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Abstract

Many (re)emerging infectious diseases in humans arise from pathogen spillover from wildlife or
livestock, and accurately predicting pathogen spillover is an important public health goal. In the
Americas, yellow fever in humans primarily occurs following spillover from non-human
primates via mosquitoes. Predicting yellow fever spillover can improve public health responses
through vector control and mass vaccination. Here, we develop and test a mechanistic model of
pathogen spillover to predict human risk for yellow fever in Brazil. This environmental risk
model, based on the ecology of mosquito vectors and non-human primate hosts, distinguished
municipality-months with yellow fever spillover from 2001 to 2016 with high accuracy (AUC =
0.72). Incorporating hypothesized cyclical dynamics of infected primates improved accuracy
(AUC = 0.79). Using boosted regression trees to identify gaps in the mechanistic model, we
found that important predictors include current and one-month lagged environmental risk,
vaccine coverage, population density, temperature, and precipitation. More broadly, we show
that for a widespread human viral pathogen, the ecological interactions between environment,
vectors, reservoir hosts, and humans can predict spillover with surprising accuracy, suggesting
the potential to improve preventative action to reduce yellow fever spillover and prevent onward

epidemics in humans.
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Introduction

Many important (re)emerging infectious diseases in humans—including Ebola, sudden
acute respiratory syndrome (SARS), influenza, Plasmodium knowlesi and other primate malarias,
yellow fever, and leptospirosis—arise from spillover of pathogens from wildlife or livestock into
human populations (1,2). While spillover is an important mechanism of human disease
emergence, the drivers and dynamics of spillover are poorly understood and difficult to predict
(3). Pathogen spillover requires favorable conditions to align in the reservoir (non-human
animal), human, and pathogen populations and in the environment (3—-5). Because these
conditions interact, nonlinear relationships among the environment, host populations, and
spillover probability are likely to emerge. Moreover, spillover is a probabilistic process that does
not always occur, even when suitable conditions align. Despite these challenges, it is critical to
predict pathogen spillover to enhance public health preparedness. Predicting spillover also
provides an opportunity to test ecological approaches to solving globally important human health
problems.

Most previous attempts to predict pathogen spillover have used statistical models (6-8).
These models may be locally accurate for within-sample prediction, but may struggle to detect
multidimensional, nonlinear, and stochastic relationships among host populations, pathogens, the
environment, and spillover. In contrast, mechanistic models can test our understanding of
transmission ecology, reproduce the complex, nonlinear interactions emerging in disease
systems, and potentially improve our ability to predict spillover. In particular, Plowright et al. (3)
recently proposed a mechanistic model, which remains untested, that integrates multiple
ecological requirements to identify when conditions will align for pathogen spillover. Yellow

fever in Brazil presents an ideal opportunity to test this model because the ecology of the
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pathogen has been studied for nearly 120 years (9), providing a wealth of mechanistic
information and data, and because almost all recent cases in South America have occurred via
spillover from the sylvatic cycle (10,11)

Yellow fever virus is a mosquito-borne Flavivirus that mainly persists in a sylvatic
transmission cycle between forest mosquitoes (primarily Haemagogus janthinomys, Hg.
leucocelaenus, and Sabethes chloropterus in South America) and non-human primates, and
occasionally spills over into human populations (12). In some settings, these spillover events
lead to onward human epidemics in an urban transmission cycle between humans and 4edes
aegypti mosquitoes (9). Spillover of yellow fever requires the virus to be transmitted locally,
mosquito vectors to acquire the virus from infected non-human vertebrate hosts, survive the
extrinsic incubation period, and feed on human hosts, and human hosts to be susceptible to
infection following exposure. These events require distributions of reservoirs, vectors, and
humans, their interactions, and immune dynamics to align in space and time. In humans, yellow
fever is the most severe vector-borne virus circulating in the Americas (10) with an estimated
fatality rate for severe cases of 47% (13). While no urban transmission of yellow fever has
occurred in the Americas since 1997 (14) and in Brazil since 1942 (15), a large epidemic began
in December 2016 in Minas Gerais and by June 2018 had caused 2,154 confirmed cases and 745
deaths (16). Despite these large case numbers, molecular and epidemiological evidence suggests
that human cases were caused by spillover from the sylvatic cycle, rather than urban
transmission (11), most recently in areas previously believed to be free of yellow fever.

