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Abstract

Xenotransplantation of human cells into immunodeficient mouse models is a very powerful 

tool and an essential step for the pre-clinical evaluation of therapeutic cell- and gene- based 

strategies. Here we describe an optimized protocol combining immunofluorescence and real-

time quantitative PCR to both quantify and visualize the fate and localization of human 

myogenic cells after injection in regenerating muscles of immunodeficient mice. Whereas 

real-time quantitative PCR-based method provides an accurate quantification of human cells, 

it does not document their specific localization. The addition of an immunofluorescence 

approach using human-specific antibodies recognizing engrafted human cells gives 

information on the localization of the human cells within the host muscle fibres, in the stem 

cell niche or in the interstitial space. 

These two combined approaches offer an accurate evaluation of human engraftment including 

cell number and localization and should provide a gold standard to compare results obtained 

either using different types of human stem cells or comparing healthy and pathological 

muscle stem cells between different research laboratories worldwide.
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Introduction
Investigating the in vivo behaviour of human cells, whether it concerns fundamental aspects, 

pathological mechanisms or therapeutic strategies, represents a challenging aspect of cell 

biology. To recreate in vivo dynamics and provide knowledge about in vivo human cell 

behaviour, xenotransplantation of human cells in immunodeficient mice has been developed 

and represents a unique experimental approach. Although xenotransplantation has been 

widely used in immunology, it also represents a powerful tool to investigate the cell 

mechanisms involved in both skeletal muscle repair and homeostasis in normal and 

pathological situations 1. Post-mitotic and stable during healthy adulthood, skeletal muscle 

can face rapid and devastating changes following trauma or in dystrophic conditions 1. At 

rest, the physiological muscle stem cells, called satellite cells, are mitotically quiescent. After 

injury or increased load, satellite cells become activated and proliferate thus supplying a large 

number of new myonuclei ready to fuse to replace damaged myofibers and assure a rapid 

muscle growth and repair, in addition to generating new satellite cells by self-renewal 2. 

Muscle regeneration is an extremely well orchestrated process in which several cell actors 

(satellite-, immune system- and non-myogenic-cells) 3-5 play distinct roles at different steps 

of muscle regeneration. Slight modifications in the regeneration kinetics can result in 

impaired muscle repair. In healthy conditions, muscle regeneration is highly efficient whereas 

in muscular diseases, regeneration can be delayed or compromised, resulting in progressive 

muscle wasting and weakness. To better understand muscle maintenance and repair in healthy 

and dystrophic contexts, as well as to evaluate the efficacy of cell-based therapeutic 

strategies, it is essential to study the in vivo behaviour of control, dystrophic-derived, and/or 

modified human satellite cells. Indeed, for genetic diseases including muscular dystrophies, 

cell-based treatment is one of the innovative and promising therapeutic approaches 6. In 

addition, genetic modifications of human stem cells, whether it is through gene therapy or 
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direct genomic correction, must be tested in an in vivo context as a necessary step towards 

therapy. In this context, accurate methods are needed to evaluate human cell behaviour and 

participation to muscle regeneration during xenotransplantation. Different cell types have 

been used as possible vectors for cell-based therapy 7, 8, 9, 10, 11. However, the direct 

comparison of distinct cell types or treatments is often difficult since different techniques are 

being used in different laboratories to quantify in vivo engraftment. Here we describe a 

combined immunofluorescence and real time quantitative PCR-based approach to quantify the 

grafting efficacy of human myogenic precursors after intramuscular injection in 

immunodeficient mouse and to analyse their fate in these regenerating muscles.

Materials and methods

Animals

2-3 month old Rag2-/-Il2rb-/- immunodeficient mice were used as recipients for human 

myogenic precursor transplantation. Mice were anaesthetized by an intraperitoneal injection 

of 80 mg/kg of ketamine hydrochloride and 10 mg/kg xylasine (Sigma-Aldrich. St. Louis, 

MO) as previously described 12. This study was carried out in strict accordance with the 

legal regulations in France and according to European Union ethical guidelines for animal 

research. The protocol was approved by the Committee on the Ethics of Animal Experiments 

Charles Darwin N°5 (Protocol Number: 7082-2016092913021452). All surgery was 

performed under ketamine hydrochloride and xylasine anesthesia, and all efforts were made 

to minimize suffering.

