, then we are considering

the problem of estimating site pattern probabilities for sites that either always or never

occur, and such cases are neither realistic nor interesting.

Lemma 0.6. [Corollary 8.6.2 of Golub and VanLoan (2013)] Let A,E ∈ Rm×n with m ≥ n,

and let σi, i ∈ {1, . . . n}, denote the singular values in descending order. Then for i ∈

{1, . . . n}, |σi(A+ E)− σi(A)| ≤ ||E||2 = σ1(E).

We first establish that the pij are consistently estimated (for two reasonable uses of

multilocus data) and give their asymptotic error. The estimator p̂2 is currently used by

SVDQuartets as implemented in PAUP* (Swofford, 2019).
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Lemma 0.7. Suppose data are generated as in Definition 0.1 with N and ni, i = 1 . . . N ,

such that limN→∞maxi=1...N{ni} = K < ∞, and that all of the entries of the vector p are

strictly between 0 and 1. Consider the estimators

p̂1 =
1

N

N∑
i=1

Xi

ni
and p̂2 =

1∑N
i=1 ni

N∑
i=1

Xi.

The following hold:

1. Let p̂j1 be the jth entry of p̂1, and let pj be the jth entry of p in Definition 0.1. Then

for any ε > 0,

P
(
|p̂j1 − pj| > ε

)
≤ 2 exp(−2Nε2).

2. Let p̂j2 be the jth entry of p̂2. Then for the K defined in Theorem 0.5 and ε > 0,

P
(
|p̂j2 − pj| > ε

)
≤ 2 exp(−2N(

ε

K
)2).

Proof. In both cases we will apply Hoeffding’s inequality.

1. Let Xi,j denote the jth entry of Xi, and let Wi,j =
Xi,j

ni
. Then the Wi,j are bounded

between 0 and 1 and independent with respect to the i index for any given j. Thus we

can apply Hoeffding’s inequality to conclude

P

(∣∣∣∣ 1

N

N∑
i=1

Wi,j − E
(

1

N

N∑
i=1

Wi,j

)∣∣∣∣ > ε

)
≤ 2 exp(−2Nε2). (10)

The first term in the expression above is p̂j1. The second term is equal to 1
N

∑N
i=1E(Wi,j).

Now let Di,j be the jth entry of Di. Then

E(Wi,j) = E(E(Wi,j|Di,j)) = E(pj +Di,j) = pj
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since our generative model assumes that E(Di) = 0. Thus, 10 states that P
(
|p̂j1 − pj| > ε

)
≤

2 exp(−2Nε2) as desired.

2. Again let Xi,j denote the jth entry of Xi, and now let Wi,j =
Xi,j

K
where K =

limN→∞maxi=1...N{ni} which we have assumed is finite as stated in Theorem 0.5. Then

the Wi,j are bounded between 0 and 1 and independent with respect to the i index for

any j. Note that

p̂j2 =

(
NK∑N
i=1 ni

)
1

N

N∑
i=1

Wi,j

and

E

[(
NK∑N
i=1 ni

)
1

N

N∑
i=1

Wi,j

]
=

(
NK∑N
i=1 ni

)
1

N

N∑
i=1

E(Wi,j)

=

(
NK∑N
i=1 ni

) N∑
i=1

nip
j

K
= pj

where the second equality above holds because E(Wi,j) = E(E(Wi,j)|Di,j) = E(ni

K
(pj+

Di,j)) = nip
j

K
.

Thus, noting that NK∑N
i=1 ni

≤ K, we have

P
(
|p̂j2 − pj| > ε

)
= P

(∣∣∣∣( NK∑N
i=1 ni

)
1

N

N∑
i=1

Wi,j − E
[(

NK∑N
i=1 ni

)
1

N

N∑
i=1

Wi,j

]∣∣∣∣ > ε

)

= P

(∣∣∣∣ 1

N

N∑
i=1

Wi,j − E
(

1

N

N∑
i=1

Wi,j

)∣∣∣∣ > ε

NK/
∑N

i=1 ni

)

< P

(∣∣∣∣ 1

N

N∑
i=1

Wi,j − E
(

1

N

N∑
i=1

Wi,j

)∣∣∣∣ > ε

K

)
≤ 2 exp(−2N(ε/K)2)

where the last inequality is the result of applying Hoeffding’s inequality.

