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 2 

Abstract  24 

 Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, 25 

making its response to these microbially-produced concentrations of ethanol relevant to 26 

understanding its biology. Our ranscriptome analysis found that the genes involved in 27 

trehalose metabolism were induced by low concentrations of ethanol, and levels of intracellular 28 

trehalose increased significantly upon growth with ethanol. The increase in trehalose was 29 

dependent on the TreYZ pathway, but not other trehalose metabolic enzymes TreS or TreA. 30 

The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased 31 

expression of the treZ gene and trehalose levels, but induction was not controlled by the well-32 

characterized proteolysis of its antisigma factor MucA. Growth with ethanol led to increased 33 

SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of 34 

treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding 35 

protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated 36 

quorum sensing, as induction was not observed in a ∆lasR∆rhlR strain. A network analysis 37 

using a model, eADAGE, built from publicly available P. aeruginosa transcriptome datasets (1) 38 

provided strong support for our model that treZ and co-regulated genes are controlled by both 39 

AlgU and AHL-mediated QS (QS). Consistent with (p)ppGpp and AHL-mediated quorum 40 

sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ 41 

transcript levels and trehalose production in cells from post-exponential phase cultures but not 42 

from exponential phase cultures. These data highlight the integration of growth and cell density 43 

cues in the P. aeruginosa transcriptional response to ethanol.   44 
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Importance  45 

Pseudomonas aeruginosa is often found with bacteria and fungi that produce 46 

fermentation products including ethanol. At concentrations similar to those produced by 47 

environmental microbes, we found that ethanol stimulated expression of trehalose biosynthetic 48 

genes and cellular levels of trehalose, a disaccharide that protects against environmental 49 

stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU 50 

through DksA and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL 51 

quorum sensing and only occurred in post-exponential phase cultures. This work highlights 52 

how cells integrate cell-density and growth cues in their responses to products made by other 53 

microbes and a reveals a new role for (p)ppGpp in the regulation of AlgU activity.    54 
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 4 

Introduction 55 

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that can cause 56 

acute and chronic infections in a broad range of hosts. P. aeruginosa frequently causes 57 

chronic infections in individuals with the genetic disorder cystic fibrosis (CF). Diverse bacterial 58 

and fungal taxa often co-infect with P. aeruginosa in CF airways (2-6), and many of these taxa 59 

are robust fermenters capable of ethanol production (7, 8). Ethanol has also been identified as 60 

a volatile biomarker in exhaled breath condensates that discriminates between healthy 61 

individuals and those with CF (9).  62 

Ethanol has a range of biological activities that vary based on its concentration.  At 63 

concentrations in the 3-5% range and higher, ethanol can inhibit growth or kill P. aeruginosa 64 

(10-12). The effects of biologically-produced concentrations of ethanol within the range 65 

experienced by organisms in polymicrobial communities (0.1-1.1%) (13-21) have been less 66 

well studied. Several studies have shown that 1% ethanol can alter pathogenesis and 67 

interspecies interactions (13, 15, 17, 19). In Acinetobacter baumannii, ethanol enhances 68 

virulence toward Caenorhabditis elegans (17) and Galleria mellonella (19). This may be due to 69 

enhanced production of cytotoxic phospholipase C and increased expression of nutrient 70 

uptake pathways (18). In P. aeruginosa, ethanol produced by C. albicans influences the 71 

expression of the antifungal phenazine 5-methyl phenazine-1-carboxylic acid (5MPCA) and 1% 72 

ethanol was sufficient to modulate phenazine production and stimulate the exopolysaccharide 73 

Pel and Psl-mediated biofilm and pellicle formation (13, 16).  74 

The P. aeruginosa alternative sigma factor, AlgU, also named AlgT, has been well-75 

studied for its positive regulation of production of alginate, an exopolysaccharide (22, 23). AlgU 76 

is an extracytoplasmic sigma factor that is homologous to RpoE (σE or σ22) in other Gram-77 
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negative bacteria (24). P. aeruginosa mutants lacking algU have increased resistance to 78 

hydrogen peroxide compared to alginate over-producing mucoid counterparts due to 79 

transcriptional de-repression of catalase katA, but are more susceptible to host antimicrobial 80 

peptides (25, 26). In other species, σE is necessary for fitness in response to high 81 

concentrations of ethanol (3-10%) and inhibitory concentrations of salt (27-30). A well-known 82 

mechanism of activation of σE in response to stresses that perturb the cell envelope is by 83 

proteolytic degradation of its anti-sigma factor by specific proteases (31, 32). In P. aeruginosa, 84 

the AlgU anti-sigma factor is MucA, and mucA mutations lead to high AlgU activity. Naturally-85 

occurring mucA mutants are frequently observed in populations from chronic P. aeruginosa 86 

lung infections and strains overproduce alginate (33, 34). 87 

In E. coli and Salmonella enterica, σE activity can also be modulated by the alarmone 88 

(p)ppGpp (35, 36). (p)ppGpp is an intracellular molecular signal that is synthesized by either 89 

the synthase RelA or a hybrid synthase/hydrolase, SpoT (37) in response to nutrient limitation 90 

and various environmental stressors (38). (p)ppGpp can complex with the RNA polymerase 91 

binding protein DksA to promote transcription initiation and elongation and alter the effects of 92 

RNA polymerase-associated sigma factors including RpoE (39, 40).   93 

In this work, we show that a sub inhibitory concentration of ethanol (1%) induces the 94 

expression of genes involved in the metabolism of trehalose and biochemical assays found 95 

significant increases in intracellular trehalose, a disaccharide that serves as both a compatible 96 

solute and a carbon source. Increased trehalose in response to ethanol required the TreYZ 97 

trehalose biosynthetic enzymes, but not the TreS trehalose synthase. Ethanol induction of treZ 98 

gene expression and trehalose requires the sigma factor AlgU. AlgU was not activated by 99 

release from MucA, but rather in a manner dependent on (p)ppGpp. Ethanol caused a 2.5-fold 100 
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increase in (p)ppGpp levels, which was specifically dependent on SpoT (p)ppGpp synthase, 101 

and the (p)ppGpp-binding protein DksA was required for ethanol-induced stimulation of treZ 102 

gene expression and trehalose levels. Consistent with previous reports (41, 42), 103 

acylhomoserine lactone-mediated (AHL) quorum sensing was also required for transcriptional 104 

induction of the treZ gene by ethanol, as a DlasRDrhlR mutant defective in AHL-mediated 105 

quorum sensing did not show increased trehalose levels in response to ethanol. The 106 

stimulation of trehalose levels by salt did require AlgU, and trehalose stimulation in response to 107 

salt was lower, but still occurred, in mutants lacking the factors necessary for the response to 108 

ethanol. Analysis of genes differentially expressed when ethanol is in the growth medium, 109 

performed using the eADAGE gene expression model constructed with data from over 1056 110 

different samples (1), placed the treYZ genes among a cluster of co-regulated genes within the 111 

AHL-controlled quorum sensing (QS) and AlgU regulons. Ethanol, even when added at the 112 

time of culture inoculation, only stimulated AlgU-regulated genes and trehalose production in 113 

cells during post-exponential phase, which is consistent with our model that regulators that 114 

monitor growth and cell density cues are integrated into the P. aeruginosa response to ethanol. 115 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/523126doi: bioRxiv preprint 

https://doi.org/10.1101/523126
http://creativecommons.org/licenses/by-nc/4.0/


 7 

Materials and Methods 116 

 117 

Strains and growth conditions 118 

Bacterial strains and plasmids used in this study are listed in Table S1.  Bacteria were 119 

maintained on 1.5% agar LB (lysogeny broth) plates (43). Where stated, ethanol (200-proof) 120 

was added to the medium (liquid or molten agar) to a final concentration of 1% unless 121 

otherwise stated. NaCl to a final concentration of 500 mM was added to liquid medium as 122 

indicated. Mutants from the PA14 Non-Redundant (NR) Library were grown on LB with 60 123 