Cultures of human myoblasts

Human myoblasts were isolated from the quadriceps muscle of a 5-day-old infant in 
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accordance with the French legislation on ethical rules, as previously described 13. Cells 

were expanded in a growth medium consisting of 199 medium and DMEM (Invitrogen, Life 

Technologies, Saint-Aubin, France) in a 1:4 ratio, supplemented with 20% foetal calf serum 

and 50 g/ml gentamycine (Invitrogen), at 37°C in a humid atmosphere containing 5% CO2. 

Population doublings (PDs) were determined at each passage according to the formula: log 

(N/n)/log 2 where N is the number of cells counted and n is the number of cells initially 

plated.

Cell preparation and myoblast transplantation

Myoblast cultures were washed in PBS, trypsinized, centrifuged, and re-suspended in PBS. 

The cells were injected into both Tibialis Anterior (TA) muscles. Prior to myoblast 

implantation, the TAs of the immunodeficient mice were subjected to three freeze lesion 

cycles of ten seconds each in order to damage the muscle fibers, and trigger regeneration, thus 

stimulating the implanted myoblasts to fuse and form new muscle fibers. Human myoblasts 

were implanted into the recipient’s muscle immediately after cryodamage, using a 25 l 

Hamilton syringe as previously described 7. 15 l of cell suspensions containing 5x105 

myoblasts in PBS were injected in a single injection site in the mid belly of the TA. For 

combined immunofluorescence (IF)/qPCR analysis 1x105 cells were injected. The skin was 

then closed using fine sutures. At 0, 5, 7, 15, 21, 30 days (d) after injection mice were 

sacrificed (3n6 for each time point) and the TAs were dissected and analysed. TAs were 

mounted in tragacanth gum (6% in water; Sigma-Aldrich, St Louis, MO) and frozen in 

isopentane precooled in liquid nitrogen for immunofluorescence (IF) analysis and combined 

IF/qPCR analysis. TAs were directly frozen in liquid nitrogen for DNA extraction and qPCR 

analysis. All muscles were stored at -80°C.
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Histology and immunofluorescence

For the assessment of tissue morphology and analysis at different steps of muscle 

regeneration, 5 μm thick muscle cryosections were stained with hematoxylin and eosin 

(H&E) and examined by light microscopy. Immunofluorescence analyses of grafted TA 

muscles were performed using antibodies specific for: human lamin A/C (mouse monoclonal 

IgG2b, 1:400, NCL-Lam-A/C, Novocastra, Leica Biosystems, Wetzlar, Germany or mouse 

monoclonal IgG1, 1:400, clone JOL2, AbCam, Cambridge, UK) to detect human nuclei; Pax7 

(mouse monoclonal IgG1, 1:50, Pax7 Developmental Studies Hybridoma Bank) to detect 

satellite cells; human spectrin (mouse monoclonal IgG2b, 1:50, NCL-Spec1, Novocastra) to 

detect human protein expressing fibres; laminin, (1:400, rabbit polyclonal, Z0097, Dako) to 

delineate muscle fibre architecture. Briefly, cryostat sections were blocked in 2% BSA in 

PBS. Sections were then incubated with primary antibodies for 1h, washed in PBS, and 

subjected to the appropriate secondary antibodies for 45 min: Alexa Fluor 488 coupled goat 

anti-mouse IgG2b, Alexa Fluor 555 coupled goat anti-mouse IgG1 and Alexa Fluor 647 

coupled goat anti-rabbit. Hoechst staining (0.5g/ml, Hoechst No. 33258; Sigma-Aldrich) 

was used to visualize nuclei and sections were mounted using an aqueous medium 

(Cytomation fluorescent mounting Medium, S3023, Dako). All images were visualized using 

an Olympus BX60 microscope (Olympus Optical, Hamburg, Germany), digitalized using the 

Photometrics CoolSNAP fx CCD camera (Roper Scientific, Tucson, AZ) and analyzed using 

the MetaView image analysis software (Universal Imaging, Downington, PA). To calculate 

nuclear size, a total of at least 500 cells were counted in different cross-sections at 7 days after 

injection using Image J 1.44o analysis software (http://imagej.nih.gov/ij).

