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 2 

Abstract 16 

Many (re)emerging infectious diseases in humans arise from pathogen spillover from wildlife or 17 

livestock, and accurately predicting pathogen spillover is an important public health goal. In the 18 

Americas, yellow fever in humans primarily occurs following spillover from non-human 19 

primates via mosquitoes. Predicting yellow fever spillover can improve public health responses 20 

through vector control and mass vaccination. Here, we develop and test a mechanistic model of 21 

pathogen spillover to predict human risk for yellow fever in Brazil. This environmental risk 22 

model, based on the ecology of mosquito vectors and non-human primate hosts, distinguished 23 

municipality-months with yellow fever spillover from 2001 to 2016 with high accuracy (AUC = 24 

0.72). Incorporating hypothesized cyclical dynamics of infected primates improved accuracy 25 

(AUC = 0.79). Using boosted regression trees to identify gaps in the mechanistic model, we 26 

found that important predictors include current and one-month lagged environmental risk, 27 

vaccine coverage, population density, temperature, and precipitation. More broadly, we show 28 

that for a widespread human viral pathogen, the ecological interactions between environment, 29 

vectors, reservoir hosts, and humans can predict spillover with surprising accuracy, suggesting 30 

the potential to improve preventative action to reduce yellow fever spillover and prevent onward 31 

epidemics in humans.  32 
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Introduction 33 

Many important (re)emerging infectious diseases in humans—including Ebola, sudden 34 

acute respiratory syndrome (SARS), influenza, Plasmodium knowlesi and other primate malarias, 35 

yellow fever, and leptospirosis—arise from spillover of pathogens from wildlife or livestock into 36 

human populations (1,2). While spillover is an important mechanism of human disease 37 

emergence, the drivers and dynamics of spillover are poorly understood and difficult to predict 38 

(3). Pathogen spillover requires favorable conditions to align in the reservoir (non-human 39 

animal), human, and pathogen populations and in the environment (3–5). Because these 40 

conditions interact, nonlinear relationships among the environment, host populations, and 41 

spillover probability are likely to emerge. Moreover, spillover is a probabilistic process that does 42 

not always occur, even when suitable conditions align. Despite these challenges, it is critical to 43 

predict pathogen spillover to enhance public health preparedness. Predicting spillover also 44 

provides an opportunity to test ecological approaches to solving globally important human health 45 

problems.  46 

Most previous attempts to predict pathogen spillover have used statistical models (6–8). 47 

These models may be locally accurate for within-sample prediction, but may struggle to detect 48 

multidimensional, nonlinear, and stochastic relationships among host populations, pathogens, the 49 

environment, and spillover. In contrast, mechanistic models can test our understanding of 50 

transmission ecology, reproduce the complex, nonlinear interactions emerging in disease 51 

systems, and potentially improve our ability to predict spillover. In particular, Plowright et al. (3) 52 

recently proposed a mechanistic model, which remains untested, that integrates multiple 53 

ecological requirements to identify when conditions will align for pathogen spillover. Yellow 54 

fever in Brazil presents an ideal opportunity to test this model because the ecology of the 55 
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pathogen has been studied for nearly 120 years (9), providing a wealth of mechanistic 56 

information and data, and because almost all recent cases in South America have occurred via 57 

spillover from the sylvatic cycle (10,11)   58 

Yellow fever virus is a mosquito-borne Flavivirus that mainly persists in a sylvatic 59 

transmission cycle between forest mosquitoes (primarily Haemagogus janthinomys, Hg. 60 

leucocelaenus, and Sabethes chloropterus in South America) and non-human primates, and 61 

occasionally spills over into human populations (12). In some settings, these spillover events 62 

lead to onward human epidemics in an urban transmission cycle between humans and Aedes 63 

aegypti mosquitoes (9). Spillover of yellow fever requires the virus to be transmitted locally, 64 

mosquito vectors to acquire the virus from infected non-human vertebrate hosts, survive the 65 

extrinsic incubation period, and feed on human hosts, and human hosts to be susceptible to 66 

infection following exposure. These events require distributions of reservoirs, vectors, and 67 

humans, their interactions, and immune dynamics to align in space and time. In humans, yellow 68 

fever is the most severe vector-borne virus circulating in the Americas (10) with an estimated 69 

fatality rate for severe cases of 47% (13). While no urban transmission of yellow fever has 70 

occurred in the Americas since 1997 (14) and in Brazil since 1942 (15), a large epidemic began 71 

in December 2016 in Minas Gerais and by June 2018 had caused 2,154 confirmed cases and 745 72 

deaths (16). Despite these large case numbers, molecular and epidemiological evidence suggests 73 

that human cases were caused by spillover from the sylvatic cycle, rather than urban 74 

transmission (11), most recently in areas previously believed to be free of yellow fever.  75 

