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Abstract 

Aim: Disharmony is a key concept in island biology that describes the imbalance in the representation 

of higher taxa on islands compared to their mainland source regions. Although there are strong 

theoretical arguments for the differential colonization success of different taxa on islands, the 

empirical evidence for disharmony remains largely anecdotal. Here, we develop a novel method for 

delineating island source regions and present the first global quantitative assessment of island 

disharmony.  

Location: Global. 

Time period: Recent. 

Major taxa studied: Vascular plants. 

Methods: We developed a generalizable method for estimating the source regions of an island flora 

based on statistical predictions of species turnover. We then designed two metrics to investigate 

disharmony from an island- and a taxon-centered perspective. First, we used linear mixed effects 

models to analyse the overall taxonomic bias of 305 island floras (compositional disharmony) as a 

function of geographical and climatic island features. Second, we applied linear models to examine the 

over- or under-representation of 450 vascular plant families on islands (representational disharmony) 

as a function of family size, age, higher taxonomic group and family-specific functional traits.  

Results: We found that compositional disharmony scales positively with island isolation and negatively 

with island area, and is strongly modulated by climatic variables. In contrast, the relationship between 

representational disharmony and family-specific characteristics was weaker. We found significant 

effects of family species richness and pollination syndrome, whereas family age and all other tested 

functional traits remained without effect. 

Conclusions: The taxonomic scope of the disharmony concept has historically limited its wider 

applicability, because higher taxa are inconsistent ecological proxies. However, our results provide a 

strong foundation for integrating disharmony with quantitative functional and phylogenetic 

approaches in order to gain a deeper understanding of assembly processes on islands. 
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Introduction 

Islands are renowned for their unique biotas, often characterized by high levels of endemism (Kier et 

al., 2009), species radiations (Givnish et al., 2009), relictual taxa (Cronk, 1997), or peculiar shifts in 

species’ life history and morphology (Carlquist, 1965). These features can be attributed to the isolated 

nature of islands (Weigelt & Kreft, 2013), which strongly affects the fundamental processes controlling 

species diversity: immigration, speciation, and extinction. Thus, research on island systems has 

stimulated many seminal contributions to evolutionary (Darwin, 1859; Wallace, 1881) and ecological 

theory (MacArthur & Wilson, 1963, 1967; Hubbell, 2001; Whittaker et al., 2008). The island research 

by Carlquist (1965, 1967, 1974) is undoubtedly among these seminal contributions, providing 

substantial insights into processes such as long-distance dispersal or adaptive radiation, and inspiring 

island research to the present (Traveset et al., 2015). In contrast to the strictly analytical approach of 

MacArthur & Wilson’s equilibrium theory of island biogeography (MacArthur & Wilson, 1967, 1963), 

Carlquist’s work offers mostly a natural history perspective on island assemblages. While this 

perspective does not allow for quantitative predictions of e.g. species richness, it represents a powerful 

framework for understanding qualitative features of island biotas such as taxonomic composition or 

morphological adaptations (Midway & Hodge, 2012). One such feature is the striking taxonomic 

“imbalance” of many island biotas– a phenomenon known as disharmony (Carlquist, 1974, 1965). 

Island disharmony refers to the systematic over- or under-representation of higher taxa (e.g. families) 

in island biotas compared to their mainland source regions (Whittaker & Fernández-Palacios, 2007). It 

is the result of selective assembly mechanisms – dispersal filtering, environmental filtering and biotic 

filtering (Carlquist, 1974; Keddy, 1992; Weiher et al., 2011; Kraft et al., 2015) – acting with particular 

rigor in island systems, and thus permitting only a subset of the mainland flora to successfully colonize 

islands. The interplay between geographical setting and taxon-specific colonization success highlights 

two distinct aspects of island disharmony. On the one hand, the overall compositional imbalance of 

island floras relative to their mainland source regions (compositional disharmony) should reflect the 

impact of ecological filters during their assembly, and thus show predictable variation with island-

specific characteristics such as isolation, area, climatic conditions, or geological origin. On the other 

hand, the selectivity of these filters should result in a predictable over- or under-representation of 

individual taxa on islands (representational disharmony) that is associated with taxon-specific 

attributes related to e.g. dispersal ability or environmental tolerances. Indeed, numerous studies 

demonstrate that community composition of island floras is strongly dependent on the geographical 