Isolation of genomic DNA from injected TA
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Genomic DNA was extracted using a salting-out procedure. Briefly, TAs were resuspended in 

proteinase K digestion buffer (50mM Tris pH 7,4, 20mM EDTA, 1% SDS) containing 0,2 

mg/ml proteinase K. To obtain a lysis of the muscle tissue, FastPrep system (MP 

Biomedicals, France) was used to completely homogenize the injected TAs. Muscle 

homogenization was incubated at 37°C overnight under agitation. After proteinase K 

inactivation and RNase A treatment (1 mg/ml), saturated 6M NaCl solution was added to each 

tube and shaken vigorously for 30 seconds, followed by centrifugation at 12000 rpm for 7 

minutes (min). In order to precipitate the DNA, 2 volumes of absolute ethanol were added to 

the supernatant. After centrifugation (5000g for 5 min), DNA pellet was resuspended in 

ethanol at 70%. After centrifugation (5000g for 5 min), DNA was allowed to dissolve in the 

same volume of water over night at 4°C before quantification. DNA was quantified using 

ND-1000 NanoDrop spectrophotometer (Thermo Fischer Scientific, DE, USA). To establish a 

standard curve, increasing quantity of human myoblasts, ranging from 5x103 to 5x105, was 

added to a mouse TA in an eppendorf tube and frozen in liquid nitrogen. DNA extraction was 

then performed as described above.

Quantitative-PCR

Quantitative polymerase chain reaction (qPCR) was carried out using SYBR green mix buffer 

(Roche Applied Science, Meylan, France) in a LightCycler 480 Real-Time PCR System 

(Roche Applied Science) as follows: 8 min at 95°C followed by 50 cycles at 95°C for 15 

seconds (s), 60°C for 15 s and 72°C for 15 s, with the program ending in 5 s at 95°C and 1 

min at 65°C. Specificity of the PCR product was checked by melting curve analysis using the 

following program: 65°C increasing by 0.11°C/second to 97°C. Primer sequences for human 

Titin (TTN) DNA, designed using the web interface Primer-BLAST 
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http://www.ncbi.nlm.nih.gov/tools/primer-blast/, are :

5’-ACCACATGCATTTTATCAGAGC-3’  and 5’-CCTTGAACATTCTCAACAGGC-3’. 

Statistical Analysis

Data were expressed as the mean  SEM. All statistical analyses were performed using 

GraphPad Prism (version 6.0d, GraphPad Software Inc., San Diego, CA). Statistical 

significance was assessed by one-way ANOVA or student t-test. A difference was considered 

to be significant at *P < 0.05, **P < 0.01, ***P < 0.001.

Results and discussion

Real time PCR quantification of human engrafted cells: design 

and specificity of primers

Following muscle injury, satellite cells, which are the muscle stem cells, become activated, 

start to proliferate and fuse together to replace damaged myofibers. In order to create a 

regenerative environment in the host and follow the participation of human satellite cells to 

tissue repair, we induced regeneration in the Tibialis Anterior (TA) muscle of 

immunodeficient mice using a freeze-injury protocol 7, one of the most commonly used 

physical procedures for provoking muscle injury and repair in mice 15. Human myoblasts 

were injected, after cryodamage, into regenerating TA and at 0, 5, 7, 15, 21 or 30 days (d) 

after injection, mice were sacrificed, the TAs excised and processed (Fig 1A). 

In order to estimate the number of engrafted human myoblasts present in the TA after 

injection, we quantified the amount of human DNA present in the mouse muscles, using 
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primers recognizing specifically the human Titin (TTN) gene (and not mouse ttn). The human 

gene encoding for TTN (367 exons) is found as only one single copy, localized on 

chromosome 2 (2q31). To ensure that our primers recognize exclusively genomic DNA 

sequences, we designed the couple of primers in the intron 1 of the human gene. Specificity of 

the primers has been assessed by PCR and results are shown in Fig 1B. 

In order to establish a standard curve for the quantification by qPCR of the amount of human 

cells, we prepared a range of samples by mixing a defined number of human myoblasts 

(5x103, 15x103, 3x104, 1x105, 2x105, 5x105 cells) together with an immunodeficient mouse 

TA previously frozen in liquid nitrogen. This procedure allows us to mimic the DNA 

extraction of human cells after injection in mouse TA, maintaining the same background, that 

is to say the presence of a large quantity of mouse DNA and contaminants accumulated 

during the DNA extraction, potentially inhibiting the qPCR (Fig 1C). In order to easily 

compare standard curve samples and research samples the same experimental process was 

applied to both: same dilution of the total extracted DNA, and same volume for each sample 

in each 384-plate well for qPCR analysis. We found a linear correlation with R2=0,89902 

between the amount of cells (expressed as Ln) and the cycle threshold (Ct) value (Fig 1C).