μg/mL gentamicin (44). When strains from the NR library were used, the location of the 124 

transposon insertion was confirmed using site-specific primers. The primers are listed in Table 125 

S2. Where stated, LB medium was buffered to pH 8 with 100 mM HEPES buffer (referred to as 126 

buffered LB). M63 medium contained 0.2% glucose and 2% casamino acids (45). When 127 

ethanol was supplied as a sole carbon source, glucose and amino acids were omitted. 128 

Planktonic cultures were grown at 37°C on a roller drum.  129 

 130 

Construction of in-frame deletions, complementation, and plasmids 131 

Construction of plasmids, including in-frame deletion and complementation constructs, 132 

was completed using yeast cloning techniques in Saccharomyces cerevisiae as previously 133 

described (46) unless otherwise stated. Primers used for plasmid construction are listed in 134 

Table S2. In-frame deletion and single copy complementation constructs were made using the 135 

allelic replacement vector pMQ30 (46). Deletions of relA and spoT were introduced in the 136 

PA14 strain using the pEX18Gm suicide vector to create unmarked deletion mutants (47), as 137 

previously described (48). Promoter fusion constructs were made using a modified pMQ30 138 
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vector with lacZ-GFP fusion integrating at the neutral att site on the chromosome. 139 

The rhlI promoter region was amplified from PA14 gDNA using the Phusion High-Fidelity DNA 140 

polymerase with primer tails homologous to the modified pMQ30 ATT KI vector containing 141 

the lacZ-gfp reporters. The 195 bp upstream promoter region includes a RhlR-binding site as 142 

annotated by pseudomonas.com at positions –192 to +3. All plasmids were purified from yeast 143 

using Zymoprep™ Yeast Plasmid Miniprep II according to manufacturer's protocol and 144 

transformed into electrocompetent E. coli strain S17 by electroporation. Plasmids were 145 

introduced into P. aeruginosa by conjugation and recombinants were obtained using sucrose 146 

counter-selection and genotype screening by PCR.  147 

 148 

P. aeruginosa growth assays  149 

For growth curves shown in Figure S1, overnight cultures were diluted into 5 mL fresh 150 

buffered LB medium in 18x150 mm borosilicate glass tubes without or with 1% ethanol to an 151 

OD600nm of ~0.05 and incubated at 37°C on a roller drum. Similar culture vessels and volumes 152 

were used in all assays unless otherwise specified. OD600 measurements were taken on a 153 

Genesys 6 spectrophotometer. For data in Figure S4, overnight cultures were diluted into fresh 154 

LB medium buffered to pH 8 with HEPES without or with 1% ethanol to an OD600 of ~0.05 and 155 

150 µl of the cell suspension was pipetted into 96-well plates. Plates were grown at 37°C with 156 

continuous shaking at ~150 rpm. OD600 measurements were taken at 16 h of incubation using 157 

a microplate reader.  158 

 159 

Microarray analysis 160 
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Cultures of P. aeruginosa PA14 wild type were grown overnight in LB at 37°C on a roller 161 

drum. 5 μL of overnight culture were spotted onto T-broth plates (1.5% agar) (49) ± 1% ethanol. 162 

Plates were incubated at 37° for 16 h. Colonies were scraped up from the plates for RNA 163 

isolation using the Qiagen RNeasy Mini kit. The samples were DNase treated using the 164 

Invitrogen Turbo DNA-Free kit. As previously described (50), cDNAs labeled with biotin-ddUTP 165 

(Enzo Bio-Array terminal labeling kit, Affymetrix) were hybridized to Pseudomonas GeneChips 166 

using the GeneChip fluidics station 450 (Affymetrix) according to manufacturer’s instructions. 167 

GeneChips were scanned in the Dartmouth Genomics and Microarray Laboratory using the 168 

GeneChip Scanner 3000 7G (Affymetrix) and the BioConductor Affy library was used to read 169 

CEL file data. Data were normalized with RMA in BioConductor (51). 170 

 171 

eADAGE analysis 172 

Genes upregulated 2-fold or more were analyzed within the context of their expression 173 

patterns in a compendium of 1051 publicly available microarrays from the Gene Expression 174 

Omnibus as determined by a machine learning model, eADAGE (1). Pearson correlations 175 

greater than 0.5 between the learnt parameters corresponding to each gene were visualized 176 

by edge weights in the resultant network (52). Genes differentially expressed between a wild 177 

type and ∆lasR∆rhlR mutant strain sampled at different time points over the course of growth 178 

are referred to as the quorum sensing (QS)-controlled regulon (41) (Table S3D). The QS-179 

controlled genes are presented as a network, plotted using the Fruchterman-Reingold force-180 

directed algorithm, in which correlations in gene expression were indicated with the presence 181 

of edges and genes with shorter edges are more strongly correlated in expression pattern. The 182 

network was generated in R using the “network” (53, 54), “GGally” (55) and “ggplot2” (56) 183 
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packages. The genes within the QS-controlled gene set that were also differentially expressed 184 

upon deletion of algU (57) were indicated as green nodes and genes within the QS-controlled 185 

gene set that were also differentially expressed upon deletion of rpoS (42) (Table S3E) are 186 

indicated as pink nodes. QS-controlled genes that were not also differentially expressed upon 187 

deletion of AlgU or RpoS are presented as blue nodes. The complete gene lists for each data 188 

set and accompanying R code are available as a supplemental file. If necessary, PA14 gene 189 

numbers gene were converted to PAO1 ortholog gene numbers, and PAO1 gene numbers 190 

were converted to gene names, using Pseudomonas aeruginosa PA14 109 orthologs and 191 

Pseudomonas aeruginosa PAO1 107 annotations from www.pseudomonas.com (58). 192 

 193 

Quantitative PCR analysis of transcripts  194 

For quantitative real-time PCR experiments, cultures of indicated strains of P. 195 

aeruginosa were grown for 16 h in 5 mL of buffered LB at 37°C on a roller drum. RNA was 196 

isolated from planktonic cultures using the Qiagen RNeasy Mini kit. The samples were DNase-197 

treated using the Invitrogen Turbo DNA-Free kit. cDNA was synthesized using the RevertAid 198 

H-minus first-strand synthesis kit using the GC-rich protocol with the following temperatures: 199 

25°C for 5 minutes, 50°C for 60 minutes, and 70°C for 5 minutes. Synthesized cDNA was 200 

diluted 1:5 in molecular grade water and stored at -20°C. Quantitative PCR expression 201 

analysis was performed using an Applied Biosystems 7500 Real-Time PCR system with 202 

BioRad SsoFast Evagreen Supermix and primers listed in Table S2. A cycling regimen of 95°C 203 

for 30 seconds; 39 cycles of 95°C for 10 seconds and 60°C for 5 seconds; and a final 65°C for 204 

3 seconds was used. Experimental transcripts were normalized to the housekeeping gene 205 

rpoD.  206 
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 207 

Measurement of trehalose in cells 208 

Trehalose was quantified from whole cell lysates as described previously (59, 60) with 209 

slight modifications. Briefly, bacterial cultures were grown for 16 h in LB or M63 medium 210 

without or with 1% ethanol as stated, in 18mm borosilicate culture tubes at 37°C on a roller 211 

drum. Cultures were inoculated from strains grown on LB plates. A 250 μL volume of culture 212 

was concentrated to an OD600 of 8.0 in sterile water. Cell suspensions were boiled for 10 213 

minutes to lyse cells. The resulting lysate was centrifuged at 16,000 xg, and 100 μL aliquots of 214 

lysate were transferred to new tubes. One tube of lysate was treated with 1 μL of trehalase 215 

