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Abstract

Current HPV vaccines target a subset of the oncogenic human papillomavirus (HPV) types. If

HPV types compete during infection, vaccination may trigger replacement by the non-targeted

types. Existing approaches to assess the risk of type replacement have focussed on detecting

competitive interactions between pairs of vaccine and non-vaccine types. However, methods to

translate any inferred pairwise interactions into predictors of replacement have been lacking. In

this paper, we develop practical predictors of type replacement in a multi-type setting, readily

estimable from pre-vaccination longitudinal or cross-sectional prevalence data. The predictors

we propose for replacement by individual non-targeted types take the form of weighted cross

hazard ratios of acquisition versus clearance, or aggregate odds ratios of coinfection with the

vaccine types. We elucidate how the hazard-based predictors incorporate potentially heteroge-

neous direct and indirect type interactions by appropriately weighting type-speci�c hazards and

show when they are equivalent to the odds-based predictors. Additionally, pooling type-speci�c

predictors proves to be useful for predicting increase in the overall non-vaccine-type prevalence.

Using simulations, we demonstrate good performance of the predictors under di�erent interac-

tion structures. We discuss potential applications and limitations of the proposed methodology

in predicting type replacement, as compared to existing approaches.

Keywords: pathogen type interactions, vaccination, prediction, type replacement, hazard ra-

tio, odds ratio
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1 Introduction

Predicting the impact of vaccination against a pathogen can be challenging if the pathogen

consists of many, potentially interacting (sub)types. When the vaccine targets only a subset of

the pathogenic types, it is particularly relevant to evaluate the risk of replacement by the non-

targeted types. In this paper, we expand existing methodology for predicting type replacement

for multi-type pathogens with the focus on the human papillomavirus (HPV).

HPV is one of the most common oncogenic DNA viruses in humans. Persistent infection

with HPV can cause cancer in various parts of the body [1]. In particular, twelve to �fteen

HPV types are classi�ed as high-risk or probable high-risk due to their association with cervical

cancer [2]. Currently, three HPV vaccines are available, covering two, four, and nine HPV types.

All three vaccines protect against HPV 16 and 18, two high-risk types that together account

for approximately 70% of all cervical cancers in unvaccinated populations. HPV 31, 33, and

45, accounting for an additional 10-15% of cases [3], are among the cross-protective types of the

bivalent and quadrivalent vaccines and are included in the nonavalent vaccine [4].

In countries where HPV vaccination has been implemented with high coverage, circulation

of both the vaccine and cross-protective HPV types has decreased considerably [5, 6]. However,

concerns have been raised that the ecological niche vacated by the targeted types could be

taken over by the non-targeted high-risk HPV types [7, 8, 9]. Thus far, post-implementation

surveillance data have been reassuring, as only sporadic increases in the prevalence of infection

with some non-vaccine types have been observed without a clear signal of type replacement

[4, 10, 11, 12]. While waiting for the long-term impact of HPV vaccination to become apparent,

evaluation of the potential for type replacement remains crucial.

Whether HPV vaccination will trigger type replacement depends on the existence and strength

of competitive interactions between HPV types. HPV types may compete during coinfection, by

either diminishing each other's opportunities to establish a productive infection or by promoting

viral clearance (e.g. through activation of antigen-presenting cells) [13, 14, 15, 16, 17]. Due to

such competitive mechanisms, the hazard of acquiring (or clearing) a given HPV type may be

reduced (or increased, respectively) by infection with other types. In epidemiological terms, dif-

ferent type interactions can be conveniently quanti�ed in terms of appropriately de�ned hazard

ratios [18, 19, 20].

We have previously shown, in a simple model of one vaccine and one non-vaccine type, that
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the cross hazard ratio of acquisition versus clearance can be used to predict type replacement,

provided that the two types interact symmetrically and there is no long-lasting cross-immunity

[21]. The latter assumption seems plausible for HPV as even the existence of natural homologous

immunity is still debated [22, 23]. Given Susceptible-Infected-Susceptible (SIS) transmission dy-

namics, the appropriate cross hazard ratio is, moreover, equivalent to an odds ratio of coinfection,

and thus estimable from cross-sectional prevalence data [21]. Here, the odds ratio is de�ned as

the odds of infection with one type in presence versus absence of coinfection with the other type.