setting (Whittaker et al., 2008; König et al., 2017) and taxon-specific attributes (Burns, 2005; Olesen et 

al., 2010). 
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While the theoretical underpinnings of island disharmony are well established, the concept itself has 

been applied inconsistently and currently lacks a quantitative basis. In particular, the specification of 

mainland source regions is not trivial and often very coarse (Bernardello et al., 2006) and the 

taxonomic bias of island floras is usually illustrated by means of anecdotal evidence rather than 

objective quantitative measures (Francisco-Ortega et al., 2010). In addition, there are only a few 

studies that have examined whether the over- or under-representation of taxa on islands is globally 

consistent (but see e.g. Kreft et al., 2010 for ferns or Taylor et al., 2019 for orchids), and whether 

representational deviations are linked to taxon-specific attributes that supposedly affect colonization 

success (but see e.g. Grossenbacher et al., 2017 and Razanajatovo et al., 2018). Consequently, the 

empirical evidence for island disharmony remains fragmentary. 

Here, our main aim is to put the concept of island disharmony on a quantitative footing. First, we 

present a novel method for estimating island-specific source regions and develop two indices that 

quantify compositional and representational disharmony. Based on this, we examine disharmony from 

an island- and a taxon-centred perspective using a unique data set of 305 island and 611 mainland 

floras including a total of 225,053 species. To disentangle island- and taxon-specific drivers of 

disharmony, we analyse compositional disharmony as a function of island isolation, area, geological 

origin, and climatic conditions and representational disharmony as a function of species richness, age, 

higher taxonomic group and predominant functional characteristics of 450 plant families. In particular, 

we are interested in the importance of dispersal, environmental and biotic filtering in creating 

disharmonic island floras. If dispersal filtering is the dominant cause of disharmony (Carlquist, 1967, 

1974), we would expect strong positive effects of isolation on compositional disharmony as well as a 

consistently positive effect of dispersal-related traits on representational disharmony. Alternatively, if 

environmental or biotic filtering processes play an important role (Carvajal-Endara et al., 2017; 

Grossenbacher et al., 2017), we expect to find a strong response of compositional and representational 

disharmony to island climatic variables and pollination or competition-related traits, respectively.  

Methods 

We examined the phenomenon of island disharmony from both an island- and a taxon-centred 

perspective (Figure 1). First, we assessed compositional disharmony, i.e. the phenomenon of island 

floras being taxonomically biased compared to their mainland source regions. Second, we investigated 

representational disharmony, i.e. the role of individual taxa in creating compositional disharmony by 

assessing their global representation on islands compared to the mainland. In both cases, we chose 

families as the focal taxonomic level. Given that disharmony explicitly deals with the representation of 

higher taxonomic groups on islands, families provide a reasonable compromise between ecological 

uniformity and taxonomic aggregation. In contrast, higher taxonomic levels such as orders encompass 
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too many species that are too heterogeneous in their attributes to be ecologically meaningful study 

units, whereas lower levels such as genera are too numerous to be harmonically represented in any 

island flora.  

 

Figure 1: Schematic representation of the quantification of compositional and representational disharmony. (A) Calculation 
of compositional disharmony by the example of Pico Island (Azores). Source regions were estimated based on predictions of 
species turnover between the focal island and all mainland units (WPico, upper plot). The taxonomic bias between the focal 
island and all mainland units was quantified using Bray-Curtis dissimilarity on relative proportions of plant families (BPico, lower 
plot). The compositional disharmony of the focal island (Dcomp) was then calculated as the mean taxonomic bias relative to all 
mainland regions, weighted by their respective source region weight. (B) Estimation of representational disharmony by the 
example of Poaceae. Representational disharmony was quantified based on the mean proportion of the focal taxon in 
mainland floras (�̅�ml) and island floras (�̅�is). The corresponding index (Drep) transforms the ratio between these two 
components to a range between -1 (family occurs on the mainland only) and 1 (family occurs on islands only). 