(Sigma-Aldrich) enzyme or vehicle control. Glucose in the lysate samples was quantified using 216 

the glucose oxidase kit (Sigma; catalog no. GAGO20). Trehalose concentrations were 217 

calculated based on a standard curve and subtraction of the basal glucose and expressed 218 

relative to OD units.  219 

 220 

(p)ppGpp measurments  221 

Cultures inoculated at OD600= 0.05 were grown for 16 h to an OD600~2.0 in 5 mL M63 222 

medium without and with 1% ethanol in 18 mm culture tubes at 37°C with 250 rpm shaking. 223 

About 2 mL of cultures were pelleted at 10,000xg for 5 min and their (p)ppGpp was extracted 224 

as described previously (61). Briefly, the pellets were suspended in 200 µL of 10 mM Tris-HCl 225 

pH 7.8 containing 1 mg/mL lysozyme and 15 mM magnesium acetate. The suspensions were 226 

vortexed for 3 s and subjected to two freeze-thawing cycles. Then, 15 µL of a 10% 227 

deoxycholate solution was added and the suspensions were vortexed for 15 s. Finally, 200 µL 228 

of 10 mM Tris-HCl pH 7.8 containing 15 mM magnesium acetate was added and the samples 229 
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were centrifuged at 12,000xg for 10 min. The supernatants were used for (p)ppGpp 230 

quantification, which was performed using the chemosensor Bis-Zn2+-dipicolylamine (PyDPA) 231 

as previously described (62). The measurements of (p)ppGpp-PyDPA complex were carried 232 

out immediately after the probe addition using fluorescence spectroscopy (Ex/Em= 344/480 233 

nm) in a Tecan Infinite M1000 plate reader. To account for the interference of other 234 

nucleotides, ΔrelA∆spoT mutant extracts were used and the absolute (p)ppGpp values were 235 

determined using a calibration curve with purified (p)ppGpp (TriLink Biotechnologies) spanning 236 

a linear range of 0.4-6 µM (p)ppGpp. For normalized (p)ppGpp measurements, fluorescence at 237 

Ex/Em 344/480 nm was normalized by the fluorescence at Ex/Em 344/380 nm (free 238 

nucleotides complex with PyDA) and by the OD600 of the washed cultures. 239 

 240 

Measurement of β-galactosidase in reporter fusion strains. 241 

Cells with an rhlI promoter fusion to lacZ-GFP genes integrated at the attB locus were 242 

grown in 2 mL of LB overnight culture grown at 37°C were pelleted, washed twice and re-243 

suspended in PBS. The washed cells were diluted to a starting OD600=0.05 in 5 mL of M63 244 

medium without and with 1% EtOH.  After 16 h on a roller drum at 37°C, β-Galactosidase (β-245 

Gal) activity was measured as described by Miller (63). 246 

 247 

Statistics 248 

Unless otherwise stated, data are based on three biological replicates with the mean 249 

and standard deviations calculated, and are representative of at least three independent 250 

experiments containing multiple replicates. Unless stated otherwise, means and standard 251 

deviations were calculated in Graph Pad Prism 8 and analyses were completed using a two-252 
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way ANOVA and Tukey’s multiple comparisons test, with p-values indicated in figure legends. 253 

Regulon enrichments were determined by hypergeometric tests using the “phyper” function in 254 

the “stats” package in R. 255 

 256 

Accession Number 257 

 Data for our microarray analysis of P. aeruginosa PA14 wild type in response to ethanol 258 

has been uploaded to the GEO repository (https://www.ncbi.nlm.nih.gov/geo/) with the 259 

accession number GSE124852.  260 

 261 

Results 262 

Analysis of the transcriptome upon growth in the presence of ethanol 263 

To examine the transcriptional response of P. aeruginosa to 1% ethanol, RNA from P. 264 

aeruginosa grown as colony biofilms for 16 h on tryptone agar ±1% ethanol was analyzed 265 

using P. aeruginosa Affymetrix GeneChips. Similar to published results (13), the presence of 1% 266 

ethanol in the medium did not affect the number of CFUs in colony biofilms (Fig. S1A).  267 

Fifty-four transcripts were higher by two-fold or more in cells grown with ethanol, with an 268 

FDR-corrected p-value less than 0.05, and twenty genes were found to be lower by 2-fold or 269 

more in the presence of ethanol (Table S3A and B). Among the most differentially expressed 270 

genes were those involved in trehalose metabolism (treZ (3-fold), treA (2.1-fold) and treS (2.5-271 

fold) (64). Other genes that were changed upon growth with ethanol are discussed in more 272 

detail below. To determine if ethanol also led to increased levels of trehalose, intracellular 273 

trehalose concentrations were measured in cells grown ± ethanol in LB, a nutrient-rich medium, 274 

and M63, a defined medium. The LB was pH-buffered with HEPES because we observed that 275 
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ethanol led to a lower final pH in P. aeruginosa cultures grown with ethanol (final pH of 8.3 in 276 

control and pH 6.5 in ethanol from an initial pH of 7.1), despite similar growth kinetics (Fig. 277 

S1B), as has been described in E. coli (65) and Acinetobacter baumannii (19). Ethanol led to 278 

significant increases in trehalose in both buffered LB (>2-fold higher with ethanol) and in M63 279 

(20-fold higher with ethanol).  280 

 281 

Increased trehalose in response to ethanol requires treYZ genes   282 

In Pseudomonads such as P. aeruginosa and Pseudomonas syringae, trehalose can be 283 

synthesized by the TreYZ pathway, which converts glycogen to trehalose via a maltooligosyl 284 

trehalose synthase and glycosyl hydrolase (66), and by TreS, a trehalose synthetase that uses 285 

maltose as a substrate (Fig. 1A for schematic) (64, 67). Trehalose is degraded by the 286 

trehalase TreA; in other species, TreS also has trehalose catabolic activities (68, 69). 287 

To determine which metabolic pathway was responsible for increased trehalose in cells 288 

grown with ethanol, we used mutants lacking the 6-gene operon (PA14_36570-PA14_36630) 289 

that contains treY and treZ genes (referred to here as treYZ- (64)), the 3-gene operon that 290 

contains treS- (referred to here as treS- (64)), and an insertional mutant of treA (44, 64). While 291 

treS- and treA::TnM  both showed a marked increase in trehalose in the presence of ethanol in 292 

comparison to controls, the treYZ- strain did not, suggesting the increase in trehalose was by 293 

the TreYZ pathway (Fig. 1B). The significantly higher levels of trehalose in the treS- mutant in 294 

both control and ethanol conditions relative to the wild type suggested that the TreS catabolic 295 

activity was present under these conditions (70).  296 

Ethanol catabolism occurs mainly by the pyrroloquinoline quinone (PQQ)-dependent 297 

alcohol dehydrogenase, ExaAB, and the resultant acetaldehyde is catabolized through a 298 
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pathway that includes acetyl-CoA synthetase (AcsA). We have shown previously that ethanol 299 

catabolic mutants (exaA, pqqB, and acsA) are defective in growth on ethanol as a carbon 300 

source (13). Ethanol catabolic mutants still showed a stimulation of trehalose production with 301 

ethanol in the growth medium (Fig. S2A).  302 

Because we previously showed that ethanol (1%) led to increased production of the Pel 303 

exopolysaccharide through the diguanylate cyclase WspR (13), we determined if changes in 304 

trehalose occurred in response to changes in Pel production. We found that both the pelA and 305 

wspR mutants still had higher levels of trehalose in cells grown with ethanol (Fig. S2B) 306 

suggesting that changes in exopolysaccharide biosynthesis did not cause the increase in 307 

trehalose.  308 

 309 

Ethanol induction of treZ gene expression and trehalose levels are dependent on AlgU  310 