With more than two interacting types, not only does prediction of replacement require in-

ference of interactions between multiple types but also an adequate way of combining them. To

predict how vaccination will a�ect the prevalence of a given non-vaccine type, one needs to take

account of its direct interactions with the vaccine types as well as any indirect interactions via

other non-vaccine types. Meaningful prediction should also incorporate possible heterogeneities

in strength or direction (competition versus synergy) of type interactions.

Previous studies evaluating the potential of HPV type replacement have focussed on inferring

interactions between pairs of vaccine and non-vaccine types [7, 24, 25, 26, 27]. In these studies, for

each vaccine type, pairwise odds ratios have been compared to pooled odds ratios (pooled across

the non-vaccine types) to identify likely candidates for type replacement. With this approach,

however, each non-vaccine type is evaluated multiple times according to its interactions with

di�erent vaccine types, while the occurrence of type replacement is determined by all these

interactions jointly. In addition, the pooled odds ratio, which has been interpreted as the

tendency of the vaccine type in question to be involved in coinfection, lacks a clear interpretation

for prediction of type replacement.

In this paper, we consider prediction of replacement following vaccination in a setting with

an arbitrary number of interacting vaccine and non-vaccine types. We propose predictors of

type-speci�c replacement, i.e. increase in the prevalence of individual non-vaccine types, and

pooled predictors of increase in the overall non-vaccine-type prevalence. The predictors are

initially de�ned in terms of steady-state hazards of type-speci�c acquisition and clearance. Us-

ing a mechanistic SIS model, we explain how the predictors relate to the underlying mode of

type interactions and show under which interaction structures these hazard-based predictors

can be estimated as odds ratios from cross-sectional prevalence data. Finally, we evaluate the

performance of the proposed predictors by means of numerical simulations.
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2 Material and methods

2.1 Prediction framework

We derive predictors of type replacement for a pathogen consisting of many potentially inter-

acting types. The prediction method applies to any pathogen for which naturally acquired

immunity is short-lived, so that the transmission dynamics of each type can be approximated

by an SIS model. The predictors are constructed in terms of the following data collected at the

pre-vaccination steady state:

• prevalence of each (co)infection state, estimable from cross-sectional data;

• type-speci�c hazards (per capita rates) of acquisition and clearance, estimable from longi-

tudinal data.

Figure 1a shows the eight (co)infection states and the respective transitions for a pathogen with

three types.

Type interaction is assumed to operate through current (co)infection, with one or multiple

types modifying acquisition hazards of other types, or modifying clearance hazards of coinfecting

types. Interactions between di�erent types are allowed to be either competitive or synergistic

and to vary in strength. Furthermore, we focus on predicting replacement by non-vaccine types

that are not cross-protected by the vaccine, as these types are the most salient for evaluating

the potential for replacement. Moreover, we ignore evolution through mutation of the model

pathogen types for the timescale on which type replacement may occur.

2.2 Type-speci�c and overall replacement

We consider replacement, here de�ned as increase in the prevalence of non-vaccine-type infection

once the vaccine types are eliminated in the post-vaccination steady state, at two levels:

• type-speci�c replacement, de�ned as increase in the prevalence of a given non-vaccine type

i. This occurs when
∑

i∈X I
′
X/
∑

i∈X IX > 1, where I ′X and IX denote the post- and pre-

vaccination steady-state prevalence of infection state X, respectively. The sums here are

taken over all states containing type i, e.g. states {3, 13, 23, 123} in a three-type system

when considering i = 3;
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• overall replacement, de�ned as increase in the overall non-vaccine-type prevalence. This

occurs when
∑
|X∩NV T |>0 I

′
X/
∑
|X∩NV T |>0 IX > 1, where NV T is the set of all non-

vaccine types, and | · | denotes the number of types in a given set. The sums are taken

over all states containing at least one non-vaccine type, e.g. states {2, 3, 23, 12, 13, 123} in

a three-type system when considering NV T = {2, 3}.