Data collection 

All ecological and environmental data were obtained from the Global Inventory of Floras and Traits 

database (GIFT, Weigelt et al., 2019), a comprehensive resource for macroecological analyses of global 

plant diversity. The primary data type in GIFT are regional plant checklists that are integrated with 

additional information at the level of taxa (e.g. functional traits, taxonomic placement, phylogenetic 

relationships, floristic status) and geographical units (e.g. climatic and environmental conditions, 

socioeconomic factors, physical geographic properties). A detailed description of the database 

structure and data processing workflows related to taxonomic standardization, functional traits and 

geographic information is available in Weigelt et al. (2019). 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2019. ; https://doi.org/10.1101/523464doi: bioRxiv preprint 

https://doi.org/10.1101/523464
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

For this study, we used only species checklists that report the floristic status of all listed species and 

excluded non-native species occurrences from the analyses. Checklist completeness was evaluated 

based on the reference type (e.g. multi-volume Floras being more reliable than rapid assessments), 

the general text included in the reference (e.g. statements regarding sampling effort, timeframe, or 

use of additional data sources), and general properties of the species list (e.g. plausible number of 

species for the given area and biome, species-to-genus ratio, presence of regionally important taxa). 

Checklists with considerable deficits in either of these categories were excluded. We then combined 

checklists referring to the same geographical unit and removed all geographical units that were not 

covered by either a checklist of vascular plants or by several checklists that cover all divisions of 

vascular plants (e.g. separate lists for pteridophytes and seed plants). The resulting dataset contained 

native vascular plant checklists for 611 mainland and 305 islands units (see data references). For each 

geographical unit, we calculated climatic characteristics based on median values of CHELSA climate 

layers (Karger et al., 2017). We chose mean annual temperature (Bio1), mean annual precipitation 

(Bio12), temperature seasonality (Bio4) and precipitation seasonality (Bio15) as widely established 

measures of energy and water availability. For islands, we additionally calculated maximum elevation 

as a measure of habitat heterogeneity and researched the geological origin and corresponding 

archipelago (where applicable) in pertinent literature. 

We obtained the total number of species per family from The Plant List (The Plant List, 2013) and 

supplemented it with values from Christenhusz & Byng, 2016) where The Plant List did not resolve the 

respective family. The assignment of taxonomic supergroups (distinguishing between angiosperms, 

gymnosperms and pteridophytes) and family ages was based on a recently constructed 

megaphylogeny of vascular plants (Qian & Jin, 2016). For seed plants only, we selected five functional 

traits that reflect dispersal ability (seed mass, dispersal syndrome [anemochorous, autochorous, 

hydrochorous, zoochorous, unspecialized]), life history (woodiness [woody, non-woody], plant height), 

and reproductive characteristics (pollination syndrome [abiotic, biotic]) of a family. Trait data were 

obtained through literature research and the aggregation of species-level information available in 

GIFT. For categorical traits, we assigned a value if multiple taxonomic literature resources (Kubitzki, 

1990-2014; Vamosi & Vamosi, 2010; Hawkins et al., 2011; Hintze et al., 2013) indicated the same 

predominant trait syndrome for a family (woodiness: 289 families, dispersal syndrome: 117 families, 

pollination syndrome: 229 families). If information from taxonomic resources was missing or 

conflicting for a particular family–trait combination, we assigned a value if > 66 % of the species-level 

information in GIFT was identical, i.e. a predominant trait syndrome within the family could be inferred 

from species-level data (woodiness: 174 families from 100,028 species, dispersal syndrome: 156 

families from 3,667 species, pollination syndrome: 103 families from 2,993 species). Otherwise, we 

assigned no value. For numerical traits, we calculated the median value per family based on available 
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species-level data in GIFT (seed mass: 340 families from 23,867 species, plant height: 384 families from 

53,449 species).  

Compositional disharmony 

Quantification 

The quantification of compositional disharmony requires estimates of island-specific source regions as 

well as an objective measure of taxonomic bias (Figure 1A). We based our method for estimating 

source regions on the fact that geographic distance and environmental gradients produce distinctive 

and predictable patterns in species turnover (Fitzpatrick et al., 2013; König et al., 2017). Species 

turnover is a richness-insensitive measure of compositional similarity that quantifies the proportion of 

shared species between assemblages (Baselga, 2010). This makes turnover a crucial concept for 

constructing biogeographical species pools and delineating source regions (Carstensen et al., 2013). 