Prior statistical models have found climate and weather (including precipitation,
temperature, and normalized difference vegetation index), non-human primate richness, land use

intensiveness, and a latitudinal gradient to be predictive of the spatial and spatio-temporal
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79  distribution of yellow fever (6,8). We build on previous efforts by incorporating a mechanistic

80  understanding of how ecological and human population factors affect yellow fever transmission

81  and spillover. A mechanistic model allows for known relationships between the environment and

82  transmission mechanisms, estimated from empirical data, to be included to test our

83  understanding of the disease ecology. Additionally, mechanistic models allow for extrapolation

84  beyond known regions to identify other regions where conditions are also suitable for yellow

85  fever spillover. We use a mechanistic model encapsulating sylvatic yellow fever ecology to

86  predict the spatial and temporal distribution of yellow fever spillover in Brazil, and we test the

87  model on human yellow fever case data using a receiver operating characteristic curve and

88  logistic regression. Here, we use “predict” to refer to independently estimating spillover risk

89  mechanistically from simultaneous covariates and “forward prediction” to refer to estimating

90 future spillover. We contrast this mechanistic prediction with statistical models that are fit to the

91  spillover data, and therefore not able to make independent, out-of-sample predictions. We then

92  incorporate the mechanistic model into further statistical analyses with boosted regression trees

93  to understand what mechanisms our model does not capture.

94 Specifically, we ask: (1) Does the environmental suitability for sylvatic vectors, reservoir

95  hosts, vector-human contact, and vector transmission—together termed environmental risk—

96  predict geographic, seasonal, and interannual variation in yellow fever virus spillover into

97  humans? (2) Are human population size and vaccine coverage, above and beyond environmental

98  risk, critical for predicting spillover? (3) What additional environmental and population drivers

99  might improve predictions of spillover? (4) Do the ecological processes that predict spillover in
100  other parts of Brazil predict the recent yellow fever outbreak in the Southeast region of Brazil in

101  2016-2018, and if so, was risk elevated above historical baseline levels?
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102 Methods

103 Our goals were (1) to construct mechanistic estimates of yellow fever spillover risk over
104  space and time, (2) to test these mechanistic risk models against observed cases of yellow fever
105  spillover to humans, and (3) to statistically test for associations between observed spillover

106  occurrence, mechanistically predicted risk, and environmental covariates to identify potential
107  gaps in the mechanistic models. We constructed mechanistic risk estimates by modeling the

108  ecological processes expected to drive transmission within reservoir hosts—vector distribution
109  and seasonal abundance, vector dispersal, vector infectiousness, vector survival, vector—reservoir
110 contact, and reservoir host distributions—and the risk of spillover to humans—human population
111 density, vector—human contact rates, and human susceptibility (Fig. 1, Mechanistic model). For
112 each of these ecological or human population factors, we parameterized a submodel using data
113 from the literature and remotely-sensed covariates (Fig. 1 lists data sources and Fig. 2 shows the
114  data and/or fitted submodels). We modeled several different risk metrics, as described below (see
115  Methods: Spillover model). We then predict monthly risk of yellow fever spillover from the

116  component submodels for each 1 km X 1 km pixel from December 2000 to December 2016 (Fig.
117  1; Supplementary Materials, Section 1.1). The risk estimates from January 2001 to December
118 2016 were aggregated to a municipality-level estimate to compare to available reports of human
119  cases. Next, to test for relationships that were absent or mis-specified in our mechanistic model,
120 we used both current and lagged aggregated municipality-wide environmental risk from

121  December 2000 to December 2016 as covariates in a statistical model (a boosted regression tree)
122 along with other environmental and demographic covariates to identify the traits of

123 municipalities and months where yellow fever spillover occurred during the available human

124 case data from 2001 to 2016 (Fig. 1, Statistical model). Finally, we sought to identify whether
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the mechanistic models predicted high suitability for spillover during the recent outbreaks
(December 2016 — April 2018) (16). Given the limited time range of some covariates, we
extrapolate model covariates for 2017 and 2018 by assuming that they were identical to 2016 or
followed the same linear trend as was observed from 2015 to 2016. We then calculate the
environmental risk metric for January 2017 to June 2018 in the region where the large outbreak
occurred.