2.3 Predictors in a two-type setting

Previously, we have shown that the following pairwise odds ratio is an exact predictor of type

replacement in a simple SIS model of one vaccine type (type 1) and one non-vaccine type (type

2), provided the two types interact symmetrically [21]:

OR1,2 =

(
I12
I1

)
/

(
I2
I∅

)
. (1)

This pairwise odds ratio compares the odds of non-vaccine-type infection between those infected

and uninfected with the vaccine type.

Whenever the pre-vaccination steady-state value of OR1,2 is less than one, replacement will

occur. This correspondence follows from OR1,2 being equivalent to the following pairwise cross

hazard ratio:

HR1,2 =

(
q1→12

q∅→2

)
/

(
q12→1

q2→∅

)
, (2)

where qX→Y denotes the transition hazard from state X to Y . The numerator (denominator) of

expression (2) is the hazard ratio of acquiring (clearing) the non-vaccine type in those infected

versus those uninfected with the vaccine type and thus quanti�es interaction in acquisition

(clearance). In other words, the numerator (denominator) quanti�es to what extent vaccine-

type infection accelerates or decelerates acquisition (clearance) of non-vaccine-type infection.

As a whole, the ratio captures the joint e�ects of interactions both in acquisition and clearance

on the occurrence of non-vaccine-type infection.

Of note, the above pairwise odds ratio (1) has been used for inferring interactions between

HPV genotypes [7, 25, 26, 27], whereas the pairwise cross hazard ratio (2) has been used for

describing competition between Streptococcus pneumoniae serotypes [28].
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2.4 Predictors in a multi-type setting

2.4.1 Type-speci�c cross hazard ratio as a predictor of type-speci�c replacement

We now generalize the pairwise cross hazard ratio (2) to a setting with an arbitrary number

of interacting vaccine and non-vaccine types. To predict replacement by a given non-vaccine

type i, we �rst aggregate the infection states into the four disjoint collections of states given by

Table 1 (see Figure 1a).

Based on the transitions between these four aggregate states, we propose the following gen-

eralization of the four hazards in the pairwise cross hazard ratio (2):

HRV T,i =

( ∑
X∈AV T

IX|AV T
qX→X∪{i}∑

X∈A0

IX|A0
qX→X∪{i}

)
/

( ∑
X∈AV T,i

IX|AV T,i
qX→X\{i}∑

X∈Ai

IX|Ai
qX→X\{i}

)
, (3)

where IX|A = IX/
∑

Y ∈A IY denotes the relative prevalence of state X conditioned within ag-

gregate state A. Each term in expression (3) is a weighted average of hazards as it aggregates

hazards of acquiring or clearing type i with weights given by the conditional steady-state preva-

lence of the states from which the transitions occur. In e�ect, this weighting adjusts for the time

each individual spends being at risk for the respective transitions [29]. Similarly to the pairwise

cross hazard ratio (2), the numerator and denominator of the type-speci�c cross hazard ratio

(3) are hazard ratios of acquiring and clearing type i in those infected with at least one vaccine

type (|X ∩ V T | > 0) versus those uninfected with any of the vaccine types (|X ∩ V T | = 0), re-

spectively. In short, the type-speci�c cross hazard ratio (3) combines interactions by the vaccine

types on the non-vaccine type of interest.