In contrast to existing approaches for the reconstruction of biogeographical source regions (e.g. Graves 

& Rahbek, 2005; Papadopulos et al., 2011), our method is based on statistical predictions (rather than 

pairwise calculations) of species turnover. Consequently, our framework does not require floristic data 

for the focal area or any of the potential source regions, but only a fitted model of species turnover 

and a set of environmental predictor variables. We used generalized dissimilarity modelling (GDM, 

Ferrier et al., 2007) to model species turnover (βsim, Koleff et al., 2003) as a function of geographic 

distance and differences in mean annual temperature, mean annual precipitation, temperature 

seasonality and precipitation seasonality. These covariates have emerged as strong predictors of large-

scale species turnover of vascular plants (König et al., 2017). We fitted the model using species 

checklists of mainland units only (n = 611, deviance explained = 80.5%), because island floras exhibit 

strong imprints of ecological filtering, which would mask the very effects we aim to quantify in this 

study. We then used the fitted model to predict species turnover between each island (n = 305) and a 

global set of 6495 equal-area grid cells based on geographical and environmental information only. To 

relate these island-specific predictions of species turnover back to the floristic data available in GIFT, 

we aggregated the results by calculating the area-weighted mean of grid values per mainland unit 

(Figure 1A, upper plot). The resulting m × n matrix, W  (for weight), contained the statistically expected 

proportion of shared species (1- βsim) between all m islands and all n mainland units from a “mainland 

perspective”, i.e. assuming that island floras assemble under the same conditions as floras on the 

mainland. The matrix W can thus be interpreted as reflecting the importance of a given mainland unit 

as a source region for a given island, while excluding the effects of modified filtering during island 

colonization. We set Wm,n = 0 for mainland units with very low values, i.e. highly improbable source 

regions for a given island, to ensure a balanced estimation of compositional disharmony (see SI Text 1 
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for details). To validate our method, we compared the results with empirical source region 

reconstructions based on floristic or phylogenetic relationships between island and mainland floras.  

To assess the actual imbalance in the representation of higher taxa on islands relative to the mainland, 

we calculated the relative proportion of plant families for all geographical units. Based on these 

proportions, we computed the Bray-Curtis dissimilarity for all pairwise island-mainland combinations 

(Figure 1A, lower plot), yielding an m × n matrix, B (for bias). The Bray-Curtis index is the abundance-

based version of the Sørensen index that relates the summed differences between two variables to 

their overall sum. Although usually applied to count data, the index also works with relative 

proportions (Greenacre & Primicerio, 2013), making it an appropriate measure of taxonomic bias.  

Finally, we calculated the compositional disharmony of each island, Dcomp, as the mean taxonomic bias 

of a given island i relative to all mainland units (Bi), weighted by their respective importance as a source 

region for the specific island (Wi). Dcomp ranges between 0 and 1, with higher values indicating more 

disharmonic floras (Figure 1A).  

Analysis 

We log10-transformed island area, distance to the mainland, mean annual precipitation, temperature 

seasonality, and precipitation seasonality because of strongly skewed distributions. We then scaled all 

continuous predictor variables to µ = 0 and σ = 1 to obtain standardized model coefficients. The 

geological origin of islands was considered as a categorical variable (distinguishing between volcanic 

islands, atolls, islands formed by tectonic uplift, continental fragments, and shelf islands; adopted from 

König et al., 2017).  

To quantify the effects of geographical and climatic variables on compositional disharmony (Dcomp), we 

fitted generalized mixed effects models within a Bayesian framework (brms R-package, Bürkner, 2017). 

We used models from the beta family with a log-link function because our index for compositional 

disharmony is a proportional value ranging between 0 and 1. Following Bunnefeld & Phillimore (2012), 

we specified archipelago as random effect and allowed for random intercepts, but not for random 

slopes. In addition, we fitted a model without random effects to evaluate the unique explanatory 

power of the fixed effects representing climate and geography.  

Representational disharmony 

Quantification 

In any flora, a given family accounts for a proportion of species ranging between 0 and 1. To quantify 

representational disharmony, we calculated the mean proportion of each family across all mainland 

units (�̅�ml) and oceanic islands (�̅�is, see Figure 1B). For the calculation of �̅�is, we focused on oceanic 
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islands (volcanic islands, islands formed by tectonic uplift, atolls), because their floras reflect the 

effects of dispersal, environmental and biotic filtering most clearly (Whittaker & Fernández-Palacios, 

2007) and thus allow for the most rigorous assessment of taxon-specific drivers of disharmony. 

