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Abstract

Communication and dynamic routing play important roles in the human brain to
facilitate flexibility in task solving and thought processes. Here, we present a new
network perturbation methodology and a corresponding analysis method to investigate
and demonstrate the dynamic switching between different excitable pathways in the
network. The methodology probes for dynamic changes in network communication
pathways based on the relative phase offsets between two weak external oscillatory
drivers. To investigate the feasibility and the properties of this method we use a
computational modeling approach with delay-coupled neural mass models. In a model
of the human connectome we show that network pathways have characteristic timescales
and thus specific preferences for the phase lag between the regions they connect. For
the analysis of dynamic switches of communication pathways we define the
pathway-synchronization-facilitation index (PSF), which measures for a given pair of
network nodes how their interaction is modulated by specific phase offsets. Our
simulation results indicate that the PSF decreases with increasing shortest path length
between the node-pair and increases with the number of different pathways by which
the two nodes are connected. To further analyze the contribution of different interaction
pathways to the communication between two network nodes, we define the
pathway-activation index (PA). Our results show that most pairs of nodes in the
connectome have interaction pathways that can be dynamically activated and that
60.1% of node pairs can switch their communication from one pathway to another
depending on the phase offsets between the two nodes.

Significance 1

A big challenge in elucidating information processing in the brain is to understand the 2

neural mechanisms that dynamically organize the communication between different 3

brain regions in a flexible and task-dependent manner. In this theoretical study, we 4

present an approach to investigate the routing and gating of information flow along 5
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different pathways from one region to another. We show that stimulation of the brain at 6

two sites with different frequencies and oscillatory phases can reveal the underlying 7

effective connectivity. This yields new insights into the underlying processes that govern 8

dynamic switches in the communication pathways between remote sites of the brain. 9

Introduction 10

Over the past decades it has been shown that the brain, facing a specific task or not, 11

reveals a well-structured functional organization [4, 6, 29]. This has been specifically 12

investigated for resting-state networks [2, 5, 9, 24], but also for other networks when the 13

brain is performing different tasks [5, 17]. These findings lead to the idea that 14

resting-state networks describe an inherent functional organization of the brain which is 15

optimized to perform a wide range of tasks it encounters frequently [11,15]. If faced 16

with a task that requires synchronization between brain areas not typically coupled at 17

rest, this organization has to be altered temporarily in order to perform that task 18

efficiently [18,26]. 19

Within a complex network like the human brain, multiple structural pathways exist 20

between most pairs of nodes given a sufficiently high spatial resolution. Since 21

synchronization along such pathways seems to play an important role in the formation 22

of functional clusters, we set out to identify general principles of how these pathways 23

interact with each other during synchronization processes. Several studies have 24

emphasized the importance of information transmission delay for synchronization 25

processes as well as its role in the formation of functional clusters in the 26

brain [3, 4, 7, 8, 12,14,16,28]. Thus, we hypothesize the time lag inherent to a 27

communication path to be a key factor in the interaction between multiple pathways. 28

These time windows are determined by axonal signal transmission delays as well as rise 29

and decay properties of the post-synaptic response. Here, we focus on the former, 30

expecting region-specific differences in the latter to be negligible for the long-range 31

connections considered in this study. In particular, we predict that two brain regions 32

trying to communicate at a certain frequency with a given phase offset will use only a 33

fraction of their available communication paths. Further, we predict that the selection 34

of communication paths will be influenced by their interaction time windows. 35

To test these hypotheses, we introduce an extrinsic stimulation set-up that allows to 36

detect network interactions between pairs of nodes. This stimulation approach relies on 37

the entrainment of a given pair of nodes to oscillate at the same frequency, but with a 38

certain phase lag relative to each other. Comparing the coherence along different 39

pathways over different stimulation phase offsets then reveals the phase preferences for 40

different routes. While Figure 1A illustrates the extrinsic stimulation setup, Figure 1B 41

motivates the use of different stimulation phase lags. It is important to note that even 42

in the absence of any interaction through the network, there might be some induced 43

trivial coherence between two stimulated nodes due to the external signal (Figure 1B). 44