Example with multiple vaccine types. Assume that V T = {1, 2}, NV T = {3}, and

there is interaction only in acquisition (Figure 1a), and consider the type-speci�c cross hazard

ratio (3) as a predictor for replacement by type 3. As the denominator of expression (3) now

equals one, the predictor reduces to

HR12,3 =
I1|{1,2,12}q1→13 + I2|{1,2,12}q2→23 + I12|{1,2,12}q12→123

q∅→3
, (4)

where I1|{1,2,12} = I1/C, I2|{1,2,12} = I2/C, I12|{1,2,12} = I12/C, and C = I1 + I2 + I12.
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2.4.2 Type-speci�c odds ratio as a predictor of type-speci�c replacement

The type-speci�c cross hazard ratio HRV T,i as given by (3) requires estimation of type-speci�c

acquisition and clearance hazards from longitudinal data. However, collecting such data may be

cumbersome and expensive due to repeated observations of the infection states in the same study

subjects. It would thus be advantageous if the cross hazard ratio HRV T,i could be approximated

using steady-state cross-sectional (i.e. prevalence) data only, in a similar way as in the two-type

setting using the pairwise odds ratio (1).

In a setting with more than two types, the pairwise odds ratio (1) can be generalized to the

following type-speci�c odds ratio:

ORV T,i =

( ∑
X∈AV T,i

IX∑
X∈AV T

IX

)
/

( ∑
X∈Ai

IX∑
X∈A0

IX

)
, (5)

which is the odds of infection with non-vaccine type i in presence versus absence of coinfection

with any of the vaccine types. The approximation of HRV T,i by ORV T,i is exact given detailed

balance, i.e. when IXqX→Y = IY qY→X for any pair of states X,Y (see Section A of electronic

supplementary material for the proof). In reality, whether this property holds depends on the

underlying structure of type interactions.

Example continued. In the previous example where V T = {1, 2}, NV T = {3} (Figure 1a),

the type-speci�c odds ratio (5) becomes

OR12,3 =

(
I13 + I23 + I123
I1 + I2 + I12

)
/

(
I3
I∅

)
. (6)

2.4.3 Overall odds and cross hazard ratios as predictors of overall type replacement

Pooling across pairwise odds ratios has been used to summarize interactions of all non-vaccine

types with each vaccine type separately [7, 25]. However, this approach lacks a clear interpre-

tation for predicting type replacement. Here, we propose the following overall odds ratio for

predicting overall replacement:

OR =
∏

i∈NV T
ORV T,i. (7)

The use of a pooled odds ratio for prediction can be justi�ed by considering the ratio of the

odds of overall non-vaccine-type infection in the pre- versus post-vaccination steady states. This
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odds ratio is essentially the true impact of vaccination with value less than one characterizing

overall replacement. Assuming mutual independence between all non-vaccine types, this true

odds ratio of overall infection can be approximated by the product of true odds ratios of type-

speci�c infections (see Section B of electronic supplementary material for the derivation). As

each true type-speci�c odds ratio can be predicted by the corresponding ORV T,i, we envision

their product (7) to be a predictor for overall replacement.

Owing to the relation between HRV T,i and ORV T,i, we also propose the following overall

cross hazard ratio as a predictor for overall replacement:

HR =
∏

i∈NV T
HRV T,i. (8)

2.5 Simulated structures of type interactions

Thus far, we have made no assumptions about the structure of type interactions, i.e. no con-

straints on kXi and hXi in de�ning qX→X∪{i} = kXi · q∅→i and qX∪{i}→X = hXi · q∅→i. To

investigate the performance of the proposed predictors and their robustness against di�erent

interaction structures, we considered the following three alternative structures in simulations

(see Section C of electronic supplementary material for their exact descriptions).

The �rst interaction structure is pairwise-symmetric and multiplicative so that each (co)infecting

type contributes multiplicatively to the acquisition hazard of an incoming type, i.e. qX→X∪{i} =(∏
j∈X kji

)
·q∅→i, or to the clearance hazard of a coinfecting type, i.e. qX∪{i}→X =

(∏
j∈X hji

)
·

qi→∅. Here kji and hji describe how (co)infection with type j modi�es acquisition and clearance

of type i, respectively. Values of kji and 1/hji equal to, less, and larger than one correspond to

independent, competitive, and synergistic interactions, respectively. In order words, competition

decreases the acquisition rate, whereas synergy decreases the clearance rate. Furthermore, pairs

of interaction parameters are assumed to be identical, i.e. kij = kji and hij = hji, resulting in a

symmetric interaction matrices. With n types, the numbers of parameters governing the inter-

action in acquisition and clearance are both reduced from n(2n−1−1) to n(n−1)/2 (Figure 1b).

