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ABSTRACT The dN/dS ratio provides evidence of adaptation or functional constraint in protein-coding genes by quantifying
the relative excess or deficit of amino acid-replacing versus silent nucleotide variation. Inexpensive sequencing promises a
better understanding of parameters such as dN/dS, but analysing very large datasets poses a major statistical challenge.
Here I introduce genomegaMap for estimating within-species genome-wide variation in dN/dS, and I apply it to 3,979 genes
across 10,209 tuberculosis genomes to characterize the selection pressures shaping this global pathogen. GenomegaMap
is a phylogeny-free method that addresses two major problems with existing approaches: (i) it is fast no matter how large
the sample size and (ii) it is robust to recombination, which causes phylogenetic methods to report artefactual signals of
adaptation. GenomegaMap uses population genetics theory to approximate the distribution of allele frequencies under general,
parent-dependent mutation models. Coalescent simulations show that substitution parameters are well-estimated even when
genomegaMap’s simplifying assumption of independence among sites is violated. I demonstrate the ability of genomegaMap
to detect genuine signatures of selection at antimicrobial resistance-conferring substitutions in M. tuberculosis and describe
a novel signature of selection in the cold-shock DEAD-box protein A gene deaD/csdA. The genomegaMap approach helps
accelerate the exploitation of big data for gaining new insights into evolution within species.
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Interpreting patterns of substitution in genetic sequences is a
fundamental approach in evolutionary biology. For example,

an excess rate of amino acid-replacing non-synonymous substitu-
tion compared to silent synonymous substitution, quantified by
the dN/dS ratio (also denoted KA/KS or ω), provides evidence
of adaptive evolution, while the reverse pattern, more prevalent
in functional protein-coding sequences, provides evidence for
purifying selection (e.g. Miyata and Yasunaga 1980; Perler et al.
1980; Nei and Gojobori 1986; Nielsen and Yang 1998).

However, estimating substitution parameters typically relies
on first estimating, or co-estimating, a phylogenetic tree relat-
ing the observed sequences. Two major drawbacks commonly
arise when (i) recombination is present or (ii) sample sizes are
large. The first major drawback, often encountered in analyses
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of within-species variation, is that recombination breaks the as-
sumption of a single phylogeny, and instead generates a network
of ancestral relationships in which different genes, and different
positions within genes, can have different phylogenetic histories
(Schierup and Hein 2000). It is well established that inappro-
priate application of phylogeny-based methods to recombining
data can produce highly misleading biological inferences, includ-
ing false signals of adaptive evolution in the form of artificially
elevated dN/dS (Anisimova et al. 2003; Shriner et al. 2003).

The second major drawback is the computational cost of
estimating a phylogeny when the number of sequences becomes
large, for example the 10,209 genomes recently published by The
CRyPTIC Consortium and The 100,000 Genomes Project (2018)
that bear witness to the relentless evolution of antimicrobial
resistance in tuberculosis. This is a double blow because the
cost of evaluating the fit of an individual phylogeny increases at
the same time as the number of possible phylogenies explodes
(Felsenstein 1973, 1978). The problem will become increasingly
acute with the steady march towards ever more sequencing.

Wilson and McVean (2006) developed a method, omegaMap,
to estimate dN/dS in the presence of recombination. While
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omegaMap avoids the false signals of adaptive evolution suf-
fered by phylogenetic methods, its application to large datasets
is limited by the underlying PAC (product of approximate con-
ditionals) approach, whose computational complexity increases
quadratically with sample size (Li and Stephens 2003).

In this paper I address these drawbacks with existing meth-
ods by introducing genomegaMap, a phylogeny-free statistical
approach to estimating substitution parameters that implicitly
integrates over phylogenetic relatedness using diffusion theory
and the coalescent (Wright 1949; Kingman 1982). The compu-
tational cost of the method remains constant even as the sam-
ple size increases arbitrarily, making it a viable approach for
extremely large datasets. The method assumes independence
between sites, yet simulations show that the method performs
well even when the absence of recombination causes strong link-
age disequilibrium. I demonstrate the utility of the method by
estimating variation in dN/dS ratios in 3,979 genes sequenced in
10,209 M. tuberculosis genomes (The CRyPTIC Consortium and
The 100,000 Genomes Project 2018).

Methods

Population Genetics Model
Estimating the dN/dS ratio can be seen as a special case of the
more general problem of estimating a substitution rate matrix.
The Nielsen and Yang (1998) (NY98) codon model assumes that
a non-synonymous substitution occurs at ω times the rate of its
synonymous counterpart. It is defined by the following substi-
tution rate from codon i to j (j 6= i):

θij = πjµ



1 for synonymous transversion

κ for synonymous transition

ω for non-synonymous transversion

κω for non-synonymous transition

0 otherwise

(1)

where ω is the dN/dS ratio, κ the transition:transversion ra-
tio and πj the equilibrium frequency of allele j. To form a
proper rate matrix, the diagonal elements must be defined as
θii = −∑j 6=i θij. The scaling constant µ is determined by the
expected substitution rate, θ = ∑i ∑j 6=i πiθij. Following the con-
vention in population genetics, the rate is defined in units of
2PNe generations, where P is the ploidy and Ne the effective
population size.