It might appear from the above bounds that p̂1 should be preferred to p̂2 because the

K term does not appear in the bound for p̂1, resulting in a smaller bound in that case.

However, the bound in part (2) of the lemma is not tight. Rather, allowing the K term

to appear in the exponent is simply a convenient way of dealing with the heterogeneity
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arising from the term 1∑N
i=1 ni

. We discuss the relative merits of p̂1 and p̂2 in the later

section “SVDQuartets for Multilocus Data.”

If limN→∞maxi=1...N{ni} = K <∞ does not hold, p̂1 and p̂2 are still consistent estima-

tors of p, but the deviations may have thinner tails than the bounds given above. Since it

seems unrealistic that this assumption would be violated as in practice genes are finite in

length, we do not provide a proof for the case where it does not hold.

Lemma 0.8. For any split L1|L2, SV D(L1|L2)
p→
√∑16

i=11 σ
2
i where σi are the descending

ordered singular values of the 16× 16 matrix FlatL1|L2(P ).

Proof. Because SV D(L1|L2) is a continuous function of the vector (σ1, . . . , σ16), it suffices

to show that σ̂i
p→ σi uniformly in i. Fix ε, δ > 0. We will show ∃Nε,δ such that ∀N ≥ Nε,δ,

P (supi |σ̂i − σi| > δ) < ε.

We index the vector of site pattern probabilities p as {pij} to match their locations

in the flattening matrix. Note that this is a modification of the notation in Lemma 0.7

which used vectors to denote the site pattern probabilities. Likewise, we index p̂ as {p̂ij}.

Define eij := p̂ij − pij, and observe that Lemma 0.7 implies that for any i, j, P (|eij| > δ) ≤

2 exp(−2N( δ
K

)2). Now choose Nε,δ large enough so that when N ≥ Nε,δ, P
(
|eij| > δ

64

)
≤

2 exp(−2N( δ
64K

)2) < ε
256

. Using a union bound, we have

P (maxi,j|eij| > δ) ≤
∑
i,j

P
(
|eij| >

δ

64

)
≤

∑
i,j

ε

256

< ε.

Now choose E in Lemma 0.6 to be E = {eij}. Then supi |σ̂i − σi| ≤ ||E||2. It is well-

known that for any matrix E ∈ Rk×k, ||E||2 ≤
√
k||E||1 ≤ k

√
k|maxi,j(eij)|. Applying this
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fact with k = 16, we have

P (sup
i
|σ̂i − σi| < δ) > P (16(4)|max(eij)| < δ)

= 1− P
(
|max(eij)| >

δ

64

)
> 1− ε

which gives P (supi |σ̂i − σi| > δ) < ε, as desired.

We can now prove Theorem 0.5:

Proof. Theorem 1 of Chifman and Kubatko (2015) implies that
√∑16

i=11 σ
2
i = 0 if and only

if we choose the split L1|L∗2. Then because we have finitely many (3) splits to choose from,

we can find some c > 0 such that
√∑16

i=11 σ
2
i > c for any split L1|L2 6= L1|L∗2. Fix ε > 0.

Choose ε∗ = ε
3

and δ = c
2
. Then for the Nε∗,δ that satisfies Lemma 0.8 using ε∗ and δ, for

N ≥ Nε∗,δ, we will have P (SV D(L1|L∗2) > c/2) < ε/3 and P (SV D(L1|L2) < c/2) < ε/3 for

every L1|L2 6= L1|L∗2. Then, using the union bound,

P
(
argminL1|L2

SV D(L1|L2) 6= L1|L∗2
)

≤ P (SV D(L1|L∗2) > c/2) +
∑

L1|L2 6=L1|L∗2

P (SV D(L1|L2) < c/2)

< ε

which completes the proof and establishes that SVDQuartets is a statistically consistent

method for species tree estimation under the MSC.

We emphasize that this result proves consistency of SVDQuartets for both CIS data and

for multilocus data using either of the estimators in Lemma 0.7 above. In both of these

cases, the above result also gives a bound on the error rate, as described below.