This pairwise-symmetric multiplicative structure preserves the detailed balance property (see

Section D of electronic supplementary material for the proof), so that HRV T,i and ORV T,i are

equivalent.

Departure from the above structure may disrupt this equivalence ofHRV T,i andORV T,i. Two

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/523472doi: bioRxiv preprint 

https://doi.org/10.1101/523472
http://creativecommons.org/licenses/by-nc-nd/4.0/


alternative structures are the pairwise-asymmetric multiplicative and the groupwise-symmetric

multiplicative structure. The pairwise-asymmetric multiplicative structure relaxes the symme-

try constraint kji = kij . The groupwise-symmetric multiplicative structure assumes the multi-

plicativity to act per groups of types instead of individual types. For example, in a four-type

system with groups A = {1, 2}, B = {3, 4}, and interaction parameters kA, kB (within groups),

kAB = kBA (between groups), the hazards of acquiring type 1 from state 23 and 234 are both

kAkBAq∅→1.

2.6 Performance analysis

To evaluate the performance of the proposed predictors, we simulated the e�ect of vaccination

using a deterministic SIS transmission model (see Section C of electronic supplementary material

for details of the model). We investigated how the performance of the predictors depends

on the numbers of vaccine and non-vaccine types and their interaction structure. For each

setting, di�erent sets of model parameters, including interaction parameters and type-speci�c

transmissibility, were randomly generated.

The interaction parameters of the two symmetric structures were uniformly generated on

a log scale in the interval (1/3, 3), ranging from competitive to synergistic interactions. To

examine the e�ect of increasing asymmetry under the pairwise-asymmetric structure, asymmetric

interaction parameters (k′ij , k
′
ji) were obtained by either perturbing the generated parameters

of the pairwise-symmetric structure (kij), or by generating new k′ij , k
′
ji independently of each

other. Perturbation of the pairwise-symmetric parameters was done by adding deviations on

a log scale, i.e. log(k′ij) = log(kij) + ε/2 and log(k′ji) = log(kij) − ε/2. In e�ect, eε is the

ratio between a pair of reverse interaction parameters, k′ij/k
′
ji with increasing ε inducing more

asymmetry. When generating k′ij , k
′
ji independently, there was no constraint on their ratio.

For each parameter set, prediction of replacement was made at the simulated pre-vaccination

steady state and compared to the `true' outcome (replacement/no replacement) at the post-

vaccination steady state. For each setting, the performance of each predictor was de�ned as the

proportion of correct predictions among all generated parameter sets (see Section E of electronic

supplementary material for the exact simulation procedure).
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3 Simulation results

3.1 Performance under the pairwise-symmetric multiplicative structure

As the pairwise-symmetric multiplicative structure obeys detailed balance, the hazard-based and

odds-based predictors are equivalent (HRV T,i = ORV T,i and HR = OR) and indeed performed

identically (row 1 of Figure 2).

With one non-vaccine type, the predictors (HRV T,i = ORV T,i = HR = OR) were always

correct, even when some vaccine types would interact synergistically while others would compete

with the non-vaccine type. Thus the predictors correctly captured the balance between the

opposing forces of competition and synergy.