Spillover model

Yellow fever spillover risk is first estimated monthly from December 2000 to December
2016 using an adapted version of the model from Plowright ef al. (3). We then estimate monthly
spillover risk using extrapolated covariates (Supplementary Materials, Table S1) for the duration
of the 2016 — 2018 outbreaks. We define environmental risk at a location y and time t —
proportional to the number of infectious mosquito bites—as:
b, )Br (¥, 1) f:ot Sz Po(Z,Db(E, T)B, (X, DK (X, DEIP(T (%, 7),t — 1)s(T(X,7), t —T)d(|ly — %[)dxdr (1)
as a function of sylvatic vector density (p, (%, t), Fig. 2b and 2e), probability of biting non-human
primates (B, (¥,t), Fig. 2¢) contingent on primate presence (Fig. 2a), probability of biting humans
(B,(¥,t), Fig. 2d) which depends on human presence (Fig. 2j), non-human primate infection
prevalence (k(%, 1), Fig. 2k), vector biting rate (b(y,t)), vector probability of becoming infectious
(EIP(T(%,¢t),t — 1), Fig. 2h), vector survival (s(T(¥,1),t — 1), Fig. 2g), and vector dispersal
(d(lly — %I, Fig. 2f), as described in Table 1. This model is a case study of a more general family
of percolation models of pathogen spillover with alternative pathogen sources in space and time
(Washburne et al., this issue).

We hypothesized that yellow fever spillover could be limited by environmental

conditions, human susceptibility, human population distribution, and primate infection dynamics.
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To compare their relative importance, we define four metrics of model-predicted yellow fever
spillover risk. First, we approximate environmental risk (Eq. 1, Fig. 21), assuming that biting rate
(b(¥,t) in Eq. 1,) and reservoir infection prevalence («x(¥,7) in Eq. 1) are constant over space and
time in the absence of empirical data on these parameters, as described in Table 1. Since this
metric ignores variation in human susceptibility, we then calculate immunological risk (Fig. 2m)
as environmental risk multiplied by the estimated proportion of the human population that is
susceptible to yellow fever (Fig. 21), using previously estimated vaccine coverage rates (17). We
then consider the influence of human population size on spillover risk by calculating population-
scaled risk (Fig. 2n) as the immunological risk scaled by the number of people in a given
location (Fig. 2j). Finally, we incorporate the effects of cycles of reservoir susceptibility and
infection dynamics, for which data are not available, by calculating periodic risk (Fig. 20), which
uses a phenomenological periodic curve (Fig. 2k) for primate infection prevalence (x(%,7) in Eq.
1). This periodic curve is designed to represent cycles of reservoir infection prevalence, driven
by the demography of primate populations as naive individuals are born, susceptible individuals
accumulate, and epizootics become more likely (18). The full spillover model was run in Google
Earth Engine (19). We estimate risk metrics monthly for 1 km X 1 km pixels using built-in
functionality of Google Earth Engine that allows for calculations across differing scales by
performing calculations for a specified output pixel scale.

Mechanistic submodels

We fit mechanistic submodels from data for all key components of spillover (Fig. 1). For
primate distribution (Fig. 2a), human susceptibility (Fig. 21), and human population distribution

(Fig. 2j), we used previously published estimates (17,20,21). All other mechanistic models
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(terms in Eq. 1) were fit with the R programming language, version 3.5.1 (22), with additional
packages used for data processing, manipulation, and visualization (23-31).

Given limited information on the vector species, we use data for Hg. janthinomys, Hg.
leucocelaenus, and Sa. chloropterus to fit models for the sylvatic vectors collectively for all
mechanistic vector trait models. All data used were publicly available or results from previously
published papers, as described in the Supplementary Materials (Table S1 and Mechanistic
submodel details). Additional details on mechanistic model methods and data are available in the
Supplementary Materials.