qPCR for human engrafted cells quantification

The total DNA extracted was resuspended in distilled water and an aliquot of diluted 

extracted DNA was used to perform the qPCR. The qPCR technique, performed 

independently on 4 TAs and reproduced in triplicate, allows a rapid quantification of a large 

number of samples. Analysis of the qPCR data showed a progressive diminution of the 

number of human myoblasts from 5d after grafting when compared to the amount found at 

injection (0d) (Fig 1D). This is in accordance with what is found in our and other previous 

works with human cells 12, 16-17: human myoblasts persist better than murine cells in 
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mouse muscles and the massive loss of murine cells observed during the first days after 

injection 18 is not confirmed with human cells, when they are injected in an 

immunodeficient mouse, although a loss of cells is gradually observed at later time points 

(Fig 1C). More importantly, immediately after injection, human myoblasts remain confined in 

an enriched laminin “pocket” around the injection site 12. In this pocket, the cells are tightly 

packed together making their quantification by immunofluorescence analysis very difficult 

and time-consuming. qPCR analysis, which easily permits quantification at these time points, 

has been used to quantify the amount of human DNA present in the samples. Our results 

confirm that the qPCR–based approach represents a robust and sensitive technique to detect 

human DNA in a murine context, as recently also described by Funakoshi et al, with qPCR 

probes specific for human Alu elements in mouse DNA 19.

Immunofluorescence analysis: spatial information 

In order to visualize grafted human cells, TA were entirely cut along their entire length into 5-

μm thick cryosections. A schematic representation of the analysis of TA muscles injected 

with human myoblasts after freeze-injury and the method used to analyse the TAs is given in 

Fig 2A. Briefly serial sections were collected on microscope slides (n=30), each section being 

spaced from the next section by 500 μm (Fig 2A). One slide was used to quantify the total 

number of human cells over the entire length. Human nuclei were revealed using a human-

specific anti lamin A/C antibody. This immunostaining allows the localization of human cells 

at early time points, or myonuclei and human undifferentiated cells at later time points, within 

the injected muscle, and thus the global dispersion on transversal sections. This dispersion can 

be evaluated by measuring the area occupied by the injected cells as previously shown 7 

using imaging software. Analysis was carried out on the section bearing the largest number of 
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lamin A/C-positive cells along the entire muscle. On the transversal sections, the smallest 

ellipse area containing inside of it all of the human cells was calculated as a percentage of the 

total area of the TA using Image J analysis system software. We chose to analyse this 

parameter 21d after injection, since this time point is the one that has been most often used to 

analyse the participation of myogenic cells to muscle regeneration. At this time, human 

myoblasts are found in an area representing 50,74% ±5.5 of the whole transversal section of 

the muscle (Fig 2B). Longitudinal dispersion of injected cells within the host muscle can be 

evaluated by measuring the distance (i.e., number of sections) along which the presence of 

lamin A/C positive nuclei are detected throughout the entire longitudinal length of the muscle. 

This analysis showed that at 21d after injection, human cells are present throughout roughly 

70% (70,23±4,9) of the length of the injected muscle (Fig 2B). H&E staining was performed 

to appreciate the regeneration status and the architecture of the damaged muscle: typically a 

control muscle appears well organized with mouse myofibers characterized by a polygonal 

shape and peripheral nuclei (Fig 2C, CTR). 7d after cryodamage, we observe an intense 

muscle regeneration, clearly identified by multicentronucleated small fibres. Many 

inflammatory cells were still present in the interstitial space of the tissue. At 15d after 

cryodamage, almost all mouse fibres were centrally nucleated. Muscle fibres recovered their 

original size from 21d after injury, although all of the regenerated fibres still had centrally 

located nuclei (Fig 2C). Anti-Lamin A/C antibody (human specific) together with an anti-

laminin antibody recognizing mouse and human laminin allowed the visualisation of human 

cells within the mouse muscle either inside murine fibres as myonuclei or between muscle 

fibres in an interstitial position (Fig 2C and 2D). A co-staining (Fig 2E) using an anti-lamin 

AC (staining nuclear envelope), anti-laminin (staining the basal lamin) and anti-Pax7, a 

marker of satellite cells, show that human cells can colonise the tissue specific stem cell 

niche, thus amplifying their therapeutic potential during successive cycles of regeneration, as 
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it occurs in muscle dystrophies. The ability to colonize the satellite cell niche can vary 

depending on the myogenic cell type. As an example, we and other groups showed that 

different types of human muscle stem cells (myoblasts derived satellite cells, pericytes, 