Several lines of evidence led us to hypothesize that the alternative sigma factor AlgU 311 

controlled the induction of trehalose metabolic genes in response to ethanol. First, treZ, treS, 312 

and treA have been reported to be differentially expressed in algU mutant strains when 313 

compared to a wild-type strain in transcriptomics studies (57, 71). Second, osmC and pfpI, two 314 

well-characterized members of the AlgU regulon (71-73) were differentially expressed in our 315 

transcriptomics analysis of cells grown ±1% ethanol (Table S3A).  316 

In wild-type cells, qRT-PCR analysis found treZ to be 16-fold higher in cultures 317 

containing ethanol. In contrast, an in-frame ∆algU mutant had no significant difference in treZ 318 

expression between cells growth with and without ethanol (Fig. 2A). Like treZ, the expression 319 

of another AlgU regulated gene osmC was higher (8-fold) upon growth with ethanol and, as 320 

expected, the differential expression was dependent on AlgU (Fig. 2B). The ∆algU mutant also 321 
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did not show an increase in trehalose upon growth with ethanol (Fig. 2C), and its defect could 322 

be complemented by restoring algU to the native locus (Fig. 2C).  While the sigma factor AlgU 323 

was required for the induction of treZ transcripts and trehalose production, a mutant lacking 324 

another sigma factor, RpoS, which has been shown to regulate trehalose levels in E. coli (74), 325 

did not differ from the wild-type in its response to ethanol (Fig. S3).  326 

 327 

AlgU-dependent induction of trehalose in response to ethanol is independent of MucA 328 

cleavage and KinB regulation  329 

AlgU activity is repressed by the anti-sigma factor MucA, and proteolysis of MucA is a 330 

well characterized means by which AlgU and its homologs are activated (25, 72, 73, 75-79). 331 

MucA is bound by the periplasmic protein MucB, which inhibits MucA cleavage (80-82). 332 

Several stimuli, including high concentrations of ethanol (>3%) (27, 28) can lead to periplasmic 333 

stress and RpoE activation by anti-sigma factor degradation in other species. Several lines of 334 

evidence suggest that MucA cleavage was not the mechanism by which ethanol stimulated 335 

levels of treZ mRNA and trehalose. First, we found that ethanol increased trehalose to a 336 

similar extent in wild type and mucB mutant cells in strain PA14 background (Fig. 3A); the 337 

mucB mutant has decreased stability of MucA and the strain is mucoid, which indicates higher 338 

AlgU activation of genes involved in alginate biosynthesis. Second, ethanol stimulated 339 

trehalose levels in P. aeruginosa strain PAO1 in which mucA contained the mucA22 mutation, 340 

which is found frequently among clinical isolates to an extent similar to that observed in the 341 

wild type. The truncated MucA22 mutant, a variant frequently found among P. aeruginosa 342 

clinical isolates, is no longer regulated by proteolysis and no longer represses AlgU (83, 84). 343 

Lastly, ethanol also stimulated trehalose in the alginate-overproducing mucoid cystic fibrosis 344 
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isolate FRD1 (85) which also has the mucA22 allele (81, 86) (Fig. 3B). In FRD1, the 345 

stimulation of trehalose levels by ethanol required the presence of AlgU as the isogenic non-346 

mucoid algT/U::Tn501 (FRD440) derivative showed a large reduction in ethanol-stimulated 347 

trehalose (22) (Fig. 3C). These analyses showed that 1) ethanol induced responses similar to 348 

those in strain PA14 in genetically-distinct strains PAO1 and FRD1 and 2) that the increase in 349 

trehalose in response to ethanol is likely not due to the stimulation of MucA cleavage.  350 

A kinB loss-of-function has been associated with increased AlgU activity (72, 73) due to 351 

increased activity of the AlgB transcription factor that stimulates AlgU expression; KinB 352 

phosphatase activity normally represses AlgB (87). Thus, we determined if KinB was required 353 

for the difference in trehalose levels in cells grown with or without ethanol. While the kinB 354 

mutant consistently had higher levels of trehalose in control and ethanol conditions compared 355 

to the wild type, KinB was not required for the effects of ethanol on trehalose levels (Fig. 3D). 356 

Together, these data support our model that AlgU regulates trehalose through a mechanism 357 

that is not dependent on KinB.  358 

 359 

Ethanol stimulation of trehalose requires SpoT-generated ppGpp. 360 

In E. coli, the activity of RpoE, an AlgU homolog, is influenced by (p)ppGpp (35, 39, 40, 361 

88, 89); (p)ppGpp effects on P. aeruginosa AlgU have not yet been reported. (p)ppGpp can be 362 

synthesized by either of two enzymes, RelA or SpoT (90-92). SpoT also has a (p)ppGpp 363 

degrading activity and, because very high levels of (p)ppGpp are toxic, mutants lacking spoT 364 

are only viable in the absence of RelA activity (93, 94). Thus, we determined if ethanol 365 

stimulation of trehalose levels was altered in either ∆relA or ∆relA∆spoT strains. We found that 366 

while the ∆relA was like the wild type, ethanol did not influence trehalose levels in the 367 
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∆relA∆spoT double mutant, suggesting that SpoT was required for trehalose accumulation in 368 

ethanol-grown cells (Fig. 4A). The induction of treZ and osmC were also dependent on SpoT 369 

(Fig. 4C and D).  370 

To determine if 1% ethanol altered (p)ppGpp levels in PA14 wild type, its levels were 371 

measured. We found that cells grown with ethanol had 3.45-fold higher levels of (p)ppGpp. 372 

The increase in (p)ppGpp was similar to the wild type in the relA mutant, but the ∆relA∆spoT 373 

strain did not show an increase in (p)ppGpp in response to ethanol, indicating that ethanol 374 

stimulates (p)ppGpp production via SpoT (Fig. 4E).  375 

 376 

Ethanol stimulation of treZ and trehalose levels requires DksA 377 

 The (p)ppGpp signal influences the activity of RNA polymerase-sigma factor complexes 378 

through DksA, an RNA polymerase-binding protein. We found that a ∆dksA mutant no longer 379 

showed ethanol-induced trehalose accumulation and that the phenotype of the ∆dksA mutant 380 

was complemented by restoring dksA at the native locus (Fig. 4B). Consistent with trehalose 381 

measurements, ethanol-induced increases in treZ and osmC expression were greatly reduced 382 

in ∆relA∆spoT and ∆dksA strains (Fig. 4C and D). Like the wild type, the growth kinetics of the 383 

∆dksA mutant and ∆relA∆spoT mutant were not reduced by 1% ethanol, though the ∆dksA 384 

mutant grew more slowly than the wild type in control conditions, consistent with published 385 

reports (95, 96)  (Fig. S4).  386 

 387 

AlgU is required for, and SpoT and DksA contribute to, the induction of trehalose by 388 

high salt 389 
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In P. aeruginosa and other species, trehalose is induced by high salt (67, 97). Ausubel 390 

and colleagues (64) found that trehalose levels in high salt required TreYZ (64) and we 391 

confirmed these results (Fig. 5A and B). Furthermore, we found that trehalose induction in 392 

response to high salt was absent in the ∆algU mutant (Fig. 5C) as it was for ethanol (Fig. 1C 393 

and D). While (p)ppGpp and DksA were necessary for any induction of trehalose in response 394 

to ethanol, the ∆dksA and ∆relA∆spoT strains still showed a significant induction of trehalose in 395 

response to salt (Fig. 5C). The level of induction, however, was significantly lower in the ∆dksA 396 

and ∆relA∆spoT strains compared to wild type and ∆relA strain, suggesting that SpoT-397 

dependent (p)ppGpp and the (p)ppGpp-responsive RNA polymerase binding protein DksA 398 

contributed to the response in cells from post-exponential phase cultures (Fig. 5C and D).  399 

 400 

Quorum sensing master regulators are necessary for the ethanol induction of trehalose  401 