GenomegaMap estimates substitution parameters by modeling
the allele frequency distribution at each site. Analyses of dN/dS
within species (e.g. Nielsen and Yang 1998; Wilson and McVean
2006) have implicitly treated selection as a form of mutational
bias, in which the mutation rate matrix equals the NY98 substi-
tution rate matrix, and fitness differences between individuals
are ignored. I follow the convention here. (For an alternative
approach, see gammaMap (Wilson et al. 2011), which separately
models mutation and selection.)

The distribution of allele frequencies under the simplifying
assumptions of a stable and unstructured population, selective
neutrality, and parent independent mutation, in which the rate
of mutation from allele i to j, θij = θ·j depends only on the
target allele, j, is derived from diffusion theory and attributed to
Wright (1949) (see, e.g., Watterson 1977):

p (f) =
∏K

j=1 f
θ·j−1
j

B (θ·)
(2)

where f j is the frequency of allele j, K is the number of alleles
and B (θ·) = ∏K

j=1 Γ(θ·j)/Γ(∑K
j=1 θ·j) is the multivariate beta

function.
For more general, parent-dependent, mutation models, the

distribution cannot be easily calculated. Instead, I employ the
approach of Wilson et al. (2011, Equation B1) who approximated
the conditional allele frequency distribution given the identity
of the oldest allele A as a Dirichlet distribution, so that

p (f|A) ≈ ∏K
B=1 f αAB−1

B
B (αA)

(3)

where αAB = mAB/mAA and mAB is the probability of sampling
an allele B conditional on having sampled allele A in a sample
of size two, calculable using the coalescent as

mAB =
∫ ∞

0

{
eθt
}

AB
e−tdt

=
K

∑
k=1

VAkV{−1}
kB

1− Dkk
(4)

where θ = V DV−1 is the eigen decomposition of the substitu-
tion rate matrix. This approximation, which in principle allows
any Markovian substitution process to be fitted, is motivated by
a low mutation rate assumption and therefore expected to work
best when the expected number of substitutions per site is small.

Assuming random sampling, the conditional allele count
distribution is Multinomial-Dirichlet distributed, so that

Pr (x|A) =

(
n
x

)
B (x + αA)

B (αA)
(5)

where xj is the number of times allele j was counted and n the
sample size. The identity of the oldest allele A is then averaged
over to obtain a likelihood for the allele count:

Pr (x) =
K

∑
A=1

πA Pr (x|A) . (6)

The coarsest approximation made by genomegaMap is inde-
pendence between sites, which is motivated by the benefits it
confers with the rest of the model: (i) The computational com-
plexity is constant irrespective of sample size, whereas the like-
lihoods in phylogenetic and PAC models increase linearly and
quadratically with sample size, respectively. (ii) Missing data
can be handled easily because the sample size need not be the
same from site-to-site. (iii) No haplotype information is required.

Simulations
I performed simulations to test the performance of genomegaMap
under two scenarios. In the Unlinked simulations, every codon
was simulated independently, in keeping with the assump-
tion of genomegaMap. In the Clonal simulations, all codons
were completely linked, maximally violating this assumption of
genomegaMap. For each scenario, I simulated 100 datasets of 334
codons in 10,000 individuals. The parameters were simulated
independently for each dataset from log-normal distributions
with (2.5%, 97.5%) quantiles of (0.05, 5) for ω, (1, 9) for κ and
(0.001, 0.1) for θ. ω was assumed constant along the sequence.
Codon frequencies were simulated from the empirical codon
frequency distribution among 10,209 M. tuberculosis genomes
(The CRyPTIC Consortium and The 100,000 Genomes Project
2018). For each simulated dataset, parameters were estimated by
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Markov chain Monte Carlo (MCMC), using as priors the same
distributions used to simulate ω, κ and θ. Under these condi-
tions, the 95% credibility intervals (CIs) should include the true
parameters in 95% of simulations, if the approximate likelihood
performs optimally (Dawid 1982). For each analysis I ran two
independent MCMC chains of 10,000 iterations.

Analysis of Neisseria meningitidis porB3
To compare genomegaMap to omegaMap, I reanalysed 23 of 79
porB3 N. meningitidis sequences of Urwin et al. (2002) comprising
the carriage study subset of Wilson and McVean (2006). Columns
in the alignment with any indels were removed to aid the com-
parison because omegaMap handles them differently. I assumed
an exponential prior distribution with mean 1.0 for ω and im-
proper log-uniform priors for κ and θ. I assumed a Bayesian
sliding window (i.e. piecewise constant) model for variation in
ω along the gene, with a mean window length of 30 codons (Wil-
son and McVean 2006). For both genomegaMap and omegaMap, I
ran two independent MCMC chains of 500,000 iterations.

Analysis of 10,209 Mycobacterium tuberculosis Genomes
The CRyPTIC Consortium and The 100,000 Genomes Project
(2018) collected and whole-genome sequenced 10,209 M. tubercu-
losis samples from 16 countries across six continents comprising
strains enriched for antimicrobial resistance and unenriched
strains collected for routine clinical diagnostics. They mapped
all genomes to the H37Rv reference genome (Cole et al. 1998)
(Genbank accession number NC_000962.2). I downloaded the
alignment of every genome to H37Rv and combined these to
create a multiple sequence alignment for each of the 3,979 coding
sequences (CDSs) in the Genbank annotation, ignoring inser-
tions relative to H37Rv and masking nonsense mutations.