Corollary 0.9. When estimating the split with SVDQuartets using a sample of ni, i =

1 . . . N , loci from each of N genes, there exists a constant σ∗ > 0 such that for large N the

probability of choosing an incorrect split is bounded by

P (ErrorSV D) ≤ (2)(256) exp(−2N(
σ∗

128K
)2) (11)
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Proof. Let σ∗ be the smallest in absolute value of the 11th -16th nonzero singular values

among all possible splits L1|L2. Note that as a consequence of Lemma 0.6, for any split and

each σ̂i,

|σ̂i − σi| ≤ 64 max |eij|. (12)

Let σFi denote the ith singular value for an incorrect split for any i = 11, . . . , 16, and let

σ̂Fi denote the corresponding observed value. Applying (12) and assuming that 64 max |eij| <

|σ∗/2| gives

|σ̂Fi | ≥ |σFi | − 64 max |eij|

≥ |σ∗| − 64 max |eij|

≥ 2(64 max |eij|)− 64 max |eij| = 64 max |eij| (13)

for each i = 11, . . . , 16.

Applying (12) again to singular values from the true split gives |σ̂Ti − 0| ≤ 64 max |eij|,

and we have

SV D(L1|L2) =

√√√√ 16∑
i=11

(σ̂i)2

≥

√√√√ 16∑
i=11

(64 max |eij|)2 (14)

≥

√√√√ 16∑
i=11

(σ̂Ti )2

= SV D(L1|L∗2)

where (14) follows from (13). This establishes that the correct split will be selected by

SVDQuartets whenever 64 max |eij| < |σ∗/2|.

The probability that SVDQuartets makes an error in selecting the split can thus be given

by

P (ErrorSV D) ≤ P (64 max |eij| > σ∗/2) ≤
16∑
i=1

16∑
j=1

P (|eij| > σ∗/128) .
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Recall from Lemmas 0.7 and 0.8 that P (|eij| > ε) ≤ 2 exp(−2N( ε
K

)2), so

P (ErrorSV D) ≤
16∑
i=1

16∑
j=1

P (|eij| > σ∗/128) ≤ (2)(256) exp(−2N(
σ∗

128K
)2).

Note that our proof of consistency and error bound derivation depend on the structure of

a four-taxon species tree only insofar as Theorem 1 of Chifman and Kubatko (2015) has only

been proven for trees of four taxa and our choice of constants. Should that result be extended

to trees with a larger number of taxa, our arguments above imply that the estimator based

on the SVD score in such cases would also be consistent for multilocus data and would have

an error rate bound of O(exp(−2N( |σ
∗|

128K
)2)).

Comparison of Asymptotic Properties of ML and SVDQuartets

Theoretical Comparison

Shi and Yang (2018) conjecture that SVDQuartets is inefficient compared to ML when both

are applied to multilocus data, as measured by the probability of recovering the correct

species tree. Note that this is a different notion of efficiency than that which is applied

in typical statistical settings, raising the question of whether classical statistical results

concerning asymptotic efficiency of ML estimators (see, e.g., Lehmann and Casella (1998))

apply in this case. As mentioned earlier in our discussion of consistency, it is not clear

whether ML for the species tree estimation problem satisfies the general conditions of Wald

(1949) for consistency. Nonetheless, we have been able to show that both ML for CIS data

and SVDQuartets for multilocus and CIS data give statistically consistent estimators of the

species tree. We next try to summarize what is know about the asymptotic error probabilities

of the methods, as a way of addressing the claim made by Shi and Yang (2018) about the

relative efficiency of the two methods.
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To our knowledge, error rate bounds for ML when applied to multilocus data have been

rigorously derived in only a few special cases. Xu and Yang (2016) showed that in the case

of a three-taxon species tree, the probability of choosing the wrong topology when using ML

for data consisting of rooted gene trees is approximately

P (ErrorML) ≈ C1Φ(−C2

√
N)

for explicit constants C1 and C2 that depend on the probabilities of the three possible gene

trees that can arise within the species tree (which in turn can be computed from the other

parameters.) It is important to note, however, that this result is an approximation rather

than a bound. It does not account for the rate at which P (ErrorML), which is not exactly

normal, converges to a normal distribution, and this rate could potentially be slower than

the decay of the normal tail given by the approximating expression C1Φ(−C2

√
N). An

equivalent result for four-taxon species trees has not been derived.