Thus, the coherence is measured for many different stimulation phase offsets and the 45

measurement with the lowest coherence is chosen as the baseline. Any deviation in the 46

coherence from this baseline can be attributed to induced changes in the coupling 47

between the two stimulated nodes through the network, which may happen due to a 48

switching in the pathways (compare Figure 1C and 1D). We propose that these 49

differences in phase preferences at different pathways act as a switching and gating 50

mechanism used by the brain to establish communication between remote brain areas 51

when needed. Our method allows to investigate these mechanisms by probing the 52

network for these dynamic switches in communication pathways. 53

In the next section, we define the computational model used for the evaluation of 54

this methodology. We continue by demonstrating the phase offset preferences of 55
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Figure 1. Illustration of the stimulation methodology and different possible outcomes.
(A) The stimulation at the two nodes could potentially activate different paths (blue or
red) in the network. (B) As an alternative explanation it could also be possible that a
coherence between the two nodes is induced even in the absence of any direct interaction
in the network. (C) In this example a stimulation phase offset of 0π induces a network
interaction between the two stimulated nodes through path 1 (blue). (D) In contrast,
when stimulating with a phase offset of π another path is activated (red).

different pathways in a simplified network of only 2-3 nodes. Subsequently, we move on 56

to a human connectome model and show that coherence between stimulated nodes 57

changes significantly over phase lags and how this effect relates to the connectedness 58

and distance of the nodes. In a final step, we identify the pathways responsible for the 59

interaction between the stimulated nodes, analyze their phase lag preferences and 60

identify cases of phase-related switching between pathways. To this end, we evaluate 61

how the activation of predefined structural pathways between stimulated nodes changes 62

over different stimulation phase offsets. 63

Computational Model 64

To investigate switching and gating properties of networks based on phase relationships, 65

we employ the computational model described in this section. Our computational model 66

is based on the widely used Jansen-Rit neural mass model [21] which employs a 67

mean-field approach to model the interaction between cell populations in the 68

infragranular (green), granular (blue), and supragranular (red) layer, as illustrated with 69

the relevant equations in Figure 2. The standard parametrization originally proposed by 70

Jansen and Rit reflects cortical oscillatory activity in the alpha frequency band. Since 71

the purpose of this article is the investigation of the effect of pathway time-scales on 72

neural synchronization processes and not the effect of node time-scales, we decided to 73

use this standard parametrization for each node in our network [21]. These parameters 74

were chosen based on experimental findings in the neuroscience literature and are 75

reported in Table S1 in the SI Appendix together with the definition of the 76

transformation function σ(V ) from average membrane potentials to firing rates 77

(parameterized sigmoid). 78

To obtain the results reported below, the following two extensions were added to the 79

standard Jansen-Rit model: First, we coupled multiple Jansen-Rit nodes via delayed, 80

weighted connections between their infragranular pyramidal cell populations (yellow in 81

Figure 2). Secondly, weak external drivers were applied at two stimulation sites 82

influencing the average membrane potential of the infragranular layer with phase offset 83

∆ϕ between the two drivers (purple in Figure 2). 84
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Inhibitory cells in supragranular layers

Excitatory spiny cells in granular layers

Excitatory pyramidal cells in infragranular layers

Connectome 
interactions

with conduction delays

External
pertubation

/ if stimulus at node j or 0 otherwise

Figure 2. Neural mass model with external stimulation. A schematic of the neural
mass model showing the interactions between the three neuronal populations in the
infragranular, granular, and supragranular layer. Each post-synaptic potential is modeled
using two differential equations (average membrane potentials V and average synaptic
currents I. Several of these neural mass models are interacting through a connectivity
matrix (yellow). The external perturbation (purple) modulates the average membrane
potential of pyramidal cells at 2 nodes in the network.