Schuster et al. (41, 42) found that treZ and other genes involved in trehalose 402 

biosynthesis and osmC, were at lower levels in a PAO1 ∆lasR∆rhlR mutant compared to the 403 

wild type. They reported that treZ and osmC fell within a subset of QS-controlled genes that 404 

were induced later in growth in batch culture relative to other QS-controlled genes (41, 42). We 405 

found that the increase in levels of treZ and osmC (Fig. 6A and B) or trehalose (Fig. 6C) in 406 

ethanol-grown cells did not occur in the ∆lasR∆rhlR strain and that the lack of response was 407 

not due to ethanol effects on growth in this strain (Fig. S4). Since either lasR, rhlR or both AHL 408 

responsive transcription factors were necessary for the stimulation of trehalose in cells grown 409 

with ethanol, we determined if ethanol enhanced AHL-mediated quorum sensing thereby 410 

inducing trehalose levels. To do so, we monitored expression of rhlI, a quorum sensing-411 

controlled gene regulated by LasR and RhlR, using a rhlI-lacZ promoter fusion (98). PA14 wild 412 
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type and the ∆lasR∆rhlR strains were grown ± ethanol. As expected, levels of b-galactosidase 413 

activity were much lower in the ∆lasR∆rhlR mutant compared to the wild type and we found no 414 

significant difference in rhlI promoter activity in ethanol-grown cells compared to cells from 415 

control conditions (Fig. 6D). The transcriptomics analysis of P. aeruginosa grown ± ethanol 416 

above did not find evidence for ethanol affecting AHL-mediated quorum sensing broadly (Table 417 

S3A and B). Additionally, while AHL quorum sensing was required for trehalose accumulation 418 

in response to ethanol, it was not necessary for trehalose accumulation in response to high 419 

salt (Fig. 5E); there was, however, a significant reduction in trehalose levels in the ∆lasR∆rhlR, 420 

compared to wild type in salt suggesting that this mechanism played a role. 421 

 422 

Ethanol responsive genes comprise a distinct cluster within a structured network of QS-423 

controlled genes also regulated by AlgU. 424 

Together, our data present a complex scheme in which global regulators, AlgU and 425 

transcription factors involved in AHL-mediated quorum sensing, control trehalose biosynthetic 426 

genes treYZ and osmC and levels of trehalose in cells grown with ethanol. Our findings 427 

support previous reports that separately found treZ and osmC genes to be among those genes 428 

controlled by AlgU (57, 71) and AHL-mediated quorum sensing (41, 42). To test the hypothesis 429 

that a subset of genes are members of both the AlgU and QS regulons, and that ethanol 430 

specifically altered expression of this subset of genes, we used eADAGE (ensemble Analysis 431 

using De-noising Auto-encoders of Gene Expression), a machine learning algorithm used to 432 

generate a model for P. aeruginosa expression patterns from 1051 publicly available 433 

transcriptome samples (1, 52, 99). The eADAGE model learned 600 expression signatures, 434 

and within each signature, genes have different weights. Similarities in weights across 435 
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signatures for genes indicate a correlation in expression levels. Pairwise Pearson correlation 436 

coefficients of the genes in the eADAGE model can be visualized as edge weights in a network 437 

where nodes are genes (adage.greenelab.com).  438 

In the network shown in Figure 7, we present the relationships in expression patterns for 439 

1) genes that were found to be differentially expressed in response to ethanol (nodes with 440 

orange borders) and 2) the set of genes differentially expressed by more than five-fold in a 441 

∆lasR∆rhlR strain compared to the wild type, which included treZ and osmC, reported in 442 

Schuster et al. (41) (blue nodes; gene list in Table S3D). Using a dataset that characterized 443 

the AlgU regulon by comparing an ∆algU mutant to the wild type under AlgU-inducing heat 444 

shock conditions (57), we identified genes in the two datasets listed above that were regulated 445 

by AlgU (yellow nodes; Table S3C for gene list) or that were altered in both the ∆lasR∆rhlR 446 

and ∆algU strains (green nodes).  447 

The majority of genes included in this network were connected by edges, revealing 448 

strongly correlated expression patterns across the large data compendium comprised of 449 

experiments performed by different labs with different strains and in different conditions over 450 

more than a decade (1, 52, 99). The connected genes fell into three major clusters (I, II, and 451 

III).  The majority (80%) of the QS-controlled genes that were also AlgU-controlled (green 452 

nodes) (71) were found in cluster I. Ethanol-responsive transcripts (orange borders), including 453 

treZ and osmC, were exclusively localized to cluster I. Statistical analysis found that genes 454 

differentially expressed in response to ethanol (Table S3A) represented 12.2% of AlgU-455 

controlled genes (57) and 8.6% of QS-controlled gene sets defined above (Table S3 for gene 456 

lists), but comprised 44% of genes present in both regulons. The enrichment of the intersection 457 

of AlgU and QS-controlled genes over the sets of either all AlgU- or all QS-regulated genes 458 
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was significant (p=0.001, and p=0.00002, respectively). Visualization of a cluster of ethanol-459 

responsive genes within the gene-gene network comprised of the complete AlgU regulon (57) 460 

is shown in Figure S5.  461 

Cluster II genes contained many genes known to be regulated mainly by LasR or RhlR, 462 

and their cognate signals (41, 42). Examples of genes in cluster II are lasI, lasB, rhlR, rhlI, and 463 

rhlA. The lack of any of the ethanol-responsive genes in cluster II is consistent with our 464 

findings that ethanol did not alter expression of rhlI (Fig. 6D) and is in support of our model that 465 

ethanol did not broadly induce the entire QS regulon. 466 

Cluster III contained genes from the QS-controlled gene set that were previously 467 

described by Schuster (42) as also being differentially expressed in an rpoS mutant (pink 468 

nodes) (42) (Fig. 7 and Table S3E for gene list). Of the 56 genes in cluster III, 47 (42) and 29 469 

(57) genes were differentially expressed in separate published studies describing the RpoS 470 

regulon. Ethanol-responsive genes were not among genes in cluster III, supporting above data 471 

showing that ethanol-induced trehalose levels were not dependent on rpoS (Fig. S3). Specific 472 

enrichment in AlgU and QS co-regulated genes among the genes upregulated in response to 473 

ethanol is consistent with ethanol activating only a subset of the AlgU and AHL-controlled 474 

regulons.  475 

 476 

Ethanol induces trehalose after entry into post-exponential phase 477 

Increased trehalose levels and osmC and treZ transcripts in cultures with ethanol was 478 

dependent on both SpoT-synthesized (p)ppGpp and AHL-mediated quorum sensing, signals 479 

associated with growth restriction, often due to nutrient limitation, and high cell density, 480 

respectively. Analysis of trehalose levels in control and ethanol-containing cultures found that 481 
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ethanol only affected trehalose levels in cells from post-exponential phase cultures, but not 482 

exponential phase cultures. This relationship was observed in both M63 medium (Fig. 8A) and 483 

buffered LB medium (1.96 µg/OD600 in control cultures vs 2.81 µg/OD600 in ethanol-containing 484 

cultures, p-value=0.1339). Expression of treZ was also not affected by ethanol in cells from 485 

exponential phase cultures, but was in cells from the same cultures collected after entry into 486 

post-exponential phase (Fig. 8B). Together, these data support a model in which the induction 487 

of trehalose in response to ethanol by AlgU requires other signals from quorum sensing and 488 

growth-restriction associated pathways.  489 

 490 

  491 
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Discussion 492 

The data presented above lead us to propose a model, based largely on genetic 493 

analyses, in which ethanol activates AlgU through stimulation of (p)ppGpp, synthesized by 494 

SpoT, and activation of DksA-dependent transcription. Chromatin immunoprecipitation 495 

experiments have shown that AlgU binds to the promoter for the treYZ containing operon (57). 496 