Inference of ω, κ and θ for an individual gene can be im-
proved by gleaning information from other genes. Often this is
implemented through a hierarchical model, for example estimat-
ing a distribution for the selection parameters across all sites in
all genes (Wilson et al. 2011). However, hierarchical modeling
requires sophisticated techniques for simultaneously analysing
thousands of genes across a high performance computing clus-
ter. Instead, I mimicked a hierarchical model heuristically by
training a prior for ω, κ and θ using an alignment of 334 codons
randomly chosen from the 3,979 genes. For this preliminary anal-
ysis, I employed an exponential hyperprior with mean 1.0 for ω,
imposing a single window across the alignment, and improper
log-uniform hyperpriors for κ and θ, running two MCMC chains
for 10,000 iterations. This produced posterior means of -0.79, 1.2
and -2.9 and standard deviations of 0.20, 0.21 and 0.15 for log ω,
log κ and log θ respectively.

I used these results to form priors for the analyses of the
3,979 individual genes by assuming log-normal distributions,
multiplying the standard deviation parameters by 10 for ω and
3.2 for κ and θ to avoid over-informative priors. This produced
a prior median and (2.5%, 97.5%) quantiles of 0.45 (0.0098, 21)
for ω, 3.2 (0.90, 12) for κ and 0.057 (0.023, 0.14) for θ. I used
the genome-wide empirical codon frequency distribution and
assumed a Bayesian sliding window model for variation in ω
along each gene, with a mean window length of 33 codons.
For each gene I ran two independent MCMC chains of 500,000
iterations.

Software and Data Availability
GenomegaMap is available as a Docker container and C++ source
code from https://hub.docker.com/r/dannywilson/gcat-omegamap

Figure 1 Comparison of omegaMap and genomegaMap estimates
of the dN/dS ratio ω along the porB3 outer membrane pro-
tein gene of Neisseria meningitidis. Solid lines and shaded re-
gions show the point estimates (posterior medians) and 95%
credibility intervals respectively for omegaMap (in blue) and
genomegaMap (in red). The genomegaMap analysis was 4.9 times
faster for these 23 sequences.

and https://github.com/danny-wilson/gcat-omegaMap. The follow-
ing data are available: codon counts for every annotated cod-
ing sequence https://doi.org/10.6084/m9.figshare.7599020.v1, fig-
ures illustrating variation in ω along every coding sequence
https://doi.org/10.6084/m9.figshare.7599029.v1, and summaries of
the posterior distribution of ω, κ and θ for every coding sequence
https://doi.org/10.6084/m9.figshare.7599032.v1.

Results and Discussion

General Performance of GenomegaMap
The motivation for developing genomegaMap came from the ob-
servation that omegaMap estimates of substitution parameters,
including the dN/dS ratio ω, were not strongly affected by the
exact value of the recombination rate, as long as it was non-zero.
This observation is reflected in the comparison of the analy-
ses of the N. meningitidis porB3 gene (Figure 1), for which the
point estimates and 95% CIs of ω were almost identical between
omegaMap and genomegaMap, even though the latter assumes
codons are independent, i.e. unlinked. While the results were
near-identical, the genomegaMap point estimates and 95% CIs
were slightly more conservative, in the sense that they were
closer to the prior expectation of ω = 1. These results suggest
that substitution parameters are well-estimated within species
when sites are assumed independent, despite the presence of
linkage disequilibrium.

To test this claim more thoroughly, I evaluated the relative
performance of genomegaMap in two scenarios. In the Unlinked
simulations, 334 codons were simulated independently across
10,000 individuals, favoring the genomegaMap assumption. In the
Clonal simulations, all codons were completely linked, strongly
violating the genomegaMap assumption of unlinked sites. As
expected, genomegaMap performed well in the Unlinked simu-
lations, producing point estimates strongly correlated with the
true values of the dN/dS ratio ω, the transition:transversion ratio
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Figure 2 Performance of genomegaMap inference of ω, κ and θ in simulations. In the Unlinked simulations (top row) every codon
was simulated independently, favoring the genomegaMap assumption. In the Clonal simulations (bottom row), all codons were
completely linked, disfavoring the genomegaMap assumption. Point estimates (posterior medians) and 95% credibility intervals
are indicated by the circles and solid vertical lines respectively, the latter colored red when they exclude the actual parameter. The
number of simulations (out of 100) in which the 95% credibility intervals included the actual values of ω, κ and θ were 98, 98 and 97
in the Unlinked simulations and 92, 92 and 88 in the Clonal simulations. The correlation between the point estimates and actual val-
ues of log ω, log κ and log θ were 0.86, 0.69 and 0.92 in the Unlinked simulations and 0.82, 0.61 and 0.88 in the Clonal simulations.

κ and the mutation rate θ, and 95% CIs that included the truth in
98%, 98% and 97% respectively of the 100 simulations (Figure 2).

In the Clonal simulations, codons were completely
linked, maximally violating the independence assumption of
genomegaMap. Despite this, the correlation between point esti-
mates and true parameters remained strong, while the 95% CIs
still included the truth in 92% of the 100 simulations for ω and κ
and 88% of simulations for θ (Figure 2). These results suggest
that genomegaMap produces only small loss in the accuracy of
its point estimates and 95% CIs even when its independence
assumption is completely wrong.

The major advantage of genomegaMap over omegaMap is its
robustness to sample size. The computational run time of
omegaMap increases with the square of the sample size. The
run time of a comparable phylogenetic method would increase
linearly with the sample size if the phylogeny were known; in
practice co-estimating the phylogeny makes the computation
much more intensive. In contrast, the run time of genomegaMap
is constant with respect to sample size. This means it is uniquely
suitable for the analysis of extremely large within-species data.
To demonstrate its capabilities, I applied genomegaMap to 3,979

genes across 10,209 M. tuberculosis genomes.