Prior statistical models have found climate and weather (including precipitation, 76 

temperature, and normalized difference vegetation index), non-human primate richness, land use 77 

intensiveness, and a latitudinal gradient to be predictive of the spatial and spatio-temporal 78 
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distribution of yellow fever (6,8). We build on previous efforts by incorporating a mechanistic 79 

understanding of how ecological and human population factors affect yellow fever transmission 80 

and spillover. A mechanistic model allows for known relationships between the environment and 81 

transmission mechanisms, estimated from empirical data, to be included to test our 82 

understanding of the disease ecology. Additionally, mechanistic models allow for extrapolation 83 

beyond known regions to identify other regions where conditions are also suitable for yellow 84 

fever spillover. We use a mechanistic model encapsulating sylvatic yellow fever ecology to 85 

predict the spatial and temporal distribution of yellow fever spillover in Brazil, and we test the 86 

model on human yellow fever case data using a receiver operating characteristic curve and 87 

logistic regression. Here, we use “predict” to refer to independently estimating spillover risk 88 

mechanistically from simultaneous covariates and “forward prediction” to refer to estimating 89 

future spillover. We contrast this mechanistic prediction with statistical models that are fit to the 90 

spillover data, and therefore not able to make independent, out-of-sample predictions. We then 91 

incorporate the mechanistic model into further statistical analyses with boosted regression trees 92 

to understand what mechanisms our model does not capture.  93 

Specifically, we ask: (1) Does the environmental suitability for sylvatic vectors, reservoir 94 

hosts, vector-human contact, and vector transmission—together termed environmental risk—95 

predict geographic, seasonal, and interannual variation in yellow fever virus spillover into 96 

humans? (2) Are human population size and vaccine coverage, above and beyond environmental 97 

risk, critical for predicting spillover? (3) What additional environmental and population drivers 98 

might improve predictions of spillover? (4) Do the ecological processes that predict spillover in 99 

other parts of Brazil predict the recent yellow fever outbreak in the Southeast region of Brazil in 100 

2016–2018, and if so, was risk elevated above historical baseline levels? 101 
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Methods 102 

Our goals were (1) to construct mechanistic estimates of yellow fever spillover risk over 103 

space and time, (2) to test these mechanistic risk models against observed cases of yellow fever 104 

spillover to humans, and (3) to statistically test for associations between observed spillover 105 

occurrence, mechanistically predicted risk, and environmental covariates to identify potential 106 

gaps in the mechanistic models. We constructed mechanistic risk estimates by modeling the 107 

ecological processes expected to drive transmission within reservoir hosts—vector distribution 108 

and seasonal abundance, vector dispersal, vector infectiousness, vector survival, vector–reservoir 109 

contact, and reservoir host distributions—and the risk of spillover to humans—human population 110 

density, vector–human contact rates, and human susceptibility (Fig. 1, Mechanistic model). For 111 

each of these ecological or human population factors, we parameterized a submodel using data 112 

from the literature and remotely-sensed covariates (Fig. 1 lists data sources and Fig. 2 shows the 113 

data and/or fitted submodels). We modeled several different risk metrics, as described below (see 114 

Methods: Spillover model). We then predict monthly risk of yellow fever spillover from the 115 

component submodels for each 1 km × 1 km pixel from December 2000 to December 2016 (Fig. 116 

1; Supplementary Materials, Section 1.1). The risk estimates from January 2001 to December 117 

2016 were aggregated to a municipality-level estimate to compare to available reports of human 118 

cases. Next, to test for relationships that were absent or mis-specified in our mechanistic model, 119 

we used both current and lagged aggregated municipality-wide environmental risk from 120 

December 2000 to December 2016 as covariates in a statistical model (a boosted regression tree) 121 

along with other environmental and demographic covariates to identify the traits of 122 

municipalities and months where yellow fever spillover occurred during the available human 123 

case data from 2001 to 2016 (Fig. 1, Statistical model). Finally, we sought to identify whether 124 
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the mechanistic models predicted high suitability for spillover during the recent outbreaks 125 

(December 2016 – April 2018) (16). Given the limited time range of some covariates, we 126 

extrapolate model covariates for 2017 and 2018 by assuming that they were identical to 2016 or 127 

followed the same linear trend as was observed from 2015 to 2016. We then calculate the 128 

environmental risk metric for January 2017 to June 2018 in the region where the large outbreak 129 

occurred. 130 

Spillover model 131 

Yellow fever spillover risk is first estimated monthly from December 2000 to December 132 