With multiple non-vaccine types, prediction of both type-speci�c and overall replacement

became more di�cult due to interactions between the non-vaccine types. For example, in a

system with V T = {1}, NV T = {2, 3}, if k13 = 1, k12 > 1 and k23 < 1 (Figure 1b), vaccination

indirectly triggered replacement by type 3 by decreasing type-2 infection and thus increasing

type-3 infection. Rewriting expression (3) shows that this indirect e�ect is indicated by the

second factor in

HR1,3 = k13 ·
[
(I∅ + I2k12k23) · (I∅ + I2)

(I∅ + I2k12) · (I∅ + I2k23)

]
. (9)

In particular, the expression in the brackets is less than one when either k12 or k23 (but not

both) is less than one (see Section F of electronic supplementary material for the derivation of

(9)). However, if the direct and indirect e�ects acted in opposite directions, the predictors did

not always adequately capture their combined e�ect (see Section G of electronic supplementary

material for an example). Indeed, with multiple non-vaccine types, the performance decreased

as the number of non-vaccine types increased (follow each sub�gure in Figure 2 across the ↘

diagonals). Nonetheless, the performance of all predictors remained well above 94%. In addition,

when the overall predictor failed with a value close to one, the overall prevalence of non-vaccine-

type infection usually changed only modestly (see Section G of electronic supplementary material

for an example).

3.2 Performance under alternative interaction structures

Under the alternative interaction structures, the hazard-based and odds-based predictors were

no longer equivalent but still performed comparably, except when the asymmetry was strong
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(Figure 2). With one non-vaccine type, the hazard-based predictions remained almost perfect

unlike the odds-based ones. Under the groupwise-symmetric structure, the predictive perfor-

mance decreased more rapidly as the number of non-vaccine types increased, as compared to the

pairwise-symmetric structure. However, it was still above 80% in simulations with up to seven

types (row 2 of Figure 2).

Under the pairwise-asymmetric structure, the performance of both sets of predictors de-

creased with increasing asymmetry (row 3 to 5 of Figure 2). Nevertheless, the performance of

the hazard-based predictors remained above 85% even when pairs of kij and kji were generated

independently, inducing strong asymmetry. The decreasing performance was more vivid for the

odds-based predictors, which went down to 70% in the corresponding settings. The superiority

of the hazard-based predictors can be illustrated in the following example of two types. Suppose

that the vaccine type competes with the non-vaccine type (k12 < 1) while the reverse interaction

is synergistic (k21 > 1). Then HR1,2 = k12 < 1 predicts replacement correctly, whereas the

symmetrically de�ned OR1,2 may not because it averages over k12 and k21.

The above results were based on simulations in which interactions occurred only in acquisi-

tion. Additional simulations that allowed interactions in both acquisition and clearance showed

almost identical performance of both the hazard-based and odds-based predictors (compare

Figure 2 to Section H of electronic supplementary material).
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4 Discussion

This paper aims to develop methodology for predicting type replacement for pathogens with

many, potentially interacting types using pre-vaccination epidemiological data. We have pro-

posed a predictor of replacement by individual non-vaccine types (i.e. increase in type-speci�c

prevalence) and another predictor of increase in the overall non-vaccine-type prevalence. Both

predictors are initially de�ned in terms of hazards of acquiring and clearing the non-vaccine

types and thus, in principle, require estimation of longitudinal data. In addition, we have de-

rived alternative predictors that can be readily estimated from cross-sectional prevalence data

as odds ratios. All proposed predictors demonstrated satisfactory performance (mostly above

85%) across a range of simulated structures of type interactions except when the interactions

were strongly asymmetric.

The predictor of replacement by a given non-vaccine type is constructed as a weighted cross

hazard ratio of acquiring versus clearing infection with the non-vaccine type in question, com-

paring those infected and uninfected with any of the vaccine types. The odds-based alternative

is de�ned as the odds of infection with that non-vaccine type in presence versus absence of

infection with any of the vaccine types.

We note the similarity between type interaction and vaccine e�cacy of multi-valent vaccines

as both are de�ned in terms of cross ratios of weighted hazards in a multi-type setting. In

both cases, it proves useful to weigh hazards with the steady-state prevalence, conditioned on

appropriate risk sets. In de�ning estimators for vaccine e�cacy against one or more vaccine

types, the risk sets are those from which acquisitions of the vaccine types may occur [29].