Characterizing Selection in 10,209 M. tuberculosis Genomes

Mycobacterium tuberculosis is a bacterial pathogen responsible for
tuberculosis, one of the world’s leading causes of death. 23%
of the global population is thought to carry latent infection, of
whom 9.0–11.1 million people are estimated to have developed
tuberculosis in 2017, with 1.5–1.7 million resulting deaths. Drug
resistance is a major problem for tuberculosis treatment; an
estimated 483,000–639,000 new cases were resistant to first-line
drugs in 2017 (World Health Organization 2018).

The aim of the CRyPTIC Consortium is to help improve con-
trol of tuberculosis and facilitate better, faster and more targeted
treatment of drug-resistant tuberculosis via genetic resistance
prediction, paving the way towards universal drug susceptibil-
ity testing. The CRyPTIC Consortium and The 100,000 Genomes
Project (2018) collected and whole-genome sequenced 10,209 M.
tuberculosis genomes to quantify the performance of genomic
prediction of drug resistance. The predictions were correct in
91.3–97.5% of resistant isolates and 93.6–99.0% of susceptible
isolates for the four first-line drugs.

4 D. J. Wilson and The CRyPTIC Consortium

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/523316doi: bioRxiv preprint 

https://doi.org/10.1101/523316
http://creativecommons.org/licenses/by/4.0/


Figure 3 The evidence for positive selection across 3,979 genes in 10,209 Mycobacterium tuberculosis genomes. Each column is a
stacked bar chart showing the proportion of codons in one gene with a given strength of evidence for positive selection, indicated
by color. Blue indicates weakest evidence, Pr(ω > 1) ≈ 0, while red indicates strongest evidence, Pr(ω > 1) ≈ 1. Genes are ordered
left-to-right by the mean Pr(ω > 1) across codons, from highest to lowest. Notable genes containing codons with strong evidence
of positive selection are labeled; these occur throughout the spectrum. The block of genes with almost entirely sky blue coloration,
roughly between katG and ethA, contained little information because they mapped poorly to the reference genome.

These predictions rely on existing knowledge of the genetic
mechanisms of drug resistance. Vast datasets have the potential
to reveal novel mechanisms of drug resistance through genome-
wide association studies (GWAS). Such studies can benefit from
an understanding of the selection pressures shaping genetic di-
versity and the identification of sites under positive selection
because often that selection is driven by drug therapy (e.g. Pep-
perell et al. 2013; Zhang et al. 2013; Farhat et al. 2013; Osório et al.
2013; Lee et al. 2015; Koch et al. 2017; Mortimer et al. 2018).

M. tuberculosis is known for its complete lack, or near-
complete lack, of homologous recombination (Godfroid et al.
2018), but as simulations showed, genomegaMap inference is ro-
bust to both recombination and the lack of recombination. I
analysed the 3,979 genes sequenced across the 10,209 genomes
with genomegaMap. Figure 3 summarizes the evidence for pos-
itive selection across the genome by quantifying the posterior
probability of ω > 1. Most codons in most genes showed strong
evidence against positive selection, i.e. Pr(ω > 1) � 0.5, indi-
cating strong functional constraint. Very few genes, such as pncA
encoding pyrazinamidase, appeared to be dominated by posi-
tive selection. More often, the strongest evidence for positive
selection was found in a very small number of codons within
genes dominated by negative selection, such as gyrA, encoding
DNA gyrase subunit A. This shows how positive selection oc-
curs against backdrops of both rapid amino acid change and
strong functional constraint, so the mean Pr(ω > 1) per gene
provides limited insight.

Instead, I identified every gene with one or more codons
exhibiting a posterior probability of positive selection of at least
90% (i.e. Pr(ω > 1) ≥ 0.9), further classifying them by high,
intermediate and low mean Pr(ω > 1) (Tables 1-3). The genes
are annotated by their descriptions in GenBank or, when more
informative, MycoBrowser (Kapopoulou et al. 2011). In total,
2,320/1,330,612 (0.2%) codons spanning 116/3,979 (3%) genes
showed strong evidence of positive selection. Many occurred

in genes encoding membrane proteins, toxin-antitoxin proteins
(Sala et al. 2014), PE/PPE family proteins (Fishbein et al. 2015)
and ESX family proteins (Gröschel et al. 2016).

Positive Selection in Known Resistance-Determining Genes
Figure 4 shows in detail the variation in ω along ten genes,
ordered by the mean Pr(ω > 1) (and cross-referenced above Fig-
ure 3). The signature of selection in rpoB, which encodes RNA
polymerase subunit β, exemplifies the evolutionary response
to antibiotic usage. Subunit β is targeted by the first-line drug
rifampicin, which binds the RNA polymerase, interfering with
transcription of DNA to mRNA (see e.g. Palomino and Mar-
tin 2014). Strong evidence of positive selection is found in a
28-codon hotspot covering codons 427–454 coinciding with the
rifampicin resistance determining region and including the common
serine-to-leucine substitution at position 450 (S450L; positions
relative to NC_000962.2). The population harbors a large num-
ber of alternative amino acid alleles in this region, represented
by an accumulation of orange points in Figure 4; this provides
the signature of elevated dN/dS. The extremely large sample
size greatly enhances the ability to discover these alternative
alleles, many of which are rare. For example, codon 445, which
showed the highest point estimate of ω = 37.2, harbors 14 al-
leles encoding 12 different amino acids, with H445Y the most
abundant amino acid substitution at only 1.5% frequency. Ad-
ditional signals were observed in three peaks covering codons
44–45, 399–400 and 491. None of these sites is included in the
WHO-endorsed GeneXpert MTB/RIF assay despite evidence of
involvement in MDR-TB outbreaks (e.g. Makhado et al. 2018).