2016 using an adapted version of the model from Plowright et al. (3). We then estimate monthly 133 

spillover risk using extrapolated covariates (Supplementary Materials, Table S1) for the duration 134 

of the 2016 – 2018 outbreaks. We define environmental risk at a location �⃗�	and time 𝑡 —135 

proportional to the number of infectious mosquito bites—as:   136 

𝑏(�⃗�, 𝑡)𝛽+(�⃗�, 𝑡) ∫ ∫ 𝜌.(�⃗�, 𝜏)𝑏(�⃗�, 𝜏)𝛽1(�⃗�, 𝜏)𝜅(𝑥, 𝜏)𝐸𝐼𝑃(𝑇(�⃗�, 𝜏), 𝑡 − 𝜏)𝑠(𝑇(�⃗�, 𝜏), 𝑡 − 𝜏)𝑑(‖�⃗� −	 �⃗�‖)𝑑𝑥𝑑𝜏			(1)
	
<⃗

=>?
=>@   137 

as a function of sylvatic vector density (𝜌.(�⃗�, 𝑡), Fig. 2b and 2e), probability of biting non-human 138 

primates (𝛽1(�⃗�, 𝑡), Fig. 2c) contingent on primate presence (Fig. 2a), probability of biting humans 139 

(𝛽+(�⃗�, 𝑡), Fig. 2d) which depends on human presence (Fig. 2j), non-human primate infection 140 

prevalence (𝜅(�⃗�, 𝜏), Fig. 2k), vector biting rate (𝑏(�⃗�, 𝑡)), vector probability of becoming infectious 141 

(𝐸𝐼𝑃(𝑇(�⃗�, 𝑡), 𝑡 − 𝜏), Fig. 2h), vector survival (𝑠(𝑇(�⃗�, 𝜏), 𝑡 − 𝜏), Fig. 2g), and vector dispersal 142 

(𝑑(‖�⃗� −	 �⃗�‖), Fig. 2f), as described in Table 1. This model is a case study of a more general family 143 

of percolation models of pathogen spillover with alternative pathogen sources in space and time 144 

(Washburne et al., this issue). 145 

We hypothesized that yellow fever spillover could be limited by environmental 146 

conditions, human susceptibility, human population distribution, and primate infection dynamics. 147 
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To compare their relative importance, we define four metrics of model-predicted yellow fever 148 

spillover risk. First, we approximate environmental risk (Eq. 1, Fig. 2l), assuming that biting rate 149 

(𝑏(�⃗�, 𝑡) in Eq. 1,) and reservoir infection prevalence (𝜅(�⃗�, 𝜏) in Eq. 1) are constant over space and 150 

time in the absence of empirical data on these parameters, as described in Table 1. Since this 151 

metric ignores variation in human susceptibility, we then calculate immunological risk (Fig. 2m) 152 

as environmental risk multiplied by the estimated proportion of the human population that is 153 

susceptible to yellow fever (Fig. 2i), using previously estimated vaccine coverage rates (17). We 154 

then consider the influence of human population size on spillover risk by calculating population-155 

scaled risk (Fig. 2n) as the immunological risk scaled by the number of people in a given 156 

location (Fig. 2j). Finally, we incorporate the effects of cycles of reservoir susceptibility and 157 

infection dynamics, for which data are not available, by calculating periodic risk (Fig. 2o), which 158 

uses a phenomenological periodic curve (Fig. 2k) for primate infection prevalence (𝜅(�⃗�, 𝜏) in Eq. 159 

1). This periodic curve is designed to represent cycles of reservoir infection prevalence, driven 160 

by the demography of primate populations as naïve individuals are born, susceptible individuals 161 

accumulate, and epizootics become more likely (18).  The full spillover model was run in Google 162 

Earth Engine (19). We estimate risk metrics monthly for 1 km × 1 km pixels using built-in 163 

functionality of Google Earth Engine that allows for calculations across differing scales by 164 

performing calculations for a specified output pixel scale.  165 

Mechanistic submodels 166 

We fit mechanistic submodels from data for all key components of spillover (Fig. 1). For 167 

primate distribution (Fig. 2a), human susceptibility (Fig. 2i), and human population distribution 168 

(Fig. 2j), we used previously published estimates (17,20,21). All other mechanistic models 169 
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(terms in Eq. 1) were fit with the R programming language, version 3.5.1 (22), with additional 170 

packages used for data processing, manipulation, and visualization (23–31). 171 

Given limited information on the vector species, we use data for Hg. janthinomys, Hg. 172 

leucocelaenus, and Sa. chloropterus to fit models for the sylvatic vectors collectively for all 173 

mechanistic vector trait models. All data used were publicly available or results from previously 174 

published papers, as described in the Supplementary Materials (Table S1 and Mechanistic 175 

submodel details). Additional details on mechanistic model methods and data are available in the 176 