Vector distribution and seasonal density

To estimate the geographic distribution of sylvatic vector species (Fig. 2b), we fita
species distribution model (32,33) to Hg. janthinomys, Hg. leucocelaenus, and Sa. chloropterus
occurrence data identified from the Global Biodiversity Information Facility (GBIF) (34,35) and
a review of the literature (36-90), using the maxnet package in R (91). We included maximum,
median, and minimum annual land surface temperature, total annual precipitation, precipitation
in the driest month, precipitation in the wettest month, elevation, forest cover (%), land cover
category, median annual enhanced vegetation index, and absolute latitude as predictors in the
model (Supplementary Materials, Table S2). To account for uneven sampling effort across the
geographic range, we corrected the background (pseudo-absence) points by subsampling from

occurrence data of other mosquito species from GBIF (92). We calculated vector density as
log (ﬁ), where p is the probability of occurrence estimated from the species distribution model

(93). To estimate seasonal variation in vector abundance (Fig. 2e) due to rainfall seasonality
(94), we fit a logistic regression of relative monthly vector abundance on current and one-month

lagged relative monthly rainfall using field data (80,95-99) with glm in R.
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193 Vector survival

194 To capture effects of temperature on vector survival (Fig. 2f), we used empirical data
195  (100-102) and Bayesian inference to fit a quadratic function to the relationship between lifespan
196  and temperature using rstan in R (103). Assuming constant vector mortality at a given

YL where L is vector lifespan

197  temperature, we calculated daily survival probability asp = e~
198  (104).

199  Vector infectiousness

200 Virus infection, dissemination, and infectiousness in the vector are temperature-

201  dependent (Fig. 2h) (105). We assume that vector competence—the probability that a vector
202  exposed to an infectious blood meal becomes infectious with virus in its salivary glands—is a
203  quadratic function of temperature, as shown for other flaviviruses (106). Additionally, we

204  assume that at a given temperature, the extrinsic incubation period—the length of time required
205  for an exposed vector to become infectious—is log-normally distributed across individuals

206  (107,108). We fit a Bayesian model using experimental data (109—116) with the package rstan
207 (103).

208  Vector dispersal

209 To estimate the range on which sylvatic mosquitoes disperse (Fig. 2f), we fit a negative
210  binomial dispersal kernel (117) to mark-recapture data (118) using a Bayesian framework with
211  the package rstan (103).

212 Vector contacts

213 We approximated reservoir-vector contact (Fig. 2¢) as percent forest cover (119)

214  contingent on the presence of at least one reservoir species (Fig. 2a). Similarly, we approximated

10
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215  human-vector contact (Fig. 2d) as percent non-forest cover (119) contingent presence of human
216  population (Fig. 2j).

217  Phenomenological primate dynamics

218 Primate population dynamics and susceptibility have been suggested as important

219  constraints on yellow fever spillover (18), which remain poorly characterized. In the absence of
220  primate infection data, we assumed that human spillover events are a proxy for infection

221  prevalence during reservoir epizootics. This is the only mechanistic submodel that uses the

222 human yellow fever spillover data directly—all other submodels are independent of human

223  infection data. For this submodel, we used human cases of yellow fever reported by month of
224 first symptoms and municipality of infection (2001-2016) from the Brazilian Ministry of Health
225  (120). We define a spillover municipality-month as one in which at least one human case of
226  yellow fever occurred. As an estimate of reservoir infection dynamics, we fit a

227  phenomenological sine curve with a seven year period (121) to the yearly number of

228  municipality-months with spillover (Fig. 2k) and then transformed the curve to be positive and
229  less than one. The resulting curve is used as a spatially constant estimate of primate reservoir
230  infection prevalence. Phenomenological primate dynamics are used in the periodic risk estimate
231  (Fig. 20) to account for a missing ecological process but are not used in any other risk metric, so
232 all other risk metrics are parameterized independent of human spillover data.

233  Model-data comparison

234 We compared spatially- and temporally-explicit mechanistic model predictions for
235  spillover risk to observed human cases of yellow fever spillover using a statistical model. We
236  limit the comparison to 2001-2016 based on the availability of human case data. We considered

237  four modeled risk metrics (defined above): environmental risk, immunological risk, population-

11
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238  scaled risk, and periodic risk. Because risk was modeled by pixel, to compare the model output
239  with municipality-month observations of human cases, we calculate both mean risk and

240  maximum risk in each municipality and month. While mean risk may be more representative of
241  the entire municipality, we hypothesized that maximum risk in the municipality-month might
242  better predict the small-scale processes that drive spillover. The use of maximum risk also may
243  also help to avoid spatial aggregation that can lead to bias or mask the relationships, for example
244  the modifiable areal unit problem (122).