Another partial result about the error rate of ML estimation comes from the following

idea. Suppose that rather than sample ni sites from each of N loci, we are able to sample

gene trees directly, so that we in fact know the topology and branch lengths of each of the

N sampled gene trees, G1 . . . GN . Letting pl denote the observed site patterns (i.e., the

alignment) for gene l, we note that in this case,

L
(

(S, τ)|(G1, p1), . . . (GN , pN)

)
=

N∏
`=1

f(G`|(S, τ))

= L
(

(S, τ)|G1, . . . GN

)
(15)

where f is the gene tree density under the MSC. In words, if we observe the gene trees

directly, the alignments give no additional information and the likelihood of interest is the

species tree likelihood based on the sampled gene trees. Furthermore, since this sampling

scheme uses strictly more information than sampling only finite-length alignments, it seems

reasonable to assume that its estimation power should be at least as high, (i.e., its error rate
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no worse than that of ML based on multilocus sampling) although this also requires a proof

to be made fully rigorous.

Results about error rates for trees of any size have been derived for the problem of

estimating the species tree topology using gene trees directly. Liu et al. (2010) showed that

for their maximum tree method, the probability of choosing the wrong topology is bounded

by an expression of the form

P (ErrorMT ) ≤ C1 exp(−C2N),

and that if all populations have the same size, the maximum tree estimator is also the ML

estimator. This result is a rigorous upper bound rather than an approximation. We note

that it is comparable to our result for SVDQuartets insofar as both bounds take the form

C1 exp(−C2N), albeit likely for different values of C1 and C2.

A rigorous comparison of the performance of ML and SVDQuartets is inconclusive, in

large part because not enough is known about the performance of ML. Since the result of Xu

and Yang (2016) comes from multinomial probabilities, it is likely that applying Hoeffding’s

inequality in that case would also yield a bound of the form C1 exp(−C2N) in addition

to the approximation given in their work, although we have not rigorously verified this.

One might additionally conjecture that such a result holds for species trees with arbitrary

numbers of taxa, rather than just the three-taxon species tree. If this is true, then we could

say that ML and SVDQuartets both have error rate bounds of the form C1 exp(−C2N),

where the constants C1 and C2 likely differ between the methods, but we cannot compare

beyond this statement. We hope that scholars interested in comparing the performance of

ML and SVDQuartets will derive more complete rigorous results that will allow for a more

comprehensive theoretical comparison.
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Comparison via Simulation

We conducted several simulation studies to comparatively evaluate the performance of ML

and SVDQuartets. In the first simulation study, CIS data were simulated along the four-

taxon symmetric and asymmetric species trees by first simulating gene trees using the pack-

age COAL (Degnan and Salter, 2005) and then simulating sequence data under the JC69

model (Jukes and Cantor, 1969) using Seq-Gen (Rambaut and Grassly, 1997). The JC69

model was used because Chifman and Kubatko (2015) provided explicit formulas for the

site pattern probabilities for four-taxon trees under the coalescent for this model, allowing

us to implement the maximum likelihood method in this case. We considered three species

trees with all internal branch lengths and all external branch lengths leading to cherries set

to the same value, either 0.5, 1.0, or 2.0 in coalescent units. We also consider three species

trees with varying branch lengths. In these three cases, all branch lengths were either 0.5

or 1.0, and the placement of the shorter branches was varied between internal and external

branches. The precise trees used are given in the captions to Figures 1 and 2, which show the

simulation results. For all of the model trees, we set the effective population size parameter

θ = 4Nµ to 0.001, 0.005, or 0.01 for all branches. In addition to examining the performance

of SVDQuartets for CIS data, we examined its performance on SNP data by re-running

it on each simulated dataset after removing all of the constant sites. Since SNP data are

more commonly collected, this will provide an indication of how much information is lost in

moving from CIS to SNP data when using SVDQuartets for inference.

For each of the three methods (SVDQuartets for CIS data, SVDQuartets for SNP data,

and ML), we examined the proportion of times out of the 500 replicates that each of the

methods correctly estimated the unrooted species tree when the total number of sites sampled

ranged from 1,000 to 10,000. In some cases, particularly those in which the overall mutation

rate is low, as often results from both small effective population size and short branches,

the ML algorithm will not converge and/or singular values cannot be computed accurately
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enough to infer the tree with SVDQuartets. When this occurred, we discarded that replicate

from the summary of that method’s performance. If a particular simulation setting had fewer

than 100 replicates in which estimation was completed without error, we did not include the

result for that setting in the relevant figure.