To obtain an index of representational disharmony (Drep) for a given family, we then transformed the 

ratio between �̅�ml and �̅�is according to the formula given in Figure 1B. The index is symmetric and 

obtains values ranging from -1 to 1, with the sign indicating whether the focal family is proportionally 

more common in mainland floras (negative values) or in island floras (positive values; SI Figure 1). For 

example, a family with Drep = 0.5 has, on average, a two times higher proportion in island floras than 

in mainland floras, whereas a family with Drep = -0.9 has a 10-times higher proportion on the mainland. 

The special cases of Drep = -1, Drep = 0 and Drep = 1 indicate a family’s restriction to the mainland, 

equal proportional representation on islands and the mainland, and restriction to islands, respectively.  

Analysis 

To analyse the effects of family characteristics on representational disharmony (Drep), we used linear 

regression models fitted within a Bayesian framework (brms R-package, Bürkner, 2017). We fitted a 

multi-predictor model with family species richness, family age and taxonomic supergroup 

(distinguishing between angiosperms, gymnosperms and pteridophytes) as predictors, but had to omit 

all functional trait variables because missing data points would have drastically reduced the sample 

size. Instead, we analysed the impact of functional traits on representational disharmony (Drep) with 

single-predictor linear models.  

To test for phylogenetic signal in Drep, i.e. whether closely related taxa tend to be similarly over- or 

under-represented on islands, we calculated Abouheif’s Cmean using the phylosignal R-package (Keck, 

2015). The Cmean index is a measure of phylogenetic autocorrelation that quantifies the squared 

differences between values (in this case Drep) of neighbouring tips in a phylogeny (Münkemüller et al., 

2012). The index ranges from -1 to 1, with values further away from 0 indicating negative and positive 

autocorrelation, respectively. 

All analyses were performed in the R statistical programming language, version 3.5.2 (R Core Team, 

2019). 
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Results 

Source region estimation 

 

Figure 2: Exemplary comparison of empirically reconstructed and statistically modelled source regions for six islands. Grey 
boxes summarize the results of previous source region reconstructions based on floristic or phylogenetic affinities. Maps show 
corresponding statistical source region estimates (proportion of shared species, 1-βsim) between the focal island and 6495 
equal-area grid cells (~23,300 km² each). Predictions were derived from a generalized dissimilarity model (Ferrier et al., 2007) 
fitted with geographical and climatic characteristics of 611 mainland floras worldwide. Histograms show the distribution of 
predicted values for each focal island (note that the range of values differs among islands).    

Our method for statistically estimating island source regions showed strong agreement with empirical 

source region reconstructions (Figure 2). Accordingly, most island floras are derived from a limited set 

of nearby and climatically similar mainland regions. The estimated source regions for the Falkland 

Islands, for instance, are highly concentrated in the nearby non-tropical parts of South America, which 

corresponds closely to the account given by Moore (1968) (Figure 2B). Similarly, the most likely source 

regions for the flora of Lord Howe or Cocos Island are restricted to a few regions in Australasia and the 

Neotropics, respectively (Figure 2D-E). With increasing isolation from the mainland, however, the 

distribution of island source regions becomes more diffuse in both the statistical and empirical 

reconstructions (Figure 2A, C, F). For example, a wide, circum-Pacific distribution of source regions for 

the Hawaiian flora emerges in our statistical estimates as well as phylogenetic analyses of Price & 

Wagner (2018) (Figure 2A). While the accuracy of our estimates seems to decrease slightly for very 

isolated islands (e.g. Figure 2F), the overall congruency of our statistically estimated source regions 

with empirical studies demonstrates the robustness of our method. 
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Compositional and representational disharmony 

Compositional disharmony (Dcomp) ranged between 0.19 (Corsica, Mediterranean Sea) and 0.87 

(Clipperton Island, East Pacific). Overall, the most harmonic island floras were found in the 

Mediterranean Basin and off the shores of temperate continental regions (East Asia, Europe, North 

America). Particularly disharmonic floras were located at high latitudes and in the Central Pacific 

(Figure 3).  

 

Figure 3: Compositional disharmony of 305 island floras worldwide. Mainland regions that were used for source pool 
estimation and floristic comparisons (n = 611) are coloured in dark grey. 