The adjacent rpoC gene, encoding RNA polymerase subunit
β′, showed similar peaks of positive selection against a backdrop
of strong constraint. The regions showing strong evidence of pos-
itive selection covered codons 483–485, 515–525, 698 and 1039–
1040. Two of these regions coincide with high-probability com-
pensatory mutations identified by Comas et al. (2012): V483A/G,
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Figure 4 Evidence of positive selection in ten Mycobacterium tuberculosis genes across 10,209 genomes. Genes are ordered by the
mean Pr(ω > 1) across codons, from highest (gidB) to lowest (gyrA). Point estimates (solid lines) and 95% credibility intervals (grey
regions) for ω are shown across codons. Codons for which Pr(ω > 1) ≥ 0.9 are highlighted with yellow boxes. Stacked points
indicate the number of alleles that are non-synonymous (orange) or synonymous (green) relative to the commonest allele.
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D485H/N and N698H/K/S. The compensatory mutations mit-
igate the fitness deficit imposed on rifampicin-resistant M. tu-
berculosis by mutations in the rifampicin resistance determining
region of rpoB. All three positions localize to the interface be-
tween RNA polymerase subunits α and β′, suggesting they play
a role in the interaction between subunits (Comas et al. 2012).
The extremely large sample size revealed other rare amino acid
alleles at these positions that could also be compensatory: D485Y
and N698D/L.

The World Health Organization (2018) report that 82% of
rifampicin-resistant tuberculosis cases are also resistant to the
first-line drug isoniazid, making them multidrug resistant tu-
berculosis (MDR-TB), which requires longer treatment with
more toxic drugs. Isoniazid is a prodrug requiring activation by
catalase-peroxidase, encoded by katG. Despite detecting the high-
est level of homoplasy in katG among 23 resistance-associated
genes in a previous study of 2,099 genomes (Walker et al. 2015),
genomegaMap did not detect evidence of positive selection sur-
passing the posterior probability theshold of 90%. The resistance-
conferring S315T substitution, which Walker et al. (2015) found
emerged 180 times, had a 78.5% probability of positive selection.
However, in contrast to rpoB S450L in the rifampicin resistance
determining region, katG S315T is surrounded by conserved
sites. In the sliding window model used by genomegaMap, this
dilutes the signal of S315T and weakens the evidence for positive
selection. GenomegaMap also ignores the signal of homoplasy
because it does not use a phylogenetic tree. In the case of katG
S315T, these properties can be regarded as weaknesses of the
approach, despite their advantages in other respects.

Resistance to the first-line drug ethambutol is conferred by
mutations in embB, which encodes an essential part of the cell
wall biosynthetic pathway (Palomino and Martin 2014). Se-
lection is predominantly conservative in embB, with a single
codon found to exhibit strong evidence of position selection,
D328F/G/H/I/F. Position M306I/L/V, which has been impli-
cated in ethambutol resistance, had a posterior probability of pos-
itive selection of only 56.1%, despite amino acid polymorphism.
In fact, only two other codons in the entire gene, Q497H/K/P/R
and Y319C/D/S, showed any evidence of positive selection
(81.9% and 64.5% respectively). This demonstrates the strong
constraint pervasive in embB and underlines the difficulty of
detecting positive selection at sites whose neighbors are strongly
conserved.

The DNA gyrase-encoding genes gyrA and gyrB display
strong signatures of positive selection localized to the quinolone
resistance determining regions, surrounded by strong constraint
characteristic of essential proteins. A single region in each gene
reached the 90% probability threshold, covering codons 88–94 in
gyrA and 537–540 in gyrB. Several of these positions are known
to confer resistance to second-line quinolone drugs, including
gyrA A90E/G/V and D94A/G/H/N/Y (Palomino and Martin
2014).

Selection at ethA, which encodes a non-essential monooxy-
genase, appears dominated by neutral evolution, reminiscent
of the general signature in katG whose product is also non-
essential. Loss-of-function mutations in ethA prevent activa-
tion by monooxygenase of the second-line ethionamide from a
prodrug to its active form (Palomino and Martin 2014). Strong
evidence for positive selection is apparent in ethA, localized to
codons 49-65. Like katG, this suggests that although resistance-
conferring loss-of-function mutations can occur throughout the
gene, they tend not to. The apparent neutrality of much of ethA

and katG may therefore be misleading, and might instead reflect
a balance between antimicrobial-imposed positive selection for
loss-of-function mutations conflicting with functional constraint
favoring conservation of the gene products.

Rapidly evolving genes dominated by positive selection are
rare in M. tuberculosis, and exemplified by pncA. This gene en-
codes the non-essential enzyme pyrazinamidase, which converts
the first-line prodrug pyrazinamide to its active form. Resis-
tance to PZA is achieved by loss-of-function mutations in pncA
(Palomino and Martin 2014). Function-ablating missense and
nonsense mutations have arisen very rapidly in response to the
widespread use of pyrazinamide, and unlike katG and ethA, posi-
tive selection appears to have won out over functional constraint
throughout most of the gene. The five regions where evidence
for positive selection is weaker may be under stronger func-
tional constraint in environments where expression of the gene
is favored.