Supplementary Materials.  177 

Vector distribution and seasonal density 178 

To estimate the geographic distribution of sylvatic vector species (Fig. 2b), we fit a 179 

species distribution model (32,33) to Hg. janthinomys, Hg. leucocelaenus, and Sa. chloropterus 180 

occurrence data identified from the Global Biodiversity Information Facility (GBIF) (34,35) and 181 

a review of the literature (36–90), using the maxnet package in R (91). We included maximum, 182 

median, and minimum annual land surface temperature, total annual precipitation, precipitation 183 

in the driest month, precipitation in the wettest month, elevation, forest cover (%), land cover 184 

category, median annual enhanced vegetation index, and absolute latitude as predictors in the 185 

model (Supplementary Materials, Table S2). To account for uneven sampling effort across the 186 

geographic range, we corrected the background (pseudo-absence) points by subsampling from 187 

occurrence data of other mosquito species from GBIF (92). We calculated vector density as 188 

log D E
EF1

G, where p is the probability of occurrence estimated from the species distribution model 189 

(93). To estimate seasonal variation in vector abundance (Fig. 2e) due to rainfall seasonality 190 

(94), we fit a logistic regression of relative monthly vector abundance on current and one-month 191 

lagged relative monthly rainfall using field data (80,95–99) with glm in R. 192 
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 10 

Vector survival 193 

To capture effects of temperature on vector survival (Fig. 2f), we used empirical data 194 

(100–102) and Bayesian inference to fit a quadratic function to the relationship between lifespan 195 

and temperature using rstan in R (103). Assuming constant vector mortality at a given 196 

temperature, we calculated daily survival probability as 𝑝 = 	𝑒FE/L, where L is vector lifespan 197 

(104).  198 

Vector infectiousness 199 

Virus infection, dissemination, and infectiousness in the vector are temperature-200 

dependent (Fig. 2h) (105). We assume that vector competence—the probability that a vector 201 

exposed to an infectious blood meal becomes infectious with virus in its salivary glands—is a 202 

quadratic function of temperature, as shown for other flaviviruses (106). Additionally, we 203 

assume that at a given temperature, the extrinsic incubation period—the length of time required 204 

for an exposed vector to become infectious—is log-normally distributed across individuals 205 

(107,108). We fit a Bayesian model using experimental data (109–116) with the package rstan 206 

(103). 207 

Vector dispersal 208 

To estimate the range on which sylvatic mosquitoes disperse (Fig. 2f), we fit a negative 209 

binomial dispersal kernel (117) to mark-recapture data (118) using a Bayesian framework with 210 

the package rstan (103). 211 

Vector contacts 212 

We approximated reservoir-vector contact (Fig. 2c) as percent forest cover (119) 213 

contingent on the presence of at least one reservoir species (Fig. 2a). Similarly, we approximated 214 
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human-vector contact (Fig. 2d) as percent non-forest cover (119) contingent presence of human 215 

population (Fig. 2j).  216 

Phenomenological primate dynamics 217 

Primate population dynamics and susceptibility have been suggested as important 218 

constraints on yellow fever spillover (18), which remain poorly characterized. In the absence of 219 

primate infection data, we assumed that human spillover events are a proxy for infection 220 

prevalence during reservoir epizootics. This is the only mechanistic submodel that uses the 221 

human yellow fever spillover data directly—all other submodels are independent of human 222 

infection data. For this submodel, we used human cases of yellow fever reported by month of 223 

first symptoms and municipality of infection (2001–2016) from the Brazilian Ministry of Health 224 

(120). We define a spillover municipality-month as one in which at least one human case of 225 

yellow fever occurred. As an estimate of reservoir infection dynamics, we fit a 226 

phenomenological sine curve with a seven year period (121) to the yearly number of 227 

municipality-months with spillover (Fig. 2k) and then transformed the curve to be positive and 228 

less than one. The resulting curve is used as a spatially constant estimate of primate reservoir 229 

infection prevalence. Phenomenological primate dynamics are used in the periodic risk estimate 230 

(Fig. 2o) to account for a missing ecological process but are not used in any other risk metric, so 231 

all other risk metrics are parameterized independent of human spillover data. 232 