Likewise, in the current paper, the risk sets are those from which acquisitions (or clearances) of

the non-vaccine type may occur (see the type-speci�c cross hazard ratio (3)).

The predictors of overall replacement take form as products of either the hazard-based or

the odds-based type-speci�c predictors. In e�ect, the overall predictors are obtained by pooling

the type-speci�c predictors on a logarithmic scale. In various studies that have used pairwise

odds ratios to evaluate HPV type interactions, pooling has been performed across the pool of

non-vaccine types for each vaccine type separately [7, 25, 26]. These pooled odds ratios have

been interpreted as the a�nity of a given vaccine type to be involved in coinfection with any of

the non-vaccine types, but their relevance for predicting type replacement has remained elusive.

Our results substantiate the predictive value of pooled odds ratios regarding overall replacement,
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but suggest that pooling is better performed on the entire set of vaccine types, instead of for

each vaccine type separately. Furthermore, the pairwise odds ratios have been compared to

the pooled ones to identify likely candidates for type replacement [7, 25, 26]. Accordingly, the

potential for replacement by a given non-vaccine type has been assessed separately for each

vaccine type, while our type-speci�c predictors capture interactions with all vaccine types in a

comprehensive way.

Our simulation study revealed how the applicability of the new predictors depends on the

underlying structure of type interactions. The predictors performed best under the pairwise-

symmetric multiplicative structure, in which the hazard-based and odds-based predictors are

equivalent. The predictors were mostly able to capture the opposing forces of competition and

synergy as well as the interplay between interactions in acquisition and clearance. Under other

simulated structures, the hazard-based predictors still performed well, while the odds-based

predictors performed fairly up to a reasonable degree of asymmetry. As a rule of thumb, sym-

metric interactions facilitate prediction of type replacement, while complex and heterogeneous

interactions may necessitate more sophisticated predictors that capture details and directions

of interactions. For HPV, little is known about the structure of interactions between genotypes

as the very existence of interaction is already di�cult to determine. For instance, any imbal-

ance between type-speci�c prevalence may mask possible asymmetric interactions, and although

pooling of multiple types may increase the power of detecting interaction, it may also obscure

type-speci�c patterns. Nevertheless, our simulation study demonstrated that the new predictors

are robust against various interaction structures.

We cannot ensure good performance of the proposed predictors under mechanisms of inter-

actions other than the ones we considered. For instance, if the pathogen types interact through

natural cross-immunity that is long-lasting, infections with di�erent types may be positively

associated (i.e. as given by odds ratios greater than one) while there is a risk for type replace-

ment [30, 31]. This shortcoming is inherent to the di�culty to distinguish between susceptible

individuals and those who have acquired natural immunity, as is the case for HPV infection

which induces only a weak antibody response [32]. Nevertheless, if immunity is con�ned to be

type-speci�c, the predictors work equally well in a two-type model [21], and we envision the

proposed predictors to remain applicable also in a multi-type setting. Another mechanism that

we did not consider is competition for transmissibility, e.g. through reduction of viral load dur-

ing coinfection [13, 14, 15]. Although competition for transmissibility is not captured by the
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proposed predictors, it is likely correlated with competition in clearance, as HPV persistence is

also determined by viral load [16]. Hence, the predictors may retain good predictive ability even

when not all mechanisms of interactions are captured.

Despite the theoretical appeal of the proposed predictors and their promising performance

in simulations, some challenges still need to be addressed. First, more extensive simulations are

needed to investigate how well the predictors perform with high numbers of pathogen types.