Our second simulation study considers multilocus data. We applied SVDQuartets as

implemented in PAUP*, which ignores information about loci and treats the data as CIS

data (this is the common and recommended practice for SVDQuartets at present). Because

the multilocus likelihood is not computationally tractable, we approximated ML inference

by running the BPP software (Yang and Rannala, 2014; Yang, 2015; Rannala and Yang,

2017; Flouris et al., 2018) with the prior for τ set to IG(3,0.015) and the prior for θ set

to IG(3,0.01). We hereafter refer to these as the default priors. We discarded the first 400

samples as burnin, and recorded every other sampled tree for a total of 1,500 samples. For

four-taxon trees, the species tree with the highest posterior probability will be generally

equivalent to the ML tree. We consider the same model trees as in the first simulation study

and the same choices of θ. We used 5, 10, 15, 20, 25, 35, or 50 loci, with 200bp per locus,

and replicated each simulation condition 500 times. Replicates in which SVDQuartets failed

to return an estimate of the species tree due to numerical imprecision of the singular value

computation were discarded, as described above.

For the third simulation study, we considered more difficult species trees, namely those

found in the anomaly zone. In particular, we considered the tree found in Xu and Yang

(2016), which is given by (Species1:0.48,(Species2:0.44,(Species3:0.4,Species4:0.4):0.04):0.04)

when branch lengths are reported in coalescent units. For the analysis in BPP, we considered

both default priors, as we did in our second simulation study, and priors suggested by the

simulation study in Xu and Yang (2016). Because the current version of BPP uses the

inverse gamma (IG) distribution, rather than the gamma distribution used by Xu and Yang

(2016), we use inverse gamma prior for θ and τ that have α = 3 and mean set to the

true value. Another difference from our simulation conditions and the simulation carried
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out by Xu and Yang (2016) is the number of sites per locus. Thus, we include one set of

simulations with 200bp per loci (as above) and another with 1000bp per loci as in Xu and

Yang (2016). Our preliminary simulations with these settings indicated that many more

sites were needed for accurate inference for both ML and SVQuartets, and thus for the

CIS simulations, we considered the number of sites ranging from 10,000 to 1,000,000. For

the multilocus simulations, we considered 50, 100, 150, 200, 300, and 400 loci. Because of

the additional computational cost associated with the large number of sites, we used only

100 replicates of each simulation condition. Finally, we considered θ values that differed

somewhat from those used above, in order to reproduce the results of Xu and Yang (2016)

reported in their Figure 7. In particular, we considered θ = 0.05 (the value used by Xu and

Yang (2016)) and θ = 0.01. As mentioned above, we considered both informative and default

priors for BPP. For the informative priors, we assumed τ is IG(3.0,0.024), and θ is IG(3,0.1)

when the true value of θ = 0.05 and θ is IG(3,0.02) when the true value of θ = 0.01.

Figure 1 shows the results of the first simulation for the symmetric species tree, and

Figure 2 shows the results for the asymmetric species tree. In general, both methods are

able to accurately infer the unrooted four-taxon species tree with sufficient data. When the

model species tree is symmetric (Figure 1), both methods are very accurate when the branch

lengths within the model species tree are equal, though shorter branch lengths and lower

values of θ (settings which correspond to lower overall mutation rates) are more difficult

for both methods. When branch lengths vary within the tree for the symmetric case, the

first varying lengths setting, which corresponds to short internal branch lengths, was most

difficult for both methods, though ML in general showed higher error than SVDQuartets

for all three choices of θ. Results for the asymmetric model species tree (Figure 2) were

likewise similar for both methods, with shorter internal branch lengths corresponding to

lower accuracy for both methods. An important observation is that SVDQuartets does not

decrease in accuracy when applied to SNP data as compared to CIS data. This can be

explained by the observation that constant site patterns do not play a role in the reduced
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rank result of Chifman and Kubatko (2015) that is the basis for the SVDQuartets method.

Figure 3 shows the results of the second simulation for the symmetric species tree, and

Figure 4 shows the results for the asymmetric species tree. In most cases, the accuracy of

SVDQuartets is lower than that of BPP, which is not surprising given that BPP is designed

explicitly for multilocus data and SVDQuartets is designed for CIS data. It is clear that

as the number of loci increases and the branches become longer, BPP accurately infers

the true four-taxon species tree, while the performance of SVDQuartets lags behind. This

suggests that the SDVDQuartets method may be most useful for genome-scale multilocus

data, a setting in which the asymptotic consistency result suggests good performance and in

which Bayesian methods become computationally expensive, while Bayesian methods such

as BPP may be more appropriate when a more limited number of loci are available. We

further compare the two frameworks (i.e., a likelihood-based framework such as BPP and

the SVDQuartets methods) in the Discussion.