In agreement with our expectations, compositional disharmony increased with island isolation and 

decreased with island area (Figure 4). Maximum elevation had a negative effect on compositional 

disharmony, i.e. topographically flat islands tended to harbour more imbalanced floras. Also climatic 

variables had consistently negative and unexpectedly strong effects. Measured by the slope of 

standardized regression coefficients temperature seasonality was the most important predictor of 

compositional disharmony, and the effect size of mean annual temperature was comparable to that 

of island area (islands with cold, seasonal climates having more disharmonic floras, Figure 4). After 

controlling for the effects of island area, elevation, isolation, and climate in the multi-predictor setting, 

the geological origin of islands did not show strong effects – only atolls featured significantly more 

disharmonic floras than other island types. The overall model fit was very high with a Bayesian R² of 

0.90 (full model including random effects) and of 0.58 (fixed effects only).  
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Figure 4: Standardized parameter estimates (dot) and 95% Bayesian credible intervals (whiskers) for potential drivers of 
compositional disharmony (left) and representational disharmony (right). Estimates for island geological origin and 
taxonomic group are relative to shelf islands and Angiosperms, respectively.  

Representational disharmony varied widely among plant families. Most notably, pteridophyte families 

were greatly over-represented on islands, whereas angiosperm and especially gymnosperm families 

were mostly under-represented (see SI Data). A few families such as Cycadaceae (gymnosperms, Drep 

= 0.62) or Marsileaceae (pteridophytes, Drep = -0.70) deviated from this general pattern. The multi-

predictor model confirmed the over-representation of pteridophyte families on islands relative to 

angiosperm and gymnosperm families (Figure 4). Species richness was positively associated with the 

representation of families on islands, whereas family age had marginal negative effects. However, the 

explanatory power of the model was relatively low (Bayesian R² = 0.19). The single predictor models 

of family-level functional traits did not reveal strong effects either. We did not find significant effects 

of life history traits (growth form, plant height) or dispersal traits (dispersal syndrome, seed mass). 

Only for pollination traits did we significant effect, namely a slight over-representation of families with 

abiotic pollination syndromes over those with biotic pollination syndromes (Figure 4).  
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In agreement with the generally weak predictive power of family level characteristics for 

representational disharmony, we did not find a significant phylogenetic signal in Drep for seed plants 

(Cmean = 0.05, p = 0.065), but only for all vascular plants combined including the strongly over-

represented pteridophyte clade (Cmean = 0.16, p = 0.001, SI Figure 3). 

Discussion 

Our results show that compositional disharmony, i.e. the imbalance of an island flora relative to its 

mainland source regions, is a common feature of islands worldwide. The degree of compositional 

disharmony is well explained by the classical biogeographical variables of isolation and area in 

conjunction with additional island characteristics such as elevation, geological origin and climate. We 

found less clear relationships between family-specific characteristics and representational 

disharmony, i.e. the proportional over- or under-representation of individual families on islands. The 

most important predictor of representational disharmony was a simple categorization of families into 

angiosperms, gymnosperms and pteridophytes. Species richness and pollination traits showed weak 

but significant effects, but we found no evidence for effects of dispersal and life history traits.  

One innovation of the present study is the development of a method for estimating biogeographical 

source regions based on statistical predictions of species turnover. Existing methods typically infer 

source regions by comparing the composition of species, genera or families (e.g. Papadopulos et al., 

2011; Moore, 1968) or the phylogenetic relationships in the focal region with that of several potential 

source regions. The broad geographical scope of the floristic literature underlying such comparative 

analyses only allows for the delineation of relatively coarse source regions such as continents, 

biogeographical regions or countries. However, a more fine-grained understanding of potential source 

regions is often needed. More recent methods therefore derive the compositional structure of any 

given location by means of so-called assemblage-dispersion fields, which are stacked geographical 

ranges of all species occurring in the focal region (Carstensen et al., 2013; Graves & Rahbek, 2005). 

Although assemblage dispersion fields are theoretically capable of providing high-resolution estimates 

of biogeographical source regions, they practically require knowledge on the complete distribution of 

all examined species. This is still beyond reach for many regions and taxa (Hortal et al., 2015). 

Moreover, like all methods that are based on contemporary species distributions or assemblages, they 

break down when the focal region features high rates of endemism, which is particularly important for 

island systems (Kier et al., 2009). The statistical approach we outlined in this study avoids the above-

mentioned limitations because it does not depend on floristic data for any of the investigated 

geographical regions. Instead, it depends on how well the statistical model and the input data (which 

may come from other floras) capture the general drivers underlying large-scale species turnover. This 

makes it considerably less data-intensive than alternative species-level approaches (e.g. Graves & 
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Rahbek, 2005), yet offers much finer spatial resolutions than checklist-based methods (e.g. 