AHL-mediated quorum sensing, through LasR and/or RhlR was required for AlgU-dependent 497 

activation of treZ and osmC and increased levels of trehalose, and thus ethanol induction of 498 

trehalose was only observed in cultures after AHL-mediated QS was induced. Our data do not 499 

indicate that ethanol led to a global increase in expression of the QS regulon. Based on these 500 

data, we propose that even though ethanol was present over the course of growth, the 501 

increased trehalose biosynthesis in response to ethanol only occurs when cells have sensed a 502 

quorum and when (p)ppGpp synthesis can be stimulated, perhaps because of concomitant 503 

nutrient limitation signals which are known to activate SpoT (Fig. 9). These data highlight a 504 

nuanced response to a microbially-produced molecule, ethanol, in P. aerugionsa and this 505 

underscores how microbe-microbe interactions may change with shifts physiological states 506 

and extracellular signal concentrations.  507 

The model for AlgU activation by (p)ppGpp and DksA represents a new mechanism by 508 

which the important sigma factor, AlgU, may activated in P. aeruginosa. (p)ppGpp-dependent 509 

activation of E. coli RpoE, an AlgU homolog, has been reported previously (35) and has been 510 

associated with growth phase (100), but activation by non-inhibitory concentrations of ethanol 511 

has not been reported. Our data showed that ethanol, at a 1% concentration, did not activate 512 

AlgU through effects on MucA or MucB proteins (Fig. 3), which are targeted for cleavage in 513 

response to periplasmic or envelope stress. In the presence of 0.5 M salt, however, a stimulus 514 
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that is expected to induce periplasmic stress, DksA- and SpoT-independent stimulation of 515 

trehalose is observed, presumably because some AlgU activation occurred through MucA 516 

cleavage, but DksA and SpoT did contribute to the strength of the response suggesting that 517 

these mechanisms can work together.  518 

The intersection of QS regulation and AlgU regulation is interesting. Future experiments 519 

will also determine if LasR and/or RhlR directly interact with the promoter upstream of the 520 

treYZ containing operon, and if that interaction only occurs when AlgU and DksA are 521 

complexed with RNA polymerase. Evidence for direct activation of osmC and treYZ expression 522 

is that overexpression of lasR, but not rhlR, is sufficient to induce expression of these genes 523 

(42). Our variable results with single mutants lacking either lasR or rhlR (data not shown) led 524 

us to propose that both transcription factors can influence the expression of treYZ, but with 525 

different kinetics, as has been shown for other genes (101). In separate studies with ∆dksA 526 

and ∆relA∆spoT mutants in strain PAO1, DksA and (p)ppGpp have independently been 527 

associated with both the positive and negative regulation of genes that are differentially 528 

expressed in a ∆lasR∆rhlR mutant (96, 102-106) so there may be a complex relationship 529 

between these signaling pathways. 530 

The biological role of AlgU-induced trehalose in P. aeruginosa in response to stresses 531 

or in microbial communities is not yet known. AlgU has been implicated in both the positive 532 

and negative regulation of genes involved in oxidative and osmotic stress responses in other 533 

Pseudomonads (107-110). For example, in different pathovars of P. syringae, AlgU regulates 534 

oxidative and osmotic stress response genes transcriptionally in response to osmotic stress 535 

(109) and contributes to plant disease independently of alginate (110). In Pseudomonas 536 

fluorescens, an algU mutant was significantly more sensitive to osmotic stress than wild type 537 
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(107). P. fluorescens AlgU to be necessary for desiccation stress tolerance, but dispensable 538 

for tolerance to 3% hydrogen peroxide, 1.9% paraquat, 5% sodium hypochlorite, heat shock, 539 

pH extremes, and the reducing agent dithiothreitol (107). In P. aeruginosa, AlgU has been 540 

described as having a negative role in oxidative stress resistance, can be protective against 541 

host innate immune factors through its regulation of alginate (25, 26). We did not observe a 542 

protective benefit of growth with 1% ethanol in oxidative stress, osmotic stress, and 543 

dessication assays in the growth conditions used in these studies (data not shown). Trehalose 544 

has been reported to protect against osmotic, oxidative, heat, and cold stress by stabilizing 545 

proteins and reducing formation of denatured protein aggregates (111-115), as a carbon 546 

reserve (111, 116), and recent studies have found that trehalose can stabilize outer membrane 547 

vesicles (117). Trehalose can accumulate in the cytoplasm and periplasm and be secreted, 548 

making it an interesting molecule to consider in the context of microbe-microbe interactions. P. 549 

syringae survival as an epiphyte and P. aeruginosa plant pathogenesis both require the ability 550 

to make trehalose (64, 118). Interestingly, exogenous trehalose and wild type-derived 551 

trehalose in co-culture rescued the attenuated trehalose mutant phenotype in P. aeruginosa 552 

Arabidopsis pathogenicity in planta, with the requirement for trehalose being independent of 553 

osmoprotection (64). Pseudomonads can accumulate a variety of osmoprotectants in addition 554 

to trehalose, including betaine, ectoine, and N-acetylglutaminylglutamine amide (NAGGN) 555 

(118). This redundancy may contribute to the fact that trehalose mutants are not more 556 

sensitive to tested stresses in laboratory assays (64).  557 

In addition to treZ and other trehalose metabolism genes, cluster I included 38 genes 558 

found within the genome island that spans from PA2134 to PA2192 (PA14_36980-559 

PA14_36345) (73, 119, 120). 16 of the 54 genes (~30%) differentially expressed in response 560 
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to ethanol were in this chromosomal region. Many of the genes in this chromosomal region 561 

that are differentially expressed in ethanol could participate in survival of stresses likely to be 562 

present in mixed-species communities formed with ethanol-producing microbes. For example, 563 

glgE is involved in the metabolism of glycogen, a carbon and energy storage molecule that 564 

accumulates when carbon is in excess relative to other growth-limiting nutrients (121). Other 565 

genes within this genome island encode putative ion transporters, double strand break repair 566 

enzymes, and two catalases. Other ethanol-induced genes within Cluster I included osmC, 567 

sprP, and pfpI. OsmC can be protective against oxidative stress caused by exposure to 568 

elevated osmolarity and hyperoxides through an unknown mechanism (122). SprP is a 569 

subtilase protease (123) and pfpI codes for a protease that plays a role in DNA protection in 570 

non-stress conditions and in the presence of hydrogen peroxide (124). Mutation of either sprR 571 

or pfpI in P. aeruginosa has pleiotropic effects (123, 124).  572 

 The important next question is the mechanism by which ethanol stimulates (p)ppGpp. 573 

Others have shown that (p)ppGpp levels increase in response to higher concentrations of 574 

ethanol, and, in E. coli, the addition of ethanol mimics amino acid starvation (125). They 575 

speculated that ethanol (and other short-chain alcohols) may interfere with amino acid uptake 576 

(125). Ethanol may also directly impact ribosome activity (126) or other pathways through 577 

effects on cell membranes, and the fact that responses vary based on growth phase provides 578 

a useful tool to understand how ethanol and ethanol-producing microbes influence the other 579 

bacteria.  580 

 581 

 582 

 583 
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Figure Legends 991 

 992 

Figure 1. Trehalose accumulation in response to ethanol requires treYZ. A. Schematic of 993 

trehalose biosynthetic pathways in P. aeruginosa. B. Trehalose levels in trehalose metabolic 994 

mutants grown in M63 medium without and with 1% ethanol for 16 hours. Data are 995 

representative of at least 3 independent experiments with 3 biological replicates each. a-b, a-c, 996 

a-d, b-c, c-d p<0.0001; b-d p<0.02 based on two-way ANOVA and Tukey’s multiple 997 

comparisons test.  998 

 999 

Figure 2. Analysis of the effects of ethanol on treZ and osmC transcript levels and intracellular 1000 

trehalose in P. aeruginosa wild type and ∆algU. A and B. treZ (A) and osmC (B) transcript 1001 

levels relative to rpoD after growth in the absence and presence of 1% ethanol in buffered LB 1002 

for 16 hours a-b p<0.0001 two-way ANOVA and Tukey’s multiple comparisons test. C and D. 1003 