The gidB gene shows strong evidence of positive selection
throughout almost its entire length. This gene encodes a methyl-
transferase that increases resistance to the second-line drug strep-
tomycin. Streptomycin inhibits protein synthesis by binding to
the 16S rRNA component of the 30S ribosomal subunit, increas-
ing mistranslation. Loss-of-function of the gidB methyltrans-
ferase is thought to alter methylation of a highly conserved 16S
rRNA residue, preventing binding by streptomycin (Okamoto
et al. 2007; Wong et al. 2011). Like in pncA, this mechanism creates
a selection pressure favoring missense and nonsense mutations
throughout the gene. However, the modest increase in resistance
conferred by this mechanism and the current status of strepto-
mycin as a relatively less-frequently used, second-line drug with
strong side effects suggests there may be other selection pres-
sures driving gidB loss-of-function.

Positive Selection in a Cold-Shock Protein

I scanned the genomegaMap results for evidence of positive selec-
tion at genes in which the selective forces driving adaptation are
unknown or incompletely understood. In particular, I looked
for genes with the characteristic signature of positive selection
against a backdrop of functional constraint. The deaD gene, en-
coding cold-shock DEAD-box protein A and also known as csdA,
is one such example (Figure 4).

DEAD-box proteins are a large family of ATP-dependent
RNA helicase proteins found in prokaryotes and eukaryotes
that separate double-stranded RNA molecules in an energy-
dependent manner. They are named after their highly conserved
Asp-Glu-Ala-Asp (D-E-A-D) motif. DEAD-box proteins are in-
volved in ribosome biogenesis, translation initiation and RNA
decay, fundamental processes that must dynamically respond
to changes in environment and stress (Linder and Fuller-Pace
2013).

In Escherichia coli, the DeaD/CsdA protein has been charac-
terized as essential for ribosome formation during cold shock
because it separates stable secondary RNA structures which
form at low temperature (Jones et al. 1996). DeaD/CsdA is
important for biogenesis of both the 30S and 50S ribosome sub-
units, conferring tolerance towards mutants of other regulators
and ribosomal proteins (Moll et al. 2002; Charollais et al. 2004).
DeaD/CsdA has also been found to control gene expression at
temperatures relevant to the mammalian host, and for modulat-
ing the carbon storage regulatory (Csr) system, which globally
regulates mRNA translation and turnover (Vakulskas et al. 2014).

Strong evidence of positive selection in M. tuberculosis deaD
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was evident at codons 139–145 encoding the sequence TPGRMID
in most of the genomes. This sequence corresponds to motif
Ib, consensus sequence TPGRXXD, one of a series of highly
conserved motifs that characterize DEAD-box proteins. Motif
Ib overlaps a nine-residue alpha helix (α7) beginning at codon
140 in M. tuberculosis. Sengoku et al. (2006) characterized the
structure of the Drosophila melanogaster DEAD-box protein Vasa
in detail. They found that two RecA-like domains in the DEAD-
box protein core bind a single RNA strand and sharply bend it.
The bend avoids a clash between the RNA and a ‘wedge’ formed
by α7 when the RNA is single stranded, whereas the unbound
strand of an RNA duplex would be predicted to clash with the
α7 wedge, resulting in disrupted base-pairing.

The residues homologous to four codons in motif Ib directly
interact with the bound RNA (Sengoku et al. 2006). These posi-
tions exhibited a single alternative amino acid allele each across
the 10,209 genomes: T139P, G141D, R142P and D145H. Two of
the remaining positions exhibited multiple alternative amino
acid alleles – P140L/S and M143I/R/V – while I144 was in-
variant. No synonymous variation was seen across the motif.
Despite the relatively abundant amino acid variation in the mo-
tif in terms of allele numbers, the frequency of all substitutions
except M143I/R/V was extremely low, below 0.5%. The sensi-
tivity of the dN/dS ratio to allele numbers, irrespective of allele
frequencies, was observed earlier in rpoB. The diversity of rare
alleles could mirror the mode of selection in the rpoB rifampicin
resistance determining region, in which any of a large collection
of amino acid substitutions improve fitness in the presence of
the drug.

The DEAD-box motif itself, covering codons 163–166 and
responsible for RNA binding, ATP binding and interdomain
interactions, was situated in a region of very strong conserva-
tion, with a mean probability of positive selection of 0.7%. This,
together with the general conservation throughout the gene,
suggests that the effect of substitutions in motif Ib might not
be to knock out the function of DeaD, but to modify it in some
way. For instance, by altering conformation in such a way as to
change interactions with other molecules.

Given the functional characterization of DeaD, candidate
drivers of adaptation in motif Ib may in some way inhibit ri-
bosome biogenesis or translation by interfering with ribosomal
proteins, rRNAs or amino acids through mutation, for example
with reactive oxygen radicals produced by the immune response,
conformational change, for example binding by an antibiotic, or
changes in molecular availability, for example caused by nutri-
ent deprivation, cold shock or other stress. In the case of drug
resistance, the detection of localized positive selection against a
backdrop of strong constraint in deaD provides valuable context
for future GWAS searching for genetic variants responsible for
the growing problem of drug resistant infections.