Papadopulos et al., 2011).  

The assembly of an island flora is an accumulative process, acting over millions of years. The extended 

temporal dimension introduces uncertainties to the estimation of island source regions because the 

climate, habitat distribution, position, size and shape of both islands (Whittaker et al., 2008; Weigelt 

et al., 2016) and source regions (Galley & Linder, 2006; Pokorny et al., 2015) may have changed 

considerably since colonization. Cronk (1987) illustrates this for the flora of Saint Helena, which is 

mostly derived from a now-extinct wet forest flora that occupied large parts of Southern Africa during 

the Miocene. Moreover, the effective isolation of an island is difficult to quantify and depends not only 

on the distance to the mainland, but also on the availability of stepping stones and the direction of 

predominant sea and wind currents (Cook & Crisp, 2005; Weigelt & Kreft, 2013), as well as the dispersal 

abilities of the focal taxon. Even different habitats or elevational zones within an island may sample 

from distinct source regions on the mainland, and thus vary in their degree of isolation (Steinbauer et 

al., 2012). Thus, many aspects affect the accuracy of biogeographical source region reconstructions in 

general, but may be particularly relevant for statistical approaches that do not involve direct 

comparisons of species assemblages. However, our validation revealed high levels of congruency 

between empirical and statistical source region reconstructions (Figure 2), and further methodological 

refinements and validations may help to find the appropriate balance between complexity and utility. 

Considering that quantitative estimates of source regions are still lacking for most island floras, 

statistical reconstructions might add a promising new tool to island biogeographical research.  

Dispersal filtering has long been regarded as the predominant process in the assembly of island biotas, 

and therefore the main driver of disharmony (Carlquist, 1966, 1967). Our results reveal that this is only 

partly true. On the one hand, the strong effect of isolation on island disharmony indeed suggests a 

major role of dispersal filtering in removing less dispersive taxa from the set of potential colonizers of 

an island. All gymnosperms except for Araucariaceae and Cycadaceae were under-represented on 

oceanic islands, which seems to fit the classical notion of gymnosperms as poor dispersers. Likewise, 

pteridophytes – possessing superior long-distance dispersal capabilities via ultra-light spores – were 

found to be strongly over-represented in island floras. These findings are in line with previous studies, 

which interpreted these broad taxonomic patterns as the outcome of selective dispersal filtering (Kreft 

et al., 2010; Rumeu et al., 2014; Weigelt et al., 2015). On the other hand, the strong effects of area 

and climatic variables, as well as the relationship between representational disharmony and 

pollination- but not dispersal-related traits, indicate an important role of non-dispersal related 

processes. Pollination is increasingly recognized as a critical factor for the colonization of islands 

(Olesen et al., 2010; Alsos et al., 2015; Grossenbacher et al., 2017). Given the general scarcity of animal 
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pollinators on islands, abiotic pollination syndromes and the ability to self-pollinate should provide an 

advantage over biotic pollination (especially when pollinator-specific) or strict outcrossing (Baker, 

1955; Razanajatovo et al., 2018). Indeed, we found families with predominantly abiotic pollination 

syndromes (wind pollination, water pollination) to be proportionally slightly more common on islands 

than families that rely on biotic pollination (insects, bats, birds, etc.)(Figure 4). However, all other 

family-level traits had no detectable effects on representational disharmony. The lacking effect of 

classical dispersal traits such as seed mass, dispersal syndrome or fruit type seems to contradict 

longstanding assumptions regarding their relevance for island colonization (Carlquist, 1974; Howe & 

Smallwood, 1982; Portnoy & Willson, 1993). Indeed, while a relationship between such traits and 

dispersal distance is evident at small scales up to a few kilometers (Tackenberg et al., 2003), long-

distance dispersal seems to operate with such high levels of stochasticity that this relationship vanishes 

(Higgins et al., 2003; Nathan, 2006; Nogales et al., 2012). Moreover, many large-seeded species that 

are adapted to dispersal by birds or seawater are successful long-distance dispersers, defying the 

common notion of small seeds as indicator of good dispersibility. Other studies even find no 

relationship at all between dispersal traits and colonization success (Heleno & Vargas, 2014). 