Model-data comparison 233 

We compared spatially- and temporally-explicit mechanistic model predictions for 234 

spillover risk to observed human cases of yellow fever spillover using a statistical model. We 235 

limit the comparison to 2001–2016 based on the availability of human case data. We considered 236 

four modeled risk metrics (defined above): environmental risk, immunological risk, population-237 
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scaled risk, and periodic risk. Because risk was modeled by pixel, to compare the model output 238 

with municipality-month observations of human cases, we calculate both mean risk and 239 

maximum risk in each municipality and month. While mean risk may be more representative of 240 

the entire municipality, we hypothesized that maximum risk in the municipality-month might 241 

better predict the small-scale processes that drive spillover. The use of maximum risk also may 242 

also help to avoid spatial aggregation that can lead to bias or mask the relationships, for example 243 

the modifiable areal unit problem (122).  244 

We compared municipality means and maxima for all four risk metrics to human yellow 245 

fever data for model evaluation in the following three ways. First, for each modeled risk metric 246 

and each municipality summary statistic (mean and maximum), we fit a logistic regression of 247 

spillover probability as a function of model-predicted risk (Supplementary Materials, Table S4) 248 

using glm in R (22). Second, we calculated a receiver operating characteristic curve to calculate 249 

the area under the curve (AUC), a measure of goodness of fit, for each modeled risk metric and 250 

municipality summary statistic (Supplementary Materials, Table S4). As this analysis focuses on 251 

prediction of spillover as a way to compare hypothesized mechanisms, comparison of AUC 252 

values to a null model is beyond the scope of this paper. Finally, for all eight mechanistic 253 

predictions and estimated vaccine coverage, we regressed the number of reported yellow fever 254 

cases given that spillover occurred and calculated Spearman’s rank correlation coefficient with 255 

number of reported cases to consider nonlinear but monotonic associations (Supplementary 256 

Materials, Table S5). 257 

Statistical model 258 

We used a boosted regression tree (123,124) to understand any potential gaps in the 259 

mechanistic model and its relationship to environmental and human population covariates. As 260 
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predictors of yellow fever spillover in the boosted regression tree, we included the following 261 

covariates for each municipality-month: current and one-month lagged maximum predicted 262 

environmental risk, current and one-month lagged fire area, average and maximum number of 263 

primate species, estimated municipality vaccine coverage, average human population density, 264 

average monthly air temperature, average monthly precipitation, phenomenological primate 265 

dynamics, region, and month (Supplementary Materials, Table S6). Each observation is a 266 

municipality-month and the response variable is the binary indicator of whether or not yellow 267 

fever spillover occurred in a municipality-month (see Methods: Model-data comparison). While 268 

some of predictor covariates contribute to the environmental risk metric (i.e., air temperature, 269 

rainfall, and primate reservoir ranges), we also include them in the boosted regression tree 270 

analysis to identify whether the environmental covariates have any predictive power beyond their 271 

role in the mechanistic model, which could indicate that the mechanistic model does not fully 272 

capture their influence on spillover. We included fire area as a proxy for land conversion (125), 273 

which has previously been shown to be predictive of yellow fever spillover (8). We also included 274 

vaccine coverage and human population density despite their poor predictive performance in the 275 

mechanistic model to identify whether these human population factors are predictive of spillover 276 

in ways not previously hypothesized, and therefore not captured in the mechanistic model. 277 

Boosted regression trees repeatedly fit regression trees, which create multiple binary splits in the 278 

dataset based on predictor variables. Each successive tree is fit to the residuals of the previous 279 

best model. The model is then updated to include the next tree (123). Variable importance is 280 

calculated as a weighted sum of the number of times a variable is used for splitting, with weights 281 

determined by the squared improvement due to the split (123).   282 
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We fit the boosted regression tree to data from 2001 to 2016, given this is the range of the 283 

available human case data for inferring spillover. We partition the dataset into spatially- and 284 

temporally-balanced training (80%) and test (20%) sets prior to the analysis. Optimal learning 285 

rate, tree complexity, and number of trees were selected as the set of parameters that minimized 286 

cross-validation predictive deviance  (Supplementary Materials, Table S7; 63). The dataset was 287 

split in R using the BalancedSampling package (126), models were fit in R using the gbm and 288 

dismo (127,128) packages, and variable effects were calculated with the pdp package (129). 289 

Additional details can be found in the Supplementary Materials.  290 

Results 291 

Primate species distribution (Fig. 2a), vector distribution (Fig. 2b; Supplementary 292 

Materials, Fig. S1 and S2), reservoir-vector contact (Fig. 2c), human-vector contact (Fig. 2d), 293 

and human susceptibility (Fig. 2i) varied over space and time based on estimates and models fit 294 

to empirical data. In addition, vector survival (Fig. 2g) and infectiousness (Fig. 2h, 295 