Results 85

We first present results of simple simulations with only 2 or 3 nodes. Specifically, we 86

show how the coherence depends on the transmission delay of the connections and on 87

the relative phase offsets between the two external signals. Subsequently, we move on to 88

the connectome simulation, where we first evaluate the overall similarity of the 89

simulated functional connectivity with the functional connectivity obtained from 90

electroencephalography (EEG) recordings. Finally, we present results of the connectome 91

simulation showing a dependence of network communication on the stimulation protocol 92

and the characteristic time-scales of communication paths. 93

Simple Models With 2 or 3 Nodes 94

The idea behind the extrinsic stimulation approach can be well explained using a simple 95

toy-model of 2 directly coupled Jansen-Rit nodes, where each node is stimulated with a 96

fext = 11 Hz sinusoidal signal with strength cext = 0.25 mV. Figure 3 shows the 97
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Figure 3. Simulations with 2 or 3 nodes, where the red edges correspond to the distance
that was varied. Color indicates the coherence between the two driven nodes. The PSF
values are shown at the bottom of each panel. (A) Nodes with direct uni-directional
coupling. (B) Nodes with direct bi-directional coupling. (C) Nodes with indirect (via
a third node) bi-directional couplings. The intermediate node was placed at 25 % of
the total connection distance, while the overall distance between the outer nodes was
varied. (D) Nodes with indirect bi-directional couplings where the overall distance was
kept at 100 mm, while the intermediate node was positioned at varying positions along
the connection. Parameters used in all panels: v = 3 m/s, Cmj · cnet = 0.1 if there is a
connection from node m to j or 0 otherwise.

coherence between the driven nodes for systematic changes in the phase offset between 98

the stimuli and the distance between the coupled nodes. While uni-directionally coupled 99

nodes can have preferences for any stimulation phase offset, as shown in Figure 3A, 100

bi-directionally coupled nodes are more susceptible for stimulation at in- or anti-phase 101

(see Figure 3B). This shows that the communication between coupled pairs of nodes can 102

be modulated by stimulation and that communication channels can have characteristic 103

stimulation phase offset preferences, depending on their length [22]. 104
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To quantify the modulation of communication, we define the 105

pathway-synchronization-facilitation (PSF), measuring for a given pair of weakly 106

stimulated network nodes ki and kj how their interaction is dependent on specific phase 107

offsets: 108

PSF(ki, kj) = max
0≤∆ϕ≤2π

(
coh(ki, kj ,∆ϕ)

)
− min

0≤∆ϕ≤2π

(
coh(ki, kj ,∆ϕ)

)
, (1)

where coh(ki, kj ,∆ϕ) is the coherence between network nodes ki and kj for stimulation 109

phase offset ∆ϕ. The PSF is high for node pairs if their coherence is high for one 110

stimulation phase offset and low for another, i.e., the relative phase of the stimulation at 111

the two sites matters strongly. The PSF curves in Figure 3A and 3B show that in both 112

cases there is a PSF effect (PSF ¿ 0) and in the case of bi-directionally coupled nodes 113

the strength of this effect depends on the distance between the nodes. 114

To extend this idea to communication via indirect pathways, we investigated 115

synchronization between 2 nodes connected only indirectly via a third intermediate 116

node. We used bi-directional couplings for both connections and both end nodes were 117

stimulated as described previously. As can be seen in Figure 3C and 3D, the interaction 118

between the two weakly stimulated nodes not only depended on the length of the 119

connection, but potentially also on the relative position of the third node on the indirect 120

path. 121

Connectome Model Without Stimulation 122

As shown in the previous section, the coherence in a network of only three nodes can 123

already exhibit very complex dependencies on the stimulation phase offset. Next, we 124

wanted to analyze network communication patterns in the case of a complex network 125

with multiple competing pathways. To this end, we used a model of 33 delay-connected 126

nodes, representing one hemisphere of the human connectome [14]. The structural 127

connectivity matrix was obtained from diffusion tensor imaging (DTI) data as described 128

in more detail in the SI Appendix. Figure 4A shows the sparse connectivity matrix Cmj 129

used to connect the 33 regions and Figure 4B the corresponding distances Lmj . 130