Trehalose levels in wild type, ΔalgU, and ΔalgU + algU at the native locus in buffered LB (C) 1004 

and M63 medium (D) without and with 1% ethanol for 16 hours. a-b p<0.002; a-c p<0.0009; b-1005 
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c NS (C) a-b p<0.0001 (D) based on two-way ANOVA and Tukey’s multiple comparisons test.  1006 

Data are representative of at least three independent experiments, each with at least three 1007 

biological replicates.  1008 

 1009 

Figure 3. Trehalose levels in response to ethanol are independent of MucB, MucA cleavage, 1010 

and KinB. Trehalose levels of A. P. aeruginosa strain PA14 wild type and the validated mucB 1011 

transposon mutant. B. P. aeruginosa strain PAO1 wild type and a mucA (MucA22) mutant, C. 1012 

FRD1 and its isogenic algU::Tn derivative. D. P. aeruginosa strain PA14 wild type and the 1013 

∆kinB mutant. Cultures grown in M63 medium without and with 1% ethanol for 16 hours. Data 1014 

are representative of at least 2 experiments, each with 3 biological replicates. Statistics based 1015 

on two-way ANOVA and Tukey’s multiple comparisons test *** p-value<0.0001; ** p≤0.0002. 1016 

 1017 

Figure 4. dksA and spoT are required for trehalose accumulation, treZ and osmC expression, 1018 

and increased (p)ppGpp in response to ethanol. Trehalose levels of A. PA14 wild type, ΔrelA, 1019 

and ΔrelAΔspoT and B. PA14 wild type, ΔdksA, and ΔdksA + dksA in M63 medium without 1020 

and with 1% ethanol for 16 hours. C. treZ and D. osmC transcripts normalized to rpoD in PA14 1021 

wild type, ΔdksA, and ΔrelAspoT in buffered LB at 16 hours without and with 1% ethanol. A-D 1022 

Data are representative of at least 3 independent experiments with at least 3 biological 1023 

replicates each. E. (p)ppGpp quantification of PA14 WT, ΔrelA, and ΔrelAΔspoT in M63 1024 

medium without and with 1% ethanol for 16 hours. Data are representative of at least 2 1025 

independent experiments. Statistics based on two-way ANOVA and Tukey’s multiple 1026 

comparisons test. A. a-b p=0.0179; a-c, d-e p=0.0001; a-d, a-e, b-d, b-e, c-d, c-e p<0.0001; b-c 1027 

= NS. B. a-b p<0.0001. C. a-b, b-c p<0.0001; a-c p≤0.05 D. a-b p<0.0001. E. a-b p<0.0001.  1028 
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 1029 

Figure 5. Trehalose accumulation in response to salt requires TreYZ and AlgU. A. 500 mM 1030 

NaCl stimulates trehalose accumulation. B. Salt-stimulated accumulation of trehalose is  1031 

dependent on the TreYZ pathway. C. Salt-stimulated trehalose accumulation requires algU 1032 

and dksA and spoT contribute. D. Salt stimulated trehalose accumulation is independent of 1033 

relA. E. Trehalose accumulation in salt is similar to wild type in ΔlasRΔrhlR. Cultures were 1034 

grown 16 hours in M63 medium with 1% ethanol or 500 mM NaCl as indicated. Data are 1035 

representative of two or more experiments, each with at least 3 biological replicates. Statistics 1036 

based on one-way ANOVA (A) or two-way ANOVA (B,C,D) and Tukey’s multiple comparisons 1037 

test. A. a-b p=0.0005; a-c, b-c p<0.0001. B. a-b, p<0.0001. C. a-b, a-c, a-d, b-c, p<0.0001. D. 1038 

a-b, a-c, a-d, b-c, p<0.0001. E. a-b, a-c p<0.0001; b-c p=0.0007 1039 

 1040 

Figure 6. AHL quorum sensing regulation is required for trehalose accumulation and increased 1041 

treZ and osmC transcripts in response to ethanol. A. Expression of treZ and B. osmC genes 1042 

normalized to rpoD in PA14 wild type and ΔlasRΔrhlR in buffered LB without and with 1% 1043 

ethanol for 16 hours. C. Trehalose quantification of PA14 wild type and ΔlasRΔrhlR cells 1044 

grown planktonically in M63 medium without and with 1% ethanol for 16 hours. D. β-1045 

galactosidase assay of rhlI-lacZ promoter activity in PA14 wild type and ΔlasRΔrhlR cells 1046 

grown planktonically in M63 medium without and with 1% ethanol for 16 hours. Data are 1047 

representative of at least 2 independent experiments, each with 3 or more biological replicates. 1048 

Statistics based on two-way ANOVA and Tukey’s multiple comparisons test. A. a-b, a-d, b-c, b-1049 

d p<0.0001; a-c p=0.0004; c-d p=0.0395 B. a-b, b-c p<0.0001; a-c p<0.02. C. a-b p=0.0002. 1050 

 1051 
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Figure 7. Ethanol responsive genes are enriched for genes with overlapping AlgU and QS 1052 

control. eADAGE gene-gene network analysis of ethanol responsive genes and QS regulon 1053 

genes with overlapping AlgU genes indicated. I. Enrichment region for genes coordinately 1054 

regulated by AlgU and QS (green) and ethanol responsive genes (orange outline). II. 1055 

Enrichment region for “canonical” quorum sensing genes including lasI, lasB, rhlR, rhlI, and 1056 

rhlA. III. Enrichment region for QS genes within the RpoS regulon.  1057 

 1058 

Figure 8. Ethanol stimulates treZ gene expression and trehalose levels in cells from post-1059 

exponential phase but not exponential cultures. A. Trehalose quantification of cells grown in 1060 

M63 medium without and with 1% ethanol for 6 hours to an OD600 of ~1.0 (Exp.) or 16 hours 1061 

(Post exp.). B. treZ gene expression normalized to rpoD in cultures grown in buffered LB 1062 

without and with 1% ethanol to the same densities as in A. Data are representative of 3 1063 

experiments, each with 2-4 biological replicates. Statistics based on two-way ANOVA and 1064 

Tukey’s multiple comparisons test. ***p≤0.0008. 1065 

 1066 

Figure 9. Model describing ethanol stimulation of the AlgU regulon and trehalose production. 1067 

Our data support a model wherein cell density and growth signals determine the cell’s 1068 

response to ethanol. The colors of the text are reflected in the schematic of the transcriptional 1069 

regulatory complex.  1070 

 1071 
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Figure 1. Trehalose accumulation in response to ethanol requires treYZ. A. Schematic of 
trehalose biosynthetic pathways in P. aeruginosa. B. Trehalose levels in trehalose metabolic 
mutants grown in M63 medium without and with 1% ethanol for 16 hours. Data are representative 
of at least 3 independent experiments with 3 biological replicates each. a-b, a-c, a-d, b-c, c-d 
p<0.0001; b-d p<0.02 based on two-way ANOVA and Tukey’s multiple comparisons test.
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Figure 2. Analysis of the effects of ethanol on treZ and osmC transcript levels and 
intracellular trehalose in P. aeruginosa wild type and ∆algU. A and B. treZ (A) and osmC
(B) transcript levels relative to rpoD after growth in the absence and presence of 1% 
ethanol in buffered LB for 16 hours a-b p<0.0001 two-way ANOVA and Tukey’s multiple 
comparisons test. C and D. Trehalose levels in wild type, ΔalgU, and ΔalgU + algU at the 
native locus in buffered LB (C) and M63 medium (D) without and with 1% ethanol for 16 
hours. a-b p<0.002; a-c p<0.0009; b-c NS (C) a-b p<0.0001 (D) based on two-way ANOVA 
and Tukey’s multiple comparisons test. Data are representative of at least three 
independent experiments, each with at least three biological replicates. 