The results of the third simulation study are shown in Figure 5 for both CIS data (first

row) and multilocus data (second row). As expected, for species trees for which there

are anomalous gene trees, estimation of the correct species tree is more difficult for both

methods, and more data are required to achieve reasonable accuracy. In the case of CIS

data, SVDQuartets performs well with accuracy near 100% once a sufficient amount of data

are available, in this case more than 500,000 sites. It is again worth noting that the accuracy

of the method applied to SNP data is nearly identical to the CIS case, suggesting that

SVDQuartets will be a very effective method when genome-scale SNP data are available.

The performance of ML lags behind, likely due to the rather low number of informative

sites available when species tree branch lengths are extremely short. For example, when

branch length are short and θ is not very large, most of the site patterns generated will be

constant (i.e., invariable) site patterns. These site patterns are not informative for either

SVDQuartets or ML. The next most frequently occurring site patterns will be those with

a different nucleotide in only one species. Such site patterns provide no information about
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topology for ML, since they don’t provide information about which two taxa are most closely

related. However, these site patterns are informative for SDVQuartets, because the reduced

rank result on which the method is based uses the relationship that site patterns xxxy and

xxyx should occur in equal frequency. Thus it is reasonable that SVDQuartets performs

better than ML for CIS and SNP data in low-information settings such as this.

For the multilocus setting, we compared the performance of BPP with both informative

and default priors, and we note that the choice of prior has an impact on the resulting

inference. This is particularly apparent when θ = 0.05 (Figure 5(d)), where we see that

the proportion correct decreases by ∼ 10% when default priors are used rather than priors

centered at the true value of θ. This is because this particular choice of θ is larger than the

typically-observed empirical values over which the default priors are centered. We selected

this value in attempt to reproduce the high accuracy of BPP reported by Xu and Yang (2016)

for this species tree. However, we also considered the more realistic value of θ = 0.01 (Figure

5(c)), where we see that the effect of the prior is less substantial, likely because the default

prior puts more weight close to this value. However, BPP’s accuracy decreases for this value

of θ, which can be attributed to the fact that the mutation rate is lower, resulting in fewer

informative sites and therefore less information available for inference. Also notable is the

effect of locus length in Figure 5(c) and (d), with shorter loci resulting in lower accuracy.

Only with informative priors and the larger value of θ is accuracy substantially above 60%

achieved for BPP when loci are 200bp in length. The strong performance of BPP noted by

Xu and Yang (2016) for this tree is only achieved with a large value of θ, informative priors,

and long loci (1000bp each).

We note that the performance of SVDQuartets is poor overall for the multilocus setting,

with accuracy only around 50% for most conditions examined. Though this is similar to

BPP’s accuracy for default priors, short loci, and a lower value of θ, all of which reflect

common empirical conditions, it is clear that an increase in information available, either

through longer loci or a larger value of θ, benefits BPP more than SVDQuartets. This
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result, together with the encouraging results for the CIS and SNP cases in Figure 5(a) and

(b), further support our assertion that SVDQuartets may be most effective when the amount

of data available, whether multilocus or SNP, is very large – precisely the situations in which

Bayesian methods become more computationally expensive.

SVDQuartets for Multilocus Data: p̂1 vs. p̂2

SVDQuartets was originally formulated for CIS data, and is easily applied to SNP data,

as the constant patterns present in CIS data and absent in SNP data do not impact the

reduced-rank results that form the theoretical basis of the method (see Chifman and Ku-

batko (2015) for details). However, in many cases, multilocus data have been sequenced and

are already available. Recall that Theorem 0.5 showed that SVDQuartets is consistent when

using either of

Estimator 1: p̂1 = 1
N

∑N
i=1

Xi

ni

Estimator 2: p̂2 = 1∑N
i=1 ni

∑N
i=1 Xi

to estimate site pattern probabilities when multilocus data are generated via Definition 0.1. A

natural question is then whether one of these estimators should be preferred. ? examine this

question and find that neither is uniformly better; rather the relative performance depends

on the distribution F in Definition 0.1. Very generally, when F is concentrated around some

value, p̂2 is better while when F is spread out, p̂1 is better. For further discussion, we refer

readers to ?, noting that p̂1 corresponds to their arithmetic average while p̂2 corresponds to

their weighted average.
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Discussion