For the same 33 regions, EEG resting-state recordings from the same subjects were 131

used to calculate pairwise coherences in the 10 Hz range as shown in Figure 4C (details 132

in SI Appendix). Similarly, we simulated the 33 connected neural-mass-models and 133

processed the time-series of the pyramidal cells in the same way as the EEG data. This 134

yielded a 33 x 33 functional connectivity matrix which we compared to the empirical 135

functional connectivity by calculating the Pearson correlation coefficient. 136

The selection of parameters was based on the rationale to match the functional 137

connectivity observed in the network model as good as possible to empirical EEG-based 138

functional connectivity from human subjects. We performed a grid search over global 139

structural connectivity scaling cnet and transmission velocity v to obtain the best match 140

between modeled and empirical data. By fitting the velocity, we ensured that our 141

pathway delays reflect realistic, empirically observed timescales of cortico-cortical 142

interactions. We found the highest correlation (r = 0.57) for cnet = 20 and v = 3 m/s, 143

so that we used these parameters for subsequent analyses (Figure 4D). Notice that this 144

correlation is comparable with values of other bottom-up models reported in the 145

literature [14,25], which is remarkable considering that we set a substantial amount of 146

structural connections to 0. 147
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Figure 4. Pairwise measures of connectivity and distance between all 33x33 region
pairs. (A) Structural connectivity matrix with all connections smaller 0.1 set to 0.
(B) Inter-regional distances in mm. (C) Functional connectivity matrix derived from
coherence of EEG data bandpass-filtered around 10 Hz. (D) Functional connectivity
derived from coherence of neural mass model simulations bandpass-filtered around 10
Hz.

Connectome Model With Stimulation 148

Based on this model of cortical activity we used the stimulation approach to investigate 149

how pathways facilitate synchronization between network nodes at certain phase lags 150

between the nodes. Specifically, we weakly stimulated different pairs of cortical regions 151

with varying phase offsets between the two stimulation signals while measuring the 152

coherence between the stimulated nodes at each phase offset. As argued above, finding 153

differences in the coherence over stimulation phase offsets would indicate phase-specific 154

communication modulation between the stimulated nodes. Before analyzing PSF effects 155

in the connectome model, it was necessary to determine the optimal stimulation 156

frequency and strength for this model. This was performed in two steps. First, we 157

stimulated a single region in our network with a stimulus of varying frequency (4-22 Hz) 158

and strength (0.01-2 mV) while evaluating the coherence between region and stimulus. 159

The mean coherence (mean over 5 different stimulated nodes) for each parameter 160

combination can be observed in Figure 5A. Since our main analysis will focus on 161

coupling effects through different network paths between two stimulated nodes, we also 162

calculated the coherence between stimulus and all network nodes (Figure 5B). This 163

average coherence to the full network was strongest at 9-11 Hz, which is also the 164

intrinsic frequency of unperturbed network nodes [27]. Interestingly, at this frequency 165

the coherence to the directly stimulated node was weakest (compare 5A). Based on this, 166

we set the frequency of our stimulus to 11 Hz, at which the network (and not only the 167

directly stimulated node) was most susceptible for entrainment by an external 168

stimulation. 169

In a second step, we stimulated pairs of nodes with 11 Hz stimuli. We varied the 170

stimulus strength (0.25 - 1 mV) and the relative phase offset between the stimuli 171
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Figure 5. Stimulation parameter evaluation. (A) Coherence between the stimulus and
the stimulated region for varying stimulus strength and frequency. The color corresponds
to a mean value over 5 simulations at randomly chosen network nodes. (B) Coherence
between the stimulus and the full network averaged over all 33 nodes for varying stimulus
strength and frequency. The coherence was calculated between the stimulus and each
region and then averaged. (C and D) Coherence between two stimulated nodes for
varying stimulation strength and phase offset. C and D correspond to two different
node pairs that were stimulated demonstrating the variability in phase lag preferences
expressed by different pairs.