Supplementary Materials, Fig. S4 and S5) varied with temperature, vector abundance varied 296 

seasonally with rainfall (Fig. 2e; Supplementary Materials, Fig. S3 and Table S3), and vector 297 

dispersal declined exponentially with distance (Fig. 2f; Supplementary Materials, Fig. S6). 298 

Together, these empirical relationships between environment and host, vector, and virus ecology 299 

compose an estimate of environmental risk of yellow fever spillover (Supplementary File 2). 300 

The environmental risk model strongly predicted episodes of yellow fever spillover into 301 

humans (AUC = 0.72) and adding phenomenological reservoir infection dynamics in periodic 302 

risk further improved the model (AUC = 0.79; Fig. 3). Surprisingly, models that included human 303 

vaccination coverage and human population size performed worse than the environment-driven 304 

models (AUC = 0.64 and 0.64; Fig. 3). For all risk metrics, maximum value in the municipality-305 
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month was a better predictor of spillover than mean value (Fig. 3). Logistic regressions of 306 

spillover probability as a function of model-predicted risk showed similar patterns in Akaike 307 

Information Criterion (AIC) values (Supplementary Materials, Table S4). Model-predicted 308 

environmental (mean and maximum), periodic (mean and maximum), and immunological 309 

(maximum) risk metrics were statistically significant predictors of spillover probability at the 5% 310 

level after correcting for multiple hypothesis testing (Supplementary Materials, Table S4; 71). 311 

By contrast, given that spillover occurred, none of the eight mechanistic model risk summaries 312 

were statistically significant predictors of number of cases, nor was estimated vaccine coverage 313 

(Supplementary Materials, Table S5). In Spearman’s rank correlations, we find that of the 314 

independent predictors, vaccine coverage is most correlated with risk, followed by maximum 315 

environmental risk, although these correlations are weak (Supplementary Materials, Table S5). 316 

Mechanistic model estimates matched seasonal variation in spillover, and accurately 317 

captured differences in seasonality by region (Fig. 4a). Risk peaked in April in the North and 318 

Northeast regions and in February in Central-West, South, and Southeast regions. The seasonal 319 

regional correlation between number of municipality-months with spillover and average 320 

environmental risk was highest in the Southeast (0.77), followed by the South (0.61), Central 321 

West (0.58), and North (0.42) regions. The periodic risk matched interannual variation in 322 

spillover (Fig. 4c), an unsurprising finding given periodic risk incorporated phenomenological 323 

primate dynamics derived from human cases of spillover. Interannual regional correlations were 324 

weaker than seasonal correlations but similarly highest in the Southeast (0.54), followed by the 325 

Central-West (0.45), North (0.21), and South (0.13) regions.  326 

The boosted regression tree found one-month lagged environmental risk and current 327 

environmental risk to be the second and fifth most important predictors of spillover, respectively 328 
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(Fig. 5). Not surprisingly, the boosted regression tree significantly improved predictive 329 

performance from the mechanistic model because it was trained on the human spillover data 330 

(training AUC > 0.99, test AUC = 0.95). Vaccine coverage, temperature, population density and 331 

precipitation were also among the six most important predictors in the boosted regression tree. 332 

As expected, municipality-months with spillover had higher current and one-month lagged 333 

environmental risk (Fig. 5b and e), as well as high (phenomenologically) estimated primate 334 

infection prevalence and high primate species richness (Supplementary Materials, Fig. S8). We 335 

find that municipality-months with spillover have low monthly average temperatures (Fig. 5a), 336 

which may in part be due to poorly captured effects of temperature in the mechanistic model 337 

from averaging temperature before calculating mosquito trait values for survival and 338 

infectiousness (131). We also find that municipality-months with spillover have low rates of 339 

precipitation (Fig. 5d), which may correspond to settings with increased human activity in the 340 

forest, and therefore increased chance of spillover. However, current and lagged fire area, 341 

hypothesized indicators of deforestation activity, were not significant predictors of spillover in 342 

the boosted regression tree models (Supplementary Materials, Fig. S8). 343 

Unexpectedly, municipality-months with spillover tended to have vaccine coverage 344 

above 90%, suggesting that high rates of vaccine coverage do not prevent spillover from 345 

occurring. While estimated vaccine coverage was included as a measure of human susceptibility, 346 

it is likely capturing other patterns in the spatial distribution of spillover; regions known to 347 

experience yellow fever spillover are likely to have high vaccination rates, while those where 348 

spillover is rare or nonexistent are likely to have low vaccination rates. Accordingly, estimated 349 

vaccine coverage is bimodal, potentially due to a group of lower risk municipalities and a group 350 

of higher risk municipalities. The partial dependence plot also displays two plateaus in the 351 
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marginal effect in the vaccine coverage on model estimates, which roughly correspond to the two 352 

vaccine coverage groups.  353 

The recent outbreaks in Brazil in the 2016–2017 and 2017–2018 transmission seasons 354 

have been the largest in over 50 years (16). The environmental risk model predicts persistent, 355 

low environmental risk of spillover in the affected states (Minas Gerais, Espírito Santo, Sao 356 