Conclusions

The main advantages of genomegaMap for estimating dN/dS ra-
tios within species are (i) it is fast no matter how large the sample
size and (ii) it accounts for recombination. These advantages
were achieved by extending the Wilson et al. (2011) approxi-
mation to the distribution of allele frequencies under parent-
dependent mutation models, and assuming independence be-
tween codons. Simulations showed good performance despite
these approximations.

Among the benefits of the approach, haplotype information
is not required and missing data is easily handled, making

genomegaMap suitable for short-read exome data in diploids
and haploids. The genomegaMap approach is to treat dN/dS as a
substitution parameter. In this light, it can be seen as a general,
likelihood-based method for estimating substitution parameters
within species under parent-dependent mutation models.

The approach has several limitations. Sites are assumed inde-
pendent between codons but linked within codons. Despite this,
simulations showed good performance when recombination was
high and low. Thus it was possible to analyse 10,209 genomes
from M. tuberculosis, an almost perfectly clonal organism. One
disadvantage of the independence assumption is ignoring ho-
moplasy. In the katG example, this led to the surprising result
that despite high homoplasy, no site achieved Pr(ω > 1) ≥ 0.9.
The effects of violating other assumptions including constant
population size, no population structure and random sampling
were not investigated. The importance of sampling cannot be
overstated, with signatures of selection entirely dependent on
the selection pressures experienced by the populations analysed.

Perhaps the greatest limitation of genomegaMap is its use of
the dN/dS ratio to characterize natural selection. Within species,
dN/dS is expected to vary even in a constant environment, with
ratios closer to one expected for younger variants not yet ex-
posed to selection for so long (McDonald and Kreitman 1991).
Further, the form of positive selection that best predicts a high
dN/dS ratio is diversifying selection, in which any amino acid
is favored over the incumbent. Diversifying selection may be
relatively limited, to arms races e.g. between host and pathogen,
or to heterogeneous environments e.g. immunologically diverse
hosts. The evolution of resistance to antibiotics since their intro-
duction in the 1940s may resemble such a Red Queen scenario,
particularly as exposure is likely to vary from host-to-host.

Examples from rpoB and deaD showed that the signal of el-
evated dN/dS stems mainly from the abundance of alternative
amino acid alleles, relative to the number expected under neu-
trality, and not from allele frequencies. Some of these alternative
alleles were detected at frequencies below 0.5%, demonstrating
the value of extremely large sample sizes. The sliding window
model employed by genomegaMap gained power to detect selec-
tion when positively selected sites were clustered as in rpoB and
deaD, but missed the key isoniazid resistance-conferring S315T
substitution of katG which is surrounded by highly conserved
sites. Despite these limitations, the relatively simple interpre-
tation of dN/dS ratios means the approach continues to hold a
strong appeal. For such applications, genomegaMap helps accel-
erate the exploitation of big data for gaining new insights into
evolution within species.
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Table 1 Mycobacterium tuberculosis genes with high mean Pr(ω > 1) and individual codons with Pr(ω > 1) ≥ 0.9

Gene
Mean
Pr(ω > 1)

Num. codons
Pr(ω > 1) ≥ 0.9 Product

gidB 0.93 192 16S rRNA methyltransferase GidB

whiB6 0.92 81 transcriptional regulatory protein WHIB-like WHIB6

pncA 0.91 135 pyrazinamidase

Rv2621c 0.83 6 transcriptional regulator

furB 0.79 46 ferric uptake regulation protein FURB

Rv0456A 0.79 26 * possible toxin MazF1

phoR 0.71 289 two component system response sensor kinase membrane associated

Rv1194c 0.66 21 HP a

Rv1672c 0.65 135 integral membrane transport protein

Rv0026 0.63 30 HP

Rv2012 0.62 6 HP

Rv3528c 0.60 16 HP

Rv0892 0.60 23 monooxygenase

Rv1896c 0.54 76 HP

fgd2 0.51 4 F420-dependent glucose-6-phosphate dehydrogenase

Rv0726c 0.49 18 * possible S-adenosylmethionine-dependent methyltransferase

Rv1830 0.47 69 HP

Rv3294c 0.43 11 HP

pks6 0.43 239 membrane bound polyketide synthase

Rv3847 0.43 5 HP

Rv0229c 0.40 5 * possible conserved membrane protein with PIN domain

PE_PGRS15 0.38 7 PE-PGRS family protein

Rv2100 0.37 7 HP

Rv2706c 0.37 4 HP

Rv1129c 0.37 10 transcriptional regulator

cyp141 0.36 42 cytochrome P450 141

Rv2712c 0.36 7 HP

Rv2274c 0.35 2 * possible toxin MazF8

Rv2787 0.34 23 * conserved hypothetical alanine rich protein

Rv0246 0.34 31 * probable conserved integral membrane protein

Rv0987 0.33 59 adhesion component transport transmembrane protein

ethA 0.33 17 monooxygenase

fadD23 0.32 2 acyl-CoA synthetase

Rv2035 0.32 7 HP

Rv1507A 0.31 11 HP

Rv1265 0.31 33 HP

Rv2438A 0.31 3 HP

pks8 0.30 13 polyketide synthase

pks9 0.29 28 polyketide synthase

a HP: hypothetical protein. * Mycobrowser annotation
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Table 2 Mycobacterium tuberculosis genes with intermediate mean Pr(ω > 1) and individual codons with Pr(ω > 1) ≥ 0.9