(0 − 2π), while evaluating the coherence between the stimulated nodes. All other 172

parameters were chosen to be the same as for the previous simulation. As can be seen in 173

Figure 5C and Figure 5D, the variance of the coherence over phase offsets depended on 174

the stimulation strength. Based on visual inspection of the coherence patterns of 20 175

different region pairs, we chose our stimulus scaling to be cext = 0.5 mV, leaving the 176

variance of the post-synaptic potential of the neural masses in a biologically plausible 177

range and such that the external driver is relatively weak in comparison to the internal 178

network dynamics. This gave us the final set of global model parameters which were 179

used throughout all subsequent simulations. 180

The variability in the coherence between stimulated region pairs that we observed 181

not only over stimulation phase offsets but also over different pairs (as depicted for 2 182

exemplary region pairs in Figure 5C and 5D) shows that the stimulated region pairs 183

interacted with each other and that the interactions showed a characteristic profile of 184

phase offset preferences. To statistically confirm the variance in the coherence between 185

stimulated region pairs over phase offsets, we ran simulations with stimulations of each 186

possible node pair. Again, we varied the phase offset between the two stimuli (16 187

equally spaced phase offsets between 0 and 2π) and evaluated the coherence between 188

the stimulated nodes for each phase offset. Subsequently, those coherences were used to 189

calculate the PSF for each region pair as defined in equation 1. Using a one-sample 190

t-test, we found the PSF effect to be significantly larger than zero (mean = 0.1567, CI 191

= [0.1445,0.1689], t = 25.2595, p ¡ 0.0001). Hence, we were able to show with our 192

8/17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/523522doi: bioRxiv preprint 

https://doi.org/10.1101/523522


0 100 200
average fiber length [mm]

1 2 3 4 5 6
shortest path length

0.02

0.1

1

PS
F

1 2 3 4 5 >6
number of paths

BA C

Figure 6. Pathway Synchronization Facilitation (PSF). All panels show the PSF on a
logarithmic vertical axis and red areas indicate 95 % confidence intervals. Blue boxes
indicate 1 standard deviation. (A) Dependence of PSF effect on shortest path length
between the node pairs. (B) Correlation between PSF effect and average fiber length
along the shortest pathway between the stimulated nodes. (C) Dependence of the PSF
effect on the number of paths connecting the stimulated nodes.

extrinsic stimulation approach that pathways facilitated synchronization between 193

cortical nodes and that the facilitatory strength depended on the phase lag between the 194

region’s average PSPs. 195

With the PSF effect established, we continued by investigating its dependence on 196

certain features of the underlying structural connectivity graph. For this purpose, we 197

searched for all possible pathways between each pair of stimulated nodes based on the 198

structural connectivity matrix reported in Figure 4A. Since every stimulated pair of 199

nodes was connected by at least one path via at most 6 edges, we restricted the search 200

to pathways including 6 edges at maximum. With these pathways at hand, we started 201

out by evaluating how the PSF effect changed with increasing network distance. An 202

analysis of variance showed that the effect of shortest path length (minimum number of 203

edges seperating a pair) on log(PSF) was significant, F(5,521) = 97.6141, p ¡ .0001. As 204

can be seen in Figure 6A, we observed the trend that the PSF effect decreases with the 205

number of nodes separating the stimulated nodes. Furthermore, as depicted in Figure 206

6B, this trend was supported by a significant correlation between the PSF effect and the 207

length of the shortest pathway between the stimulated nodes (r = -0.56, p ¡ .0001), a 208

measurement that is strongly related to both interregional distance and minimal 209

number of separating edges. Thus, we conclude that there is a tendency for a decrease 210

in the interaction of stimulated node pairs with increasing network distance between the 211

nodes, where network distance can be measured either as the number of edges or as the 212

summed up length of the edges of the shortest pathway connecting the nodes. 213

Next, we investigated the dependence of the PSF effect on the connectedness 214

between the stimulated nodes. An analysis of variance showed that the effect of the 215

number of connecting paths (only counting paths with 5 edges or less, all nodes with 216

more than 5 connecting paths were pooled into one level) on log(PSF) was significant, 217