W
T os

mC C
TRL

W
T os

mC E
tO

H

alg
U os

mC C
TRL

alg
U os

mC EtO
H

0

5

10

15

20

25

os
m

C
 tr

an
sc

rip
ts

 n
or

m
al

iz
ed

 to
 rp

oDB

os
m

C
no

rm
al

iz
ed

 to
 rp

oD

wild 
type

ΔalgU

Trehalose Concentration

WT 

muc
B::T

n
0

2

4

6

8

CTRL
EtOH   

Tr
eh

al
os

e 
C

on
ce

nt
ra

tio
n 

(u
g/

m
L)

aa
a

b

W
T tre

Z C
TRL

W
T tre

Z E
tO

H

alg
U tre

Z C
TRL

alg
U tre

Z E
tO

H
0.0

0.2

0.4

0.6

0.8

1.0

tre
Z 

tra
ns

cr
ip

ts
 n

or
m

al
iz

ed
 to

 rp
oDA

Trehalose Concentration

WT 

muc
B::T

n
0

2

4

6

8

CTRL
EtOH   

Tr
eh

al
os

e 
C

on
ce

nt
ra

tio
n 

(u
g/

m
L)

wild 
type

ΔalgU

tre
Z

no
rm

al
iz

ed
d

to
 rp

oD

aaa

b

W
T C

TRL

W
T E

tO
H

alg
U C

TRL

alg
U EtO

H

alg
U co

mp C
TRL

alg
U co

mp E
tO

H
0

5

10

15

Tr
eh

al
os

e 
(u

g/
O

D
60

0)

C

Tr
eh

al
os

e
(μ

g/
O

D
60

0)

wild 
type

ΔalgU ΔalgU
+ algU

Trehalose Concentration

WT 

muc
B::T

n
0

2

4

6

8

CTRL
EtOH   

Tr
eh

al
os

e 
C

on
ce

nt
ra

tio
n 

(u
g/

m
L)

cb

a

aa
a

W
T C

TRL

W
T E

tO
H

alg
U C

TRL

alg
U EtO

H

alg
U co

mp C
TRL

alg
U co

mp E
tO

H
0

1

2

3

4
Tr

eh
al

os
e 

(u
g/

O
D

60
0)

D
Tr

eh
al

os
e

(μ
g/

O
D

60
0)

wild 
type

ΔalgU ΔalgU
+ algU

Trehalose Concentration

WT 

muc
B::T

n
0

2

4

6

8

CTRL
EtOH   

Tr
eh

al
os

e 
C

on
ce

nt
ra

tio
n 

(u
g/

m
L)

a

b

aa a

b

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/523126doi: bioRxiv preprint 

https://doi.org/10.1101/523126
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. Trehalose levels in response to ethanol are independent of MucB, MucA
cleavage, and KinB. Trehalose levels of A. P. aeruginosa strain PA14 wild type and the 
validated mucB transposon mutant. B. P. aeruginosa strain PAO1 wild type and a mucA
(MucA22) mutant, C. FRD1 and its isogenic algU::Tn derivative. D. P. aeruginosa strain 
PA14 wild type and the ∆kinB mutant. Cultures grown in M63 medium without and with 1% 
ethanol for 16 hours. Data are representative of at least 2 experiments, each with 3 
biological replicates. Statistics based on two-way ANOVA and Tukey’s multiple 
comparisons test *** p-value<0.0001; ** p≤0.0002.
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Figure 4. dksA and spoT are required for trehalose accumulation, treZ and osmC
expression, and increased (p)ppGpp in response to ethanol. Trehalose levels of A. 
PA14 wild type, ΔrelA, and ΔrelAΔspoT and B. PA14 wild type, ΔdksA, and ΔdksA +
dksA in M63 medium without and with 1% ethanol for 16 hours. C. treZ and D. osmC
transcripts normalized to rpoD in PA14 wild type, ΔdksA, and ΔrelAspoT in buffered LB 
at 16 hours without and with 1% ethanol. A-D Data are representative of at least 3 
independent experiments with at least 3 biological replicates each. E. (p)ppGpp
quantification of PA14 WT, ΔrelA, and ΔrelAΔspoT in M63 medium without and with 1% 
ethanol for 16 hours. Data are representative of at least 2 independent experiments. 
Statistics based on two-way ANOVA and Tukey’s multiple comparisons test. A. a-b 
p=0.0179; a-c, d-e p=0.0001; a-d, a-e, b-d, b-e, c-d, c-e p<0.0001; b-c = NS. B. a-b 
p<0.0001. C. a-b, b-c p<0.0001; a-c p≤0.05 D. a-b p<0.0001. E. a-b p<0.0001. 
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Figure 5. Trehalose accumulation in response to salt requires TreYZ and AlgU. A. 500 mM
NaCl stimulates trehalose accumulation. B. Salt-stimulated accumulation of trehalose is  
dependent on the TreYZ pathway. C. Salt-stimulated trehalose accumulation requires algU
and dksA and spoT contribute. D. Salt stimulated trehalose accumulation is independent 
of relA. E. Trehalose accumulation in salt is similar to wild type in ΔlasRΔrhlR. Cultures 
were grown 16 hours in M63 medium with 1% ethanol or 500 mM NaCl as indicated. Data 
are representative of two or more experiments, each with at least 3 biological replicates. 
Statistics based on one-way ANOVA (A) or two-way ANOVA (B,C,D) and Tukey’s multiple 
comparisons test. A. a-b p=0.0005; a-c, b-c p<0.0001. B. a-b, p<0.0001. C. a-b, a-c, a-d, 
b-c, p<0.0001. D. a-b, a-c, a-d, b-c, p<0.0001. E. a-b, a-c p<0.0001; b-c p=0.0007
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Figure 6. AHL quorum sensing regulation is required for trehalose accumulation and 
increased treZ and osmC transcripts in response to ethanol. A. Expression of treZ and B. 
osmC genes normalized to rpoD in PA14 wild type and ΔlasRΔrhlR in buffered LB without 
and with 1% ethanol for 16 hours. C. Trehalose quantification of PA14 wild type and 
ΔlasRΔrhlR cells grown planktonically in M63 medium without and with 1% ethanol for 16 
hours. D. β-galactosidase assay of rhlI-lacZ promoter activity in PA14 wild type and 
ΔlasRΔrhlR cells grown planktonically in M63 medium without and with 1% ethanol for 16 
hours. Data are representative of at least 2 independent experiments, each with 3 or more 
biological replicates. Statistics based on two-way ANOVA and Tukey’s multiple 
comparisons test. A. a-b, a-d, b-c, b-d p<0.0001; a-c p=0.0004; c-d p=0.0395 B. a-b, b-c 
p<0.0001; a-c p<0.02. C. a-b p=0.0002.
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Figure 7. Ethanol responsive genes are enriched for genes with overlapping AlgU and 
QS control. eADAGE gene-gene network analysis of ethanol responsive genes and QS 
regulon genes with overlapping AlgU genes indicated. I. Enrichment region for genes 
coordinately regulated by AlgU and QS (green) and ethanol responsive genes (orange 
outline). II. Enrichment region for “canonical” quorum sensing genes including lasI, lasB, 
rhlR, rhlI, and rhlA. III. Enrichment region for QS genes within the RpoS regulon. 
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Figure 8. Ethanol stimulates treZ gene expression and trehalose levels in cells from post-
exponential phase but not exponential cultures. A. Trehalose quantification of cells grown 
in M63 medium without and with 1% ethanol for 6 hours to an OD600 of ~1.0 (Exp.) or 16 
hours (Post exp.). B. treZ gene expression normalized to rpoD in cultures grown in 
buffered LB without and with 1% ethanol to the same densities as in A. Data are 
representative of 3 experiments, each with 2-4 biological replicates. Statistics based on 
two-way ANOVA and Tukey’s multiple comparisons test. ***p≤0.0008.
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Figure 9. Model describing ethanol stimulation of the AlgU regulon and trehalose
production. Our data support a model wherein cell density and growth signals determine 
the cell’s response to ethanol. The colors of the text are reflected in the schematic of the 
transcriptional regulatory complex. 
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