Abiotic factors such as climate or soil substrate also act as filters for colonizing plant species, as recently 

demonstrated for the Galapagos Islands (Carvajal-Endara et al., 2017) and New Caledonia (Isnard et 

al., 2016). The strong effect of temperature-related variables in our analyses seems to support (abiotic) 

environmental filtering as an important driver of island disharmony. However, the climatic variables in 

our models did not reflect climatic similarity to the mainland (which would be a plausible cause of 

disharmony, but was accounted for during source region estimation), but the average conditions of 

the islands themselves. Potential explanations for the negative relationship between compositional 

disharmony and island temperature and temperature seasonality include (1) stronger environmental 

filtering on islands with temperate or polar climates, (2) higher speciation rates on warm tropical 

islands, or (3) glacial dynamics limiting the available time for colonization on cold, high-latitude islands. 

In addition, separating abiotic and biotic drivers of community assembly is often difficult because 

competitors may preclude the establishment of colonizing species in generally suitable habitats, thus 

creating artificial environmental gradients in the composition of communities (Kraft et al., 2015).  

Even though the above considerations provide plausible explanations for the role of ecological factors 

in creating island disharmony, we want to stress that compositional disharmony is affected by neutral 

sampling effects related to species richness. Island floras can never be a perfect compositional 

representation of the much larger pool of mainland species, because the number of families on an 

island is constrained by the number of species. Thus, extremely small proportions that arise, for 

example, in the case of rare families in species-rich mainland floras cannot be reproduced on islands, 
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which inevitably increases compositional disharmony with decreasing species number (SI Figure 4). 

This interpretation moreover implies that compositional disharmony is also dependent on the size and 

spatial extent of the mainland source pool, as larger source pools usually include a higher number of 

taxa and are thus less likely to be represented harmonically in an island flora. This dependency might 

provide a further piece in the puzzle of understanding the disharmonic floras of highly isolated islands 

such as Hawaii or the Azores (see Figure 2B,C), whose source regions often encompass different 

biogeographical regions and continents. 

If the overall bias of island floras is rather accurately predicted by geographical and climatic island 

features, why does the representation of individual families on islands seem so unrelated to their 

functional traits? We consider two aspects to be relevant here. First, if the taxonomic literature did 

not indicate a predominant trait syndrome within a family, we attempted to approximate it based on 

species-level information of varying completeness (see Methods section and SI Figure 2). Missing data 

is a common problem in trait-based ecology (Taugourdeau et al., 2014; Penone et al., 2014) and a 

major source of uncertainty and bias in the characterization of ecological patterns (Hortal et al., 2015). 

We therefore caution that our findings on representational disharmony depict trends rather than a 

definitive assessment. Second, a taxonomic perspective – especially when focusing on a fixed 

taxonomic level – is not an ideal framework for examining the outcomes of the complex ecological 

processes that produce disharmonic island floras. In the scientific literature, examples of disharmonic 

floristic elements range from small genera (e.g. Metrosideros in Carlquist, 1966) to large taxonomic 

clades (e.g. pteridophytes in Braithwaite, 1975). Some studies assemble several such examples for a 

particular island or island group in order to arrive at a more general conclusion (Carlquist, 1967; 

Whittaker et al., 1997). In fact, this is a reasonable approach because the degree to which taxa are 

consistently over- or under-represented on islands depends on their uniformity in terms of 

colonization success, and thus in terms of dispersal abilities, environmental tolerances and degree of 

biotic specialization. These parameters may vary greatly even within small families (Howe & 

Smallwood, 1982), but on the other hand show remarkable consistency within large taxonomic groups 

(Farjon, 2010), such that the required taxonomic level of observation is variable. Consequently, the 

classical concept of island disharmony sensu Carlquist (1965, 1974) generalizes poorly across 

taxonomic groups. 

We demonstrated that disharmony is a widespread feature of island floras worldwide, and that the 

traditional concept can be put on a quantitative footing. The generality and predictive power of the 

concept of island disharmony has historically been limited by its focus on taxonomic groups. However, 

given the rapid advances in ecological data availability and analytical tools, the approximation of 

ecological characteristics by means of taxonomic affiliation will eventually become obsolete. Instead, 
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the assembly mechanisms that disharmony aims to reflect and explain can be investigated more 

directly using quantitative methods that are informed by functional and phylogenetic data. The 

outlined approach for the estimation of island source regions as well as the proposed metrics for 

quantifying island disharmony provide a big step towards this objective, and offer robust empirical 

insights into the factors shaping the composition of island floras. 
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