F(5,501) = 10.0827, p ¡ .0001. The latter result can be observed in detail in Figure 6C. 218

Evaluation of Pathway Activation 219

Having described the influence of the external driver on the coherence between 220

stimulated nodes, we next identified which particular pathways were involved in this 221

interaction. For this analysis, we define the pathway activation (PA) for a pathway 222

through n nodes ki with i = 1..n at a phase offset ∆ϕ as the minimum of the pairwise 223

coherences between neighboring pathway nodes: 224

PA(k1..kn,∆ϕ) = min
i=1,..,n−1

(
coh(ki, ki+1,∆ϕ)

)
. (2)
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In other words, if communication fails at any point along a pathway, leading to a 225

reduced coherence between the involved nodes, this is considered to be a bottleneck for 226

the information flowing through that pathway. We evaluated the pathway activation 227

(PA) 2 for all pathways of up to n = 5 nodes connecting a given pair of stimulated 228

nodes for all stimulation phase offsets. Doing this for each stimulated node pair, we 229

found different classes of pathway interactions: Some pairs show only a very small 230

selectivity for the stimulation phase offset (Figure 7A), while other node pairs were 231

connected by paths with PA values with a strong dependence on the phase offset 232

(Figure 7B, 7C). Moreover, some of these node pairs switched their interaction between 233

different pathways depending on the stimulation phase offset, as shown in Figure 7C 234

and the two switching pathways in Figure 7D and 7E. 235

To further analyze how the communication via specific pathways depends on the 236

stimulation phase offset, we define the pathway phase selectivity (PPS) of a pathway P1 237

similar to the PSF as 238

PPS(P1) = max
∆ϕ

(
PA(P1,∆ϕ)

)
− min

∆ϕ

(
PA(P1,∆ϕ)

)
, (3)

Pathways with relatively constant PA values for all stimulation phase offsets have a low 239

PPS (example in Figure 7A), while pathways with a high variation in the PA values 240

have a high PPS (example in Figure 7B and 7C). The evaluation of PPS values for all 241

node pairs results in a bimodal distribution (Figure 7F). The activation of pathways in 242

the first mode at PPS = 0.1 is very hard to influence with phase offsets. But we also 243

found many node pairs with pathways in the second mode at PPS = 0.35. The 244

communication of these later node pairs can be modulated using different phase offsets. 245

In a next step, we analyzed the relationship of pathway-specific phase preferences (as 246

shown in Figure 7A-C) to the phase preferences of the stimulated nodes (as shown in 247

Figure 5C-D). We chose the most active pathway per node pair (averaged over all 248

stimulation phase offsets) and calculated the phase difference between the stimulation 249

phase offset with the highest coherence and the stimulation phase offset with the 250

highest PA. The histogram of these phase differences is significantly different from 251

uniform, χ2(15, N = 514) = 273.05, p < .001, and has a peak at 0 (Figure 7G). In 252

contrast, a similar analysis for the second strongest pathway (excluding all pathways 253

with overlapping sections with the strongest path), results in a histogram that does not 254

differ from a uniform distribution, χ2(15, N = 514) = 14.06, p = 0.52 (Figure 7H). 255

Therefore, we conclude that the pathway with the strongest PA shows a similar phase 256

preference as the coherence between the two stimulated nodes. 257

Finally, we quantified the switching between the strongest and second strongest 258

pathway per node pair. To this end, we define the pathway switching index (PSI) 259

between pathways P1 and P2 as 260

PSI(P1, P2) = max
∆ϕ

(
PA(P1,∆ϕ) − PA(P2,∆ϕ)

)
·max

∆ϕ

(
PA(P2,∆ϕ) − PA(P1,∆ϕ)

)
, (4)