Our work gives the first consistency results for four-taxon species tree inference under the

coalescent model for SVDQuartets for both CIS and multilocus data and for maximum

likelihood for CIS data. Previous consistency results for maximum likelihood were only

derived in the case of gene trees. In addition, we have proved that the SVDQuartets estimator

has asymptotic error probability O(exp(−CN)) for CIS and multilocus data, where N is

the number of loci. The constant C probably depends on the structure of the tree being

estimated, but our simulations show that it does not appear to be particularly unreasonable

in a variety of scenarios. We compare the performance of SVDQuartets and ML theoretically,

and find that what is known rigorously is not sufficient to confirm the conjecture of Shi

and Yang (2018) that ML is more efficient than SVDQuartets; rather the comparison is

inconclusive, in large part because not enough is known about the performance of ML.We

can only note that our error bounds for SVDQuartets and those conjectured from partial

theoretical results for ML both take the form O(exp(−CN)) where the constant C may differ

between the methods.

In our simulations, we assumed that the effective population size, θ, was constant through-

out the tree. However, for empirical data, θ may vary from branch to branch, or even along

branches within the tree. It is therefore important to note that our proofs of consistency did

not rely on the assumption of constant effective population size. In the case of consistency of

ML for CIS data, identifiability is known to hold when θ varies through the tree (Long and

Kubatko, 2019) and expressions analogous to that in Equation (9) can be obtained for vary-

ing effective population sizes (Rusinko, 2018). In the case of the consistency of SVDQuartets,

recent work (Long and Kubatko, 2019) has established that the method holds in the case of

varying θs, as well as in the absence of a molecular clock. Thus, the consistency result for

SVDQuartets applies to a wide variety of mechanisms for data generation.

Our simulations demonstrate comparable performance for both ML and SVDQuartets

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2020. ; https://doi.org/10.1101/523050doi: bioRxiv preprint 

https://doi.org/10.1101/523050
http://creativecommons.org/licenses/by-nc-nd/4.0/


for CIS data, while ML (as implemented in BPP) generally performs better with multilocus

data. Importantly, our first simulation shows that SVDQuartets can be applied to SNP data

without any loss of power to infer the true species tree, making it a good choice for compu-

tationally efficient analysis of SNP data under the MSC. Examination of the performance

of these methods in the anomaly zone indicates that BPP can be sensitive to the choice of

prior and to the number of sites within the loci, while SVDQuartets may require a large

number of loci to obtain high accuracy. We also note that, at present, BPP implements only

the JC69 model, while the theoretical results underlying SVDQuartets hold for the general

time reversible (GTR) model and all submodels (Chifman and Kubatko, 2015), as well as

for species trees that violate the molecular clock (Long and Kubatko, 2019), making the

method quite generally applicable. Given the consistency results derived here, we suggest

that for multilocus data, SVDQuartets will be a useful alternative to Bayesian methods such

as BPP when the size of the data, in terms of the number of loci and/or the number of

species, makes MCMC-based methods computationally prohibitive, i.e., our results indicate

that SVDQuartets can be used to achieve consistent estimates of the species tree topology

in precisely the cases in which Bayesian methods are currently computationally expensive.

Acknowledgements

We thank Edward Susko, Ziheng Yang, and an anonymous reviewer for helpful comments on

earlier drafts of this manuscript that led to its improvement. We are particularly grateful to

Dr. Susko for suggesting a correction to our proof of consistency of SVDQuartets, and for

several helpful comments about our overall approach.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2020. ; https://doi.org/10.1101/523050doi: bioRxiv preprint 

https://doi.org/10.1101/523050
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
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(d) θ = 0.005
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(e) θ = 0.01
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(f) θ = 0.01

Figure 1: Results of the simulation study for the symmetric species tree for CIS data. The x-axis
shows the number of CIS, and the y-axis shows the proportion of correctly-estimated unrooted
species trees for each method. (a) θ = 0.001, all branch lengths equal to value given in the
legend; (b) θ = 0.001, varying branch lengths; (c) θ = 0.005, all branch lengths equal to the
value given in the legend; (d) θ = 0.005, varying branch lengths; (e) θ = 0.01, all branch lengths
equal to the value given in the legend; (f) θ = 0.01, varying branch lengths. For (b), (d), and
(f), setting 1 refers to tree ((Species1:1.0,Species2:1.0):0.5,(Species3:1.0,Species4:1.0):0.5); setting
2 refers to tree ((Species1:0.5,Species2:0.5):1.0,(Species3:0.5,Species4:0.5):1.0); and setting 3 refers
to tree ((Species1:1.0,Species2:1.0):0.5,(Species3:0.5,Species4:0.5):1.0).32
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(c) θ = 0.005
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(d) θ = 0.005
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(e) θ = 0.01
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(f) θ = 0.01