CD133 expressing cells) contribute in different proportions to the satellite cell pool in vivo 

when injected intramuscularly 6. In the cryodamaged mouse model presented here, 21d after 

injection, 5,76% of human injected myoblasts were found in the satellite cell position, 38,90% 

were found inside the myofibers as myonuclei and 55,33% were located in the interstitial 

spaces, outside muscle fibres (Fig 2E). Finally, a double staining using human specific 

antibodies anti lamin AC/dystrophin or lamin AC/spectrin (Fig 2F) allowed us to detect the 

formation of chimeric fibres expressing the human proteins and therefore the participation of 

human cells to fibre regeneration, which reflects their therapeutic potential to bring a missing 

protein in a dystrophic context. 

Estimation of the number of engrafted human cells

We propose a method to quantify the total number of human cells persisting in the TA, taking 

into account the size of the injected cells and the size of the cryosections (s=5μm). We 

measured the size of the nucleus, using the lamin A/C staining that we used to identify human 

myoblasts in the mouse muscle (Fig 2B and 2C). To calculate the average nuclear diameter 

(D), a total of at least 500 nuclei were counted 7d after injection using Image J software. 

Nuclear diameter at 7d post-injection was 8,0 ± 2,5 μm (Fig 3A). The linear density (n) of 

cells can be obtained by dividing the number of cells (N) counted in a section over the section 

size s (5μm). But given its finite size D, each cell could be visible in a number of sections. 

The linear density (n) should, therefore, be weighted by the average number of sections over 

which each cell is detected (D+s)/s, as follows:

n = N
s

s + D
1
s

=
N

s + D
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To estimate the total number of cells one has to integrate the linear density n of the cells over 

the entire length (x) of the muscle (Fig 3B and 3C).

We counted cells only in 5μm sections separated by 500μm (L). The number of cells in the 

intermediate sections was estimated by linear interpolation (Fig 3C), and numerical 

integration was performed using the formula, given below:

∑
length of muscle

Min (nx; nx + 1)L + abs (nx ‒ nx + 1)L/2

where Min represents the minimum value between nx and nx+1 and abs the absolute value. 

Using this approach, we found a diminution in the number of human cells from d7 to d30 post 

injection, which was consistent with the qPCR analysis (Fig 3D).

Combinative analysis of muscle samples: estimation of the 

number of engrafted human cells by qPCR and 

immunofluorescence

In order to compare the two methods, we processed the same TA muscle sample at 21 d after 

injection of 1x105 human myoblasts, using both techniques in parallel (Fig 3E). Interspaced 

sections were processed for immunofluorescence analysis as described above, and 

intermediate slides were used for qPCR analysis. Both quantifications of human cells show no 

statistical difference between the two methods (IF: 14657±857, qPCR: 15966±3507, NS), 

indicating that both methods are equally efficient quantitative tools (Fig 3E).

CONCLUSIONS
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In the present study, we have evaluated two different protocols for the quantification of 

human cells after transplantation into a muscle of immunodeficient mice. Our results show 

that both of these methods are equally accurate to quantify human cells within the recipient 

mouse muscle since results obtained with these two methods are not significantly different 

(Fig 3E). Each method has its specificity: the qPCR-based method can be used for a 

quantitative, precise and rapid estimation of human material in human xenografts, but does 

not give any information about the localization of the engrafted cells and modifications of the 

architecture of the host tissue. Immunofluorescence, on the other hand, provides spatial 

information but is more time consuming regarding the quantification of human material. Most 

importantly, we show that both methods can be combined using the same starting material: a 

few cryosections can be processed by immunofluorescence to check the localization of human 

nuclei, and the fate and behaviour of the injected cells while qPCR will provide rapidly 

quantitative data. We propose the combination of these two methods as a gold standard to 

compare results obtained with different types of human myogenic stem cells (different 

precursors, control or pathological, treated or not, etc.) or when different mouse models are 

used. Such combined methods can be used to assess results obtained in different laboratories, 

often difficult to compare, in a more objective and rigorous way. Lastly, we believe that the 

combination of these two approaches can be applied to analyse more generally grafting and 

cell transplantation experiments, independently of the target tissue and that they may 

contribute to a variety of transplantation studies aimed at analysing human cells in mouse 

models.
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Figure legends

Fig 1. Quantification of human myoblasts in TA muscle by qPCR analysis (A) 