The PSI is positive if the two pathways switch their activation depending on the 261

stimulation phase offset, meaning that at one phase offset the first path is more active 262

and at another phase offset the second path is more active. We found that 60.1% (309 263

of 514) of node pairs have a positive PSI between their non-overlapping strongest and 264

second strongest pathways (Figure 7I). These results suggest that in this network of 33 265

nodes of the human connectome many node pairs have the capacity to switch their 266

communication between at least two different pathways with a PA characteristic similar 267

to the example shown in Figure 7C. 268
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Figure 7. Dependence of path activation (PA) on stimulation phase offset. Panels
(A-C) show the PA values (radius) for different stimulation phase offsets (angle) for
exemplary node pairs. Blue corresponds to the pathway with the strongest overall PA.
Red corresponds to the second strongest pathway that has no overlapping segments with
the strongest. Green curves show the strongest of the remaining pathways (with possible
overlapping path segments with the former two). The two arrows in (C) indicate the
phase offsets which are used in panels (D-E). (D) Connectome pathways for stimulation
of the node pair shown in (C) at phase offset 1.5π. The two stimulated nodes are shown
as two black dots. The most active pathway at this stimulation phase offset is highlighted
with a stronger line width. All colors correspond to the coherence of nearest neighbours
in the connection graph. (E) Similar to (D) but for stimulation phase offset 0.5π with a
different most active pathway. (F) Histogram of pathway phase selectivity. The values of
the strongest paths of examples shown in (A-C) are marked with arrows. (G) Histogram
of phase differences between the stimulation phase offset where the most active pathway
has the highest pathway activation and the stimulation phase offset where the coherence
between the stimulated nodes was highest. (H) Similar to (G) but for the second most
active pathway (excluding path overlaps with the most active pathway). (I) Histogram
of normalized pathway switching index between the strongest and second strongest
pathways. The values of the node pairs of examples shown in (A-C) are marked with
arrows. The square-root normalization of the PSI transforms back from the space of
multiplied coherence values to the original non-squared coherence space (analogous to a
transformation from variance to standard-deviation).

Discussion 269

We have carried a computational study of cortico-cortical synchronization processes that 270

strongly emphasizes the role of phase relationships for dynamic switches in 271

communication pathways. We introduced a novel method to detect network interactions 272
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between pairs of cortical regions via an extrinsic stimulation scheme. Using our method, 273

we were able to quantify the influence of different pathways on cortico-cortical 274

synchronization processes between all pairs of 33 brain regions and could further 275

identify the pathways those region pairs use to interact with each other. These 276

pathways represent communication channels with distinct interaction time windows. We 277

found the ability of regions to communicate via these channels to depend on the phase 278

lag at which they try to synchronize [19]. This finding is in line with the 279

communication-through-coherence theory that predicts neural communication to 280

critically depend on oscillatory phase differences [16]. Furthermore, it provides a 281

mechanistic explanation for the dependency of the effect of extrinsic brain stimulation 282

on the stimulation phase [20] and could guide future brain stimulation studies that are 283

investigating phase-lagged neural synchronization, e.g., through multi-site transcranial 284

stimulation, or optogenetics in combination with multielectrode recordings [32]. Our 285

method is also applicable in future theoretical studies characterizing the dynamic 286

properties of network graphs. 287

Since we were further able to demonstrate that for different stimulation phase offsets 288

between the communicating regions, different communication channels may be 289

employed, we believe that the switching between different synchronization phase lags 290

could be a potential mechanism through which brain regions can dynamically change 291

their effective communication channels. As suggested in [11,13], such a mechanism 292

would provide the necessary flexibility to allow for the dynamic binding of remote 293

neural representations into different concepts. Taken together, our results suggest a 294

potential mechanism the human brain might have developed to use the physiological 295

constraints imposed by coupling delays to its computational advantage. 296
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Supporting Information 297

In the following, we present the detailed parameters of the neural mass model, the 298

preprocessing of the structural connectivity, and the functional connectivity. 299