245 We compared municipality means and maxima for all four risk metrics to human yellow
246  fever data for model evaluation in the following three ways. First, for each modeled risk metric
247  and each municipality summary statistic (mean and maximum), we fit a logistic regression of
248  spillover probability as a function of model-predicted risk (Supplementary Materials, Table S4)
249  using glm in R (22). Second, we calculated a receiver operating characteristic curve to calculate
250  the area under the curve (AUC), a measure of goodness of fit, for each modeled risk metric and
251  municipality summary statistic (Supplementary Materials, Table S4). As this analysis focuses on
252 prediction of spillover as a way to compare hypothesized mechanisms, comparison of AUC

253 values to a null model is beyond the scope of this paper. Finally, for all eight mechanistic

254  predictions and estimated vaccine coverage, we regressed the number of reported yellow fever
255  cases given that spillover occurred and calculated Spearman’s rank correlation coefficient with
256  number of reported cases to consider nonlinear but monotonic associations (Supplementary

257  Materials, Table S5).

258 Statistical model

259 We used a boosted regression tree (123,124) to understand any potential gaps in the

260  mechanistic model and its relationship to environmental and human population covariates. As

12
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261  predictors of yellow fever spillover in the boosted regression tree, we included the following
262  covariates for each municipality-month: current and one-month lagged maximum predicted

263  environmental risk, current and one-month lagged fire area, average and maximum number of
264  primate species, estimated municipality vaccine coverage, average human population density,
265  average monthly air temperature, average monthly precipitation, phenomenological primate

266  dynamics, region, and month (Supplementary Materials, Table S6). Each observation is a

267  municipality-month and the response variable is the binary indicator of whether or not yellow
268  fever spillover occurred in a municipality-month (see Methods: Model-data comparison). While
269  some of predictor covariates contribute to the environmental risk metric (i.e., air temperature,
270  rainfall, and primate reservoir ranges), we also include them in the boosted regression tree

271  analysis to identify whether the environmental covariates have any predictive power beyond their
272 role in the mechanistic model, which could indicate that the mechanistic model does not fully
273 capture their influence on spillover. We included fire area as a proxy for land conversion (125),
274  which has previously been shown to be predictive of yellow fever spillover (8). We also included
275  vaccine coverage and human population density despite their poor predictive performance in the
276  mechanistic model to identify whether these human population factors are predictive of spillover
277  in ways not previously hypothesized, and therefore not captured in the mechanistic model.

278  Boosted regression trees repeatedly fit regression trees, which create multiple binary splits in the
279  dataset based on predictor variables. Each successive tree is fit to the residuals of the previous
280  best model. The model is then updated to include the next tree (123). Variable importance is

281  calculated as a weighted sum of the number of times a variable is used for splitting, with weights

282  determined by the squared improvement due to the split (123).

13
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283 We fit the boosted regression tree to data from 2001 to 2016, given this is the range of the
284  available human case data for inferring spillover. We partition the dataset into spatially- and

285  temporally-balanced training (80%) and test (20%) sets prior to the analysis. Optimal learning
286  rate, tree complexity, and number of trees were selected as the set of parameters that minimized
287  cross-validation predictive deviance (Supplementary Materials, Table S7; 63). The dataset was
288  split in R using the BalancedSampling package (126), models were fit in R using the gbm and
289  dismo (127,128) packages, and variable effects were calculated with the pdp package (129).

290  Additional details can be found in the Supplementary Materials.

291  Results

292 Primate species distribution (Fig. 2a), vector distribution (Fig. 2b; Supplementary

293  Materials, Fig. S1 and S2), reservoir-vector contact (Fig. 2¢), human-vector contact (Fig. 2d),
294  and human susceptibility (Fig. 21) varied over space and time based on estimates and models fit
295  to empirical data. In addition, vector survival (Fig. 2g) and infectiousness (Fig. 2h,

296  Supplementary Materials, Fig. S4 and S5) varied with temperature, vector abundance varied
297  seasonally with rainfall (Fig. 2e; Supplementary Materials, Fig. S3 and Table S3), and vector
298  dispersal declined exponentially with distance (Fig. 2f; Supplementary Materials, Fig. S6).