Experimental scheme of the kinetic of analysis of TA muscles injected with human myoblasts 
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after freeze-injury. Human myoblasts were injected in a single injection site in the mid belly 

of the TA after that an injury was produced on the TA. TA muscles were dissected and frozen 

at different time points (0, 5, 7, 15, 21 or 30 days) after cell injection. (B) Schematic 

representation of primer (arrows) used to amplify human titin DNA by qPCR. Species 

specificity of titin primers is shown using mouse DNA/cDNA and human DNA/cDNA by 

qPCR and migration on agarose gel. (C) Representative standard curve obtained with DNA 

mouse TA muscles mixed and extracted with different amount of human cells. In the graph 

the number of cells is expressed as the Ln of the number of cells. In the ordinate axis the Ct 

(cycle threshold) representative of a qPCR run are reported. (D) Histograms showing the 

rapid quantification using qPCR analysis of TA analysed at 0, 5, 7, 21 and 30d after injection 

of human cells. The number of human myoblasts was calculated from the qPCR calibration 

curve. Results are means of the different TAs analysed ± SEM. The mean of each column is 

compared with the mean of the 0d column using an ordinary one-way ANOVA followed by 

Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig 2. Identification of human myoblasts in TA muscle by immunofluorescence (A) 

Schematic representation of the immunofluorescence (IF) processing of a TA muscle. Each 

section (5 μm) on the same slide is separated from the previous and from the following one by 

500 μm. (B) Representative transversal mouse section and quantification of the transversal 

dispersion of human injected cells 21d after injury and injection. Schematic longitudinal 

representation of a TA muscle and quantification of the longitudinal dispersion of human 

injected cells 21d after injury and injection. (C) Representative H&E transverse sections of 

control TA muscle and 7, 15, 21 and 30d after freeze-injury and IF showing injected human 

cells. Human cells are visualised using a human specific lamin AC antibody (LamAC, green) 

and the extra cellular laminin protein is visualised in red. (D) Human myoblasts can be found 

as myonuclei (asterisk) or in the interstitial space (yellow arrow point). Human myoblasts are 
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detected with an antibody raised against human lamin AC (green). Laminin is visualised in 

red. (E) Immunostaining using antibodies directed against human LamAC (green), Pax7 (red) 

and laminin (grey). Nuclei are counterstained with Hoechst (blue). Human LamAC/Pax7 

satellite cells (yellow arrows) are localized under the basal lamina (grey). Histogram showing 

the quantification of the in vivo repartition of human myoblasts 21d after injection. All 

LamAC positive cells are counted and classified according to their position and the marker 

they express. (F) Representative transverse section showing human myoblasts participation to 

mouse muscle regeneration. Human nuclei are revealed using a human-specific anti-LamAC 

antibody (red), and chimeric fibres expressing human proteins are visualized using an anti-

human spectrin–specific antibody (green). An anti-laminin antibody is used to delineate 

muscle structure (grey). Nuclei are counterstained with Hoechst (blue) Scale bar = 50 μm.

Fig 3. Quantification of human myoblasts in TA muscle by immunofluorescence method. 

(A) Size of human myoblast nuclei 7 d after injection in vivo. At least 500 nuclei were 

counted in different cross-sectional sections. Schematic representation of nuclei in the muscle 

sections and linear density (n) of the nuclei in the muscle length. s= size of muscle section; 

D= nucleus diameter; n=linear density; N= number of cells counted in a muscle section (B) 

Example of typical curves obtained counting human myoblasts 30 d after a single injection in 

the middle of the TA. Curves show the linear density of 4 independent injections. (C) Graph 

showing an example of the linear density (n) of human cells in the muscle. (D) Quantification 

of human cells found 7, 15, 21 and 30d after grafting in cryodamaged muscle using the IF 

analysis. Results are means of the different TAs analysed ± SEM. The mean of each column 

is compared with the mean of the 7d column using an ordinary one-way ANOVA followed by 

Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001. (E) Quantification 

of human myoblasts by quantitative PCR and IF methods. Schematic representation of the 

two processing methods and histograms showing values obtained with the two techniques 21d 
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after freeze-injury and injection of human myoblasts. Results are means of the different TAs 

analysed ± SEM. Student t-test was used to compare differences between two groups. NS: 

non significant).
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