Figure 2: Results of the simulation study for the asymmetric species tree for CIS data. The x-axis
shows the number of CIS, and the y-axis shows the proportion of correctly-estimated unrooted
species trees for each method. (a) θ = 0.001, all branch lengths equal to value given in the
legend; (b) θ = 0.001, varying branch lengths; (c) θ = 0.005, all branch lengths equal to the
value given in the legend; (d) θ = 0.005, varying branch lengths; (e) θ = 0.01, all branch lengths
equal to the value given in the legend; (f) θ = 0.01, varying branch lengths. For (b), (d), and
(f), setting 1 refers to tree (Species4:2.5,(Species3:1.5,(Species2:0.5,Species1:0.5):1.0):1.0); setting
2 refers to tree (Species4:2.0,(Species3:1.0,(Species2:0.5,Species1:0.5):0.5):1.0); and setting 3 refers
to tree (Species4:2.5,(Species3:2.0,(Species2:1.0,Species1:1.0):1.0):0.5).33
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(c) θ = 0.005
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(d) θ = 0.005
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(e) θ = 0.01
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(f) θ = 0.01

Figure 3: Results of the simulation study for the symmetric species tree for multilocus data.
The x-axis shows the number of genes, and the y-axis shows the proportion of correctly-estimated
unrooted species trees for each method. (a) θ = 0.001, all branch lengths equal to value given in
the legend; (b) θ = 0.001, varying branch lengths; (c) θ = 0.005, all branch lengths equal to the
value given in the legend; (d) θ = 0.005, varying branch lengths; (e) θ = 0.01, all branch lengths
equal to the value given in the legend; (f) θ = 0.01, varying branch lengths. For (b), (d), and
(f), setting 1 refers to tree ((Species1:1.0,Species2:1.0):0.5,(Species3:1.0,Species4:1.0):0.5); setting
2 refers to tree ((Species1:0.5,Species2:0.5):1.0,(Species3:0.5,Species4:0.5):1.0); and setting 3 refers
to tree ((Species1:1.0,Species2:1.0):0.5,(Species3:0.5,Species4:0.5):1.0).
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(c) θ = 0.005
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(d) θ = 0.005
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(e) θ = 0.01
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(f) θ = 0.01

Figure 4: Results of the simulation study for the asymmetric species tree for multilocus data.
The x-axis shows the number of genes, and the y-axis shows the proportion of correctly-estimated
unrooted species trees for each method. (a) θ = 0.001, all branch lengths equal to value given in
the legend; (b) θ = 0.001, varying branch lengths; (c) θ = 0.005, all branch lengths equal to the
value given in the legend; (d) θ = 0.005, varying branch lengths; (e) θ = 0.01, all branch lengths
equal to the value given in the legend; (f) θ = 0.01, varying branch lengths. For (b), (d), and
(f), setting 1 refers to tree ((Species1:1.0,Species2:1.0):0.5,(Species3:1.0,Species4:1.0):0.5); setting
2 refers to tree ((Species1:0.5,Species2:0.5):1.0,(Species3:0.5,Species4:0.5):1.0); and setting 3 refers
to tree ((Species1:1.0,Species2:1.0):0.5,(Species3:0.5,Species4:0.5):1.0).
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(b) θ = 0.05
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(c) θ = 0.01
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(d) θ = 0.05

Figure 5: Results of the third simulation study which considers the anoma-
lous species tree of Xu and Yang (2016) given by (Species1:0.48,(Species2:0.44,
(Species3:0.4,Species4:0.4):0.04):0.04). In each plot, the x-axis shows the amount of data,
and the y-axis shows the proportion of correctly-estimated unrooted species trees for each
method.The first row shows the results for CIS data for (a) θ = 0.01 and (b) θ = 0.05. The
second row shows the results for multilocus data for (c) θ = 0.01 and (d) θ = 0.05.
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