299  Together, these empirical relationships between environment and host, vector, and virus ecology
300  compose an estimate of environmental risk of yellow fever spillover (Supplementary File 2).
301 The environmental risk model strongly predicted episodes of yellow fever spillover into
302 humans (AUC = 0.72) and adding phenomenological reservoir infection dynamics in periodic
303  risk further improved the model (AUC = 0.79; Fig. 3). Surprisingly, models that included human
304  vaccination coverage and human population size performed worse than the environment-driven

305 models (AUC = 0.64 and 0.64; Fig. 3). For all risk metrics, maximum value in the municipality-

14


https://doi.org/10.1101/523704
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523704; this version posted April 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

306 month was a better predictor of spillover than mean value (Fig. 3). Logistic regressions of

307  spillover probability as a function of model-predicted risk showed similar patterns in Akaike
308  Information Criterion (AIC) values (Supplementary Materials, Table S4). Model-predicted

309  environmental (mean and maximum), periodic (mean and maximum), and immunological

310 (maximum) risk metrics were statistically significant predictors of spillover probability at the 5%
311  level after correcting for multiple hypothesis testing (Supplementary Materials, Table S4; 71).
312 By contrast, given that spillover occurred, none of the eight mechanistic model risk summaries
313 were statistically significant predictors of number of cases, nor was estimated vaccine coverage
314  (Supplementary Materials, Table S5). In Spearman’s rank correlations, we find that of the

315 independent predictors, vaccine coverage is most correlated with risk, followed by maximum
316  environmental risk, although these correlations are weak (Supplementary Materials, Table S5).
317 Mechanistic model estimates matched seasonal variation in spillover, and accurately
318  captured differences in seasonality by region (Fig. 4a). Risk peaked in April in the North and
319  Northeast regions and in February in Central-West, South, and Southeast regions. The seasonal
320  regional correlation between number of municipality-months with spillover and average

321  environmental risk was highest in the Southeast (0.77), followed by the South (0.61), Central
322 West (0.58), and North (0.42) regions. The periodic risk matched interannual variation in

323  spillover (Fig. 4c), an unsurprising finding given periodic risk incorporated phenomenological
324  primate dynamics derived from human cases of spillover. Interannual regional correlations were
325  weaker than seasonal correlations but similarly highest in the Southeast (0.54), followed by the
326  Central-West (0.45), North (0.21), and South (0.13) regions.

327 The boosted regression tree found one-month lagged environmental risk and current

328  environmental risk to be the second and fifth most important predictors of spillover, respectively
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329  (Fig. 5). Not surprisingly, the boosted regression tree significantly improved predictive

330  performance from the mechanistic model because it was trained on the human spillover data
331  (training AUC > 0.99, test AUC = 0.95). Vaccine coverage, temperature, population density and
332 precipitation were also among the six most important predictors in the boosted regression tree.
333  As expected, municipality-months with spillover had higher current and one-month lagged

334  environmental risk (Fig. 5b and e), as well as high (phenomenologically) estimated primate

335 infection prevalence and high primate species richness (Supplementary Materials, Fig. S8). We
336  find that municipality-months with spillover have low monthly average temperatures (Fig. 5a),
337  which may in part be due to poorly captured effects of temperature in the mechanistic model
338 from averaging temperature before calculating mosquito trait values for survival and

339 infectiousness (131). We also find that municipality-months with spillover have low rates of
340  precipitation (Fig. 5d), which may correspond to settings with increased human activity in the
341  forest, and therefore increased chance of spillover. However, current and lagged fire area,

342 hypothesized indicators of deforestation activity, were not significant predictors of spillover in
343  the boosted regression tree models (Supplementary Materials, Fig. S8).

344 Unexpectedly, municipality-months with spillover tended to have vaccine coverage

345  above 90%, suggesting that high rates of vaccine coverage do not prevent spillover from

346  occurring. While estimated vaccine coverage was included as a measure of human susceptibility,
347  itis likely capturing other patterns in the spatial distribution of spillover; regions known to

348  experience yellow fever spillover are likely to have high vaccination rates, while those where
349  spillover is rare or nonexistent are likely to have low vaccination rates. Accordingly, estimated
350  vaccine coverage is bimodal, potentially due to a group of lower risk municipalities and 