Paulo, and Rio de Janeiro) and does not predict any increase in spillover risk during the recent 357 

transmission seasons (Fig. 6). The date ranges of confirmed human cases during the 2016–2017 358 

and 2017–2018 outbreaks are shown in pink bands (Fig. 6) based on a World Health 359 

Organization epidemiological update (16). The mechanistic model predicts spillover risk in 360 

Espírito Santo and Rio de Janeiro, where no spillover occurred from 2001 to 2016, at levels 361 

similar to those in Minas Gerais and Sao Paulo, where spillover had previously occurred. As in 362 

other regions, the model accurately captures the seasonality of spillover risk in this region (Fig. 363 

6), which is distinct from that of other regions (Fig. 4a). 364 

Discussion 365 

Our mechanistic understanding of environmental risk of spillover—which combines 366 

reservoir host and sylvatic vector distributions, vector contact with reservoirs and humans, and 367 

vector dispersal, survival, infectiousness, and seasonal abundance—predicts yellow fever 368 

spillover into humans with high accuracy (AUC = 0.72; Fig. 3). Within each municipality and 369 

month, the maximum risk, rather than the mean risk, was the best predictor of spillover 370 

occurrence, suggesting that local heterogeneity in risk within municipalities is important for 371 

determining spillover probability. Rainfall-driven seasonality in the vector populations and 372 

temperature-driven seasonality in vector survival and infectiousness accurately predicted 373 

seasonal variation in spillover (Fig. 4a). While interannual variation in risk was not well-374 
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predicted in the environmental risk model based on climate and land cover information alone, 375 

including phenomenologically modeled variation in primate yellow fever infection prevalence 376 

improved predictions of year-to-year variation in spillover (AUC = 0.79).  377 

Although we hypothesized that low vaccination coverage and high human population 378 

density would each increase spillover risk, neither improved model accuracy for predicting 379 

spillover in the mechanistic model (Fig. 3). However, we found that vaccine coverage was the 380 

third most important predictor of municipality-months with spillover when allowing for a 381 

nonlinear but generally positive relationship between coverage and spillover probability (Fig. 5).  382 

The recent outbreak is also consistent with the ecological processes driving past spillover 383 

in this region (Fig. 6). While environmental risk in 2016–2018 was not elevated above historical 384 

levels (2001–2015) and spillover had not occurred in in the states of Espírito Santo or Rio de 385 

Janeiro during the previous 15 years, it has previously occurred in Minas Gerais and Sao Paulo 386 

states in 2001–2003 and 2008–2009. Data from the recent 2016–2018 outbreak past December 387 

2016 are not included in the statistical models because consistent monthly municipality-scale 388 

spillover data across the country are not available for that period.  389 

The boosted regression tree analysis, which aimed to detect candidate drivers of spillover 390 

that might be missing from our mechanistic model, identified vaccine coverage, current and 391 

lagged environmental risk, temperature, population density, and precipitation as important 392 

predictors, which together improved upon mechanistic model predictive performance of 393 

pathogen spillover (out-of-sample AUC = 0.95). The relative importance of lagged and current 394 

environmental risk provides evidence that the mechanistic model captures the potentially 395 

nonlinear and interactive relationship between environmental variables that drive spillover in 396 

mosquitoes, reservoir hosts, and humans better than the environmental variables alone. One-397 
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month lagged environmental risk may be more important than current environmental risk for 398 

predicting spillover because of a lag between cases and reporting. Additionally, environmental 399 

suitability for reservoir and vectors may drive reservoir infection dynamics, causing a lag 400 

between conditions suitable for virus amplification in the primate reservoir and vector 401 

populations, and spillover into humans. Moreover, the relative importance of one-month lagged 402 

environmental risk creates the potential for forward prediction of spillover. The boosted 403 

regression tree also identified municipality-months with spillover to have low temperatures. As 404 

mosquito thermal performance traits often have steep drop-offs at high temperatures, temperature 405 

variation affects mosquito traits (132). Our mechanistic model using monthly average 406 

temperature may overestimate the suitability in warm temperatures and underestimate the 407 

suitability in cool temperatures (131), resulting in the decreasing relationship observed between 408 

average monthly temperature and spillover in the boosted regression tree. 409 

In a recent publication, Kaul et al. (8) also used a machine learning approach to predict 410 

municipality-months with spillover in Brazil and similarly found rainfall and temperature to be 411 

important predictors. However, their model also identified primate richness and fire density as 412 

important predictors, while our boosted regression tree analysis ranked municipality average 413 

primate richness tenth, municipality maximum primate richness fourteenth, one-month lagged 414 

fire area ninth, and current fire area twelfth for variable importance out of fourteen variables. 415 