Neural Mass Model 300

All simulation results reported refer to 16 minutes of simulated network behavior, using
an explicit Euler method with an integration step-size of 0.5 ms. The parameters of the
neural mass model are shown in Table S1. To translate post-synaptic responses back
into firing rates, the following instantaneous sigmoidal transform was used:

σ(V ) =
2e0

1 + er(V0−V )
. (5)

Structural Connectivity and Distance Estimates 301

In a first step to building a bottom-up model of cortical activity we needed to 302

approximate the structural connections between different brain regions. As mentioned 303

in the introduction, this can be done via DTI recordings. However, there are several 304

technical limitations as to what extend human SC can be approximated based on DTI, 305

one of them being the systematic underestimation of inter-hemispheric 306

connections [23, 31]. Thus we decided to restrict our analysis to the cerebral cortex of a 307

single hemisphere. To this end, we used the same structural imaging data, 308

pre-processing and probabilistic tracking pipeline as reported by Finger et al. [14], but 309

restricted subsequent processing to the 33 regions of interest (ROIs) of the left 310

hemisphere. This data set included diffusion- and T1-weighted images acquired from 17 311

healthy subjects (7 female, age mean = 65.6y ± 10.9y) with a 3 Tesla Siemens Skyra 312

MRI scanner (Siemens, Erlangen, Germany) and a 32-channel head coil. The 33 ROIs 313

were registered individually for each subject based on the ’Desikan-Killiany’ cortical 314

atlas available in the Freesurfer toolbox (surfer.nmr.mgh.harvard.edu) [10]. This gave us 315

the euclidean distances between each pair of ROIs. The incoming connections to each 316

region were normalized such that they summed up to 1. Since we were only interested 317

in synchronization along indirect pathways, we needed some connections in our model to 318

be strictly 0. Otherwise, it would be difficult to exclude potential synchronization along 319

very weak direct connections. Hence, we chose to set all connections below a strength of 320

0.1 to zero. Afterwards, we re-normalized the input to each region such that they 321

summed up to 1. The resulting SC matrix as well as the pair-wise distances are 322

visualized in Figure 4A and 4B in the main paper. 323

Empirical Resting-State Functional Connectivity 324

Based on those SC and distance information we aimed to build a model of cortical 325

activity able to reflect empirically observed synchronization behavior. Thus we needed 326

empirical observations of cortical activity to evaluate our model. For this purpose, we 327

acquired EEG data from the same 17 subjects as described above. This was done with 328

63 cephalic active surface electrodes arranged according to the 10/10 system (actiCAP 329

R Brain Products GmbH, Gilching, Germany) for eight minutes of eyes-open 330

resting-state. Again, data acquisition and pre-processing followed the same procedure as 331

reported by Finger et al. [14]. EEG time-series from the surface electrodes were 332

projected onto the centers of the ROIs via a linear constraint minimum variance spatial 333

beam former [30]. The resulting source-space signals were band-pass filtered at 10 Hz 334

and turned into analytic signals using the Hilbert transform. Subsequently, functional 335

connectivity was evaluated as the coherence between all pairs of ROIs [1]. This resulted 336
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in the 33 x 33 functional connectivity matrix that can be observed in Figure 4C in the 337

main paper and served as optimization target for our model. 338

Table S1. Model Parameters

Param. Value Interpretation

He 3.25 mV avg. gain of excitatory synapses
Hi 22 mV avg. gain of inhibitory synapses
τe 10 ms lumped time constant of excitatory synapses
τi 20 ms lumped time constant of inhibitory synapses
κ1 135 avg. number of contacts from EINs to PCs
κ2 0.8κ1 avg. number of contacts from IINs to PCs
κ3 0.25κ1 avg. number of contacts from PCs to EINs
κ4 0.25κ1 avg. number of contacts from PCs to IINs
e0 2.5 Hz maximum scaling of the synaptic gain
r 0.56 mV −1 steepness of the sigmoid function
v0 6 mV value with 50% of max. firing rate
µu 120 - 320 Hz sub-cortical input
dt 0.5 ms simulation step size
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