Gene
Mean
Pr(ω > 1)

Num. codons
Pr(ω > 1) ≥ 0.9 Product

Rv2630 0.28 32 HP a

Rv2812 0.28 12 transposase

rpfC 0.26 3 resuscitation-promoting factor RpfC

dnaA 0.25 17 chromosome replication initiator DnaA

PE_PGRS23 0.24 1 PE-PGRS family protein

PPE52 0.24 4 PPE family protein

mihF 0.24 16 integration host factor MIHF

Rv0078A 0.23 6 HP

Rv2880c 0.21 4 HP

Rv1953 0.20 15 * possible toxin VapC14

Rv2652c 0.20 7 phiRv2 prophage protein

deaD 0.20 7 cold-shock DEAD-box protein A

hisI 0.19 3 phosphoribosyl-AMP cyclohydrolase

Rv1378c 0.18 14 HP

Rv2758c 0.18 8 * possible antitoxin VapB21

Rv3806c 0.18 16 * decaprenylphosphoryl-5-phosphoribose synthase UbiA

Rv0180c 0.18 5 transmembrane protein

rplQ 0.17 1 50S ribosomal protein L17

Rv1048c 0.17 12 HP

Rv3189 0.17 3 HP

Rv1709 0.17 6 * possible segregation and condensation protein ScpA

pepD 0.17 12 serine protease PepD

PPE34 0.16 3 PPE family protein

Rv4003 0.16 1 HP

Rv3163c 0.15 3 HP

ppsA 0.15 7 phenolpthiocerol synthesis type-I polyketide synthase PPSA

sigI 0.14 17 RNA polymerase sigma factor SigI

Rv2723 0.14 3 HP

TB39.8 0.13 2 * conserved protein with FHA domain, FhaA

mycP1 0.13 11 membrane-anchored mycosin MYCP1

esxH 0.13 5 low molecular weight protein antigen 7

Rv3879c 0.13 1 * ESX-1 secretion-associated protein EspK. Alanine and proline rich protein

Rv1398c 0.12 2 * possible antitoxin VapB10

Rv2779c 0.11 9 LRP/AsnC family transcriptional regulator

Rv3291c 0.11 6 * probable transcriptional regulatory protein LrpA (Lrp/AsnC-family)

Rv3870 0.11 3 * ESX conserved component EccCa1. ESX-1 type VII secretion system protein

Rv3889c 0.11 4 * ESX-2 secretion-associated protein EspG2

rpoB 0.11 33 DNA-directed RNA polymerase subunit beta

a HP: hypothetical protein. * Mycobrowser annotation
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Table 3 Mycobacterium tuberculosis genes with low mean Pr(ω > 1) and individual codons with Pr(ω > 1) ≥ 0.9

Gene
Mean
Pr(ω > 1)

Num. codons
Pr(ω > 1) ≥ 0.9 Product

Rv0585c 0.11 8 * probable conserved integral membrane protein

lprM 0.11 2 MCE-family lipoprotein LprM

serB1 0.11 13 phosphoserine phosphatase

frdB 0.10 2 fumarate reductase iron-sulfur subunit FrdB

Rv0263c 0.10 14 HP a

sugI 0.10 23 sugar-transport integral membrane protein SugI

rpoC 0.10 17 DNA-directed RNA polymerase subunit beta’

parA 0.09 10 chromosome partitioning protein ParA

Rv2280 0.09 2 dehydrogenase

Rv3885c 0.09 3 * ESX conserved component EccE2. ESX-2 type VII secretion system protein

Rv1277 0.09 1 HP

cysD 0.08 11 sulfate adenylyltransferase subunit 2

cstA 0.08 5 carbon starvation protein A CstA

rpfB 0.08 6 resuscitation-promoting factor rpfB

murD 0.07 13 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase

Rv0634c 0.07 5 * possible glyoxalase II (hydroxyacylglutathione hydrolase) (GLX II)

Rv0842 0.07 3 * probable conserved integral membrane protein

Rv0104 0.07 8 HP

Rv2315c 0.07 3 HP

Rv0373c 0.07 6 carbon monoxyde dehydrogenase large subunit

cyp130 0.06 5 cytochrome P450 130 CYP130

rpoA 0.06 5 DNA-directed RNA polymerase subunit alpha

Rv2824c 0.06 6 HP

Rv1273c 0.06 5 drugs-transport transmembrane ATP-binding protein ABC transporter

lysA 0.05 2 diaminopimelate decarboxylase LysA

Rv1130 0.05 25 * possible methylcitrate dehydratase PrpD

pth 0.05 2 peptidyl-tRNA hydrolase

folC 0.05 4 bifunctional folylpolyglutamate synthase/dihydrofolate synthase FolC

ileS 0.05 14 isoleucyl-tRNA synthetase

gyrB 0.04 4 DNA gyrase subunit B

glcB 0.04 5 malate synthase G

Rv1795 0.04 8 * ESX conserved component EccD5. ESX-5 type VII secretion system protein

Rv3679 0.04 1 anion transporter ATPase

embB 0.03 1 indolylacetylinositol arabinosyltransferase

Rv1702c 0.03 10 HP

ppp 0.03 1 serine/threonine phosphatase

Rv3802c 0.02 5 * probable conserved membrane protein

gyrA 0.02 7 DNA gyrase subunit A

Rv3428c 0.01 2 transposase

a HP: hypothetical protein. * Mycobrowser annotation
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