Our covariates add to those used by Kaul et al. (8) by including vaccine coverage and our 416 

mechanistic environmental risk estimate (current and lagged), which boosted regression trees 417 

found to be three of the five most important predictors. We expect that our mechanistic 418 

environmental risk estimates capture much of the variation attributed to other environmental 419 

variables in the Kaul et al. model. Despite the differing relative importance of variables for 420 
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predicting spillover in the two models, they both predict that seasonal patterns vary by regions of 421 

Brazil and find Southeast Brazil seasonally suitable for yellow fever spillover. Our mechanistic 422 

model further illustrates that this differing seasonality can be explained by seasonal variation in 423 

vector survival and infectiousness driven by temperature and vector abundance driven by 424 

rainfall. 425 

Given the importance of vaccination campaigns in limiting yellow fever outbreaks, we 426 

expected that the number of susceptible (unvaccinated) people would be an important positive 427 

predictor of yellow fever spillover occurrence, yet mechanistic population-scaled risk performed 428 

worse at predicting spillover than environmental risk alone (Fig. 3). For example, scaling by 429 

population size predicts areas of very high risk along the coast of Brazil, where environmental 430 

risk is low, but population sizes are high. Additionally, we expected that vaccination coverage 431 

and human density might be more predictive of the number of cases in spillover events (for 432 

example, the recent outbreak in Southeast Brazil) than the probability of spillover occurring, 433 

given that very low environmental suitability will be amplified in large, unvaccinated 434 

populations. However, vaccine coverage was not a significant predictor of the number of human 435 

cases of yellow fever given that spillover occurred (Supplementary Materials, Table S5). 436 

Anecdotally, it is worth noting that prior to the recent large outbreak in Southeastern Brazil in 437 

2016–2018, vaccination rates in the region were low, potentially allowing that outbreak to reach 438 

an unusually high magnitude. 439 

The substantial improvement in model prediction from environmental to periodic risk 440 

(AUC = 0.72 vs. 0.79) suggests that primate population dynamics, immunity, and infection 441 

prevalence may be a key missing component of this mechanistic model. Ongoing surveillance 442 

efforts in Brazil are used to detect non-human primate cases of yellow fever as an advanced 443 
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warning system (133). While this advanced warning system can make a critical difference, the 444 

recent outbreaks in Southeast Brazil displayed that in some cases this surveillance may not 445 

provide sufficient time to respond to prevent spillover, especially in areas with high populations 446 

and low vaccine coverage rates as were found in the Southeast. Incorporating a mechanistic 447 

model of non-human primate infection prevalence, driven by local primate surveillance data, 448 

could help to indicate when primate cases of yellow fever are likely, to provide additional time 449 

for public health officials to respond. This remains a significant and potentially very fruitful gap 450 

in our understanding of yellow fever transmission and spillover.  451 

Vector-human contact rates are another important empirical gap in the mechanistic 452 

model, which could further refine the relationships between land use, human occupations and 453 

behavior, and spillover risk. We approximate human contact rates with sylvatic vectors with 454 

percent forest cover, but the relationship is likely much more complex. The surprising decreasing 455 

relationship between precipitation and spillover probability in the boosted regression tree (Fig. 456 

5d) may be due to the influence of precipitation on human activities in and around forests, and 457 

therefore its influence on human–vector contact (94). Additionally, while vector contacts depend 458 

on biting rate of the vector and mosquito biting rates are known to depend on temperature for 459 

other species (106,134), we assume constant biting rate in the mechanistic model due to a lack of 460 

empirical evidence.  461 

While it was beyond the scope of this paper, the most influential mechanisms in the 462 

model could be further identified through sensitivity analyses of specific submodel components. 463 

Additionally, associations between model components and spillover probability could be 464 

estimated using the framework of percolation models (Washburne et al., this issue). Finally, a 465 
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thorough uncertainty analysis could highlight the model components most in need of further 466 

study to improve prediction of spillover.  467 

Yellow fever is an ancient, historically important human disease that played a central role 468 

in the discovery of mosquito transmission of pathogens and the subsequent development of 469 

vector control as a public health measure (135). The wealth of existing knowledge