Here, simulations were performed with at most seven types, while HPV consists of up to �fteen

high-risk types. Second, our method assumes elimination of all vaccine-targeted types, although

some vaccine types or cross-protective types may persist, especially when vaccination coverage

is low [4, 5]. If persistence of targeted types would mostly prevent or limit the extent of type

replacement, our method may still provide good predictions as a worst-case scenario. However,

formal analysis would be required to sharpen this intuition. In addition, we ignore evolution of

the model pathogen types for the timescale of type replacement, which seems plausible for HPV

given its low mutation rate [33]. However, in the long run, vaccination may induce an evolution-

ary change of the vaccine types, which could lead to type replacement by novel (as opposed to

evolutionarily stable) types. Third, it remains to be investigated whether the hazard-based and

odds-based predictors can be accurately estimated from limited data. In particular, although

the hazard-based predictors performed better in simulations, it is not straightforward which ones

are more suitable for the empirical setting. In general, hazard-based estimates are more robust

against di�erent sources of bias (e.g. due to population entry and unobserved heterogeneity) [31]

but require a larger sample size than estimation of type-speci�c point prevalence. In addition,

statistical methods need to be developed to deal with possible confounding due to common risk

factors, which were neglected in our analysis. In particular, multivariate statistical methods

(e.g. GEE and random e�ect models) may be adapted to adjust for observed heterogeneity or

control for unobserved heterogeneity when estimating the new predictors, which are essentially

odds and hazard ratios.

For HPV, most epidemiological studies have concluded a low risk of type replacement based

on a lack of systematic patterns of negative associations in the co-occurrence of vaccine and

non-vaccine types [12, 25]. The methodology presented in this paper may help to translate

the observed patterns into explicit prediction of the overall risk of replacement. Additionally,

application of our type-speci�c predictors could discover hitherto hidden potential for type re-

placement, as this potential is not only determined by direct interactions with the vaccine types
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but also shaped though indirect interactions with other non-vaccine types. As the circulation

of vaccine types will be further reduced in the near future, more data will become available to

validate any predictions about the long-term impact of HPV vaccination. The proposed method-

ology could also be used to give better insights into the underpinnings of type competition in

Streptococcus pneumoniae, a pathogen for which replacement has been widely observed after the

introduction of the pneumococcal conjugate vaccination [34, 35].

To conclude, we developed novel methodology for predicting type replacement in a setting of

many interacting types. We did so by relating available epidemiological data to the underlying

mechanisms of how pathogen types may interact. The proposed predictors may help to better

anticipate and understand the impact of vaccination against pathogens with many coexisting

(sub)types.
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Figure 1: (a) The eight infection states and transitions pertaining to acquisitions in a three-type system. For
convenience, the reverse transitions (i.e. clearances) are not shown. The colours indicate the aggregate states for
V T = {1, 2}, i = 3 and the corresponding type-3 acquisitions; AV T in yellow, AV T,i in green, Ai in blue, A0 in
red. (b) Graphical representation of the interaction parameters under the symmetric multiplicative structure or
pairwise-asymmetric multiplicative structure in a three-type system. Under the pairwise-symmetric multiplicative
structure, pairs of reverse interaction parameters would moreover be identical (i.e. kij = kji).
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Figure 2: Performance (proportion of correct predictions among all generated parameter sets) of predictors
HRV T,i, HR, ORV T,i, and OR under alternative multiplicative structures for interaction in acquisition (and
no interaction in clearance). Row 1: pairwise-symmetric. Row 2: groupwise-symmetric. Rows 3-5: increasing
pairwise-asymmetric with increasing values of ε for more asymmetry between pairs of reciprocal interaction
parameters. Performance of HRV T,i and ORV T,i were obtained by averaging over the performance of each
non-vaccine type i.
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AV T = {X : |X ∩ V T | > 0, i 6∈ X} AV T,i = {X : |X ∩ V T | > 0, i ∈ X}
states with vaccine type(s), without type i states with vaccine type(s), with type i

A0 = {X : |X ∩ V T | = 0, i 6∈ X} Ai = {X : |X ∩ V T | = 0, i ∈ X}
states without vaccine type(s), without type i states without vaccine type(s), with type i

Table 1: Four disjoint collections of infection states constructed for the de�nition of the type-speci�c cross hazard
ratio (3). Here, V T denotes the set of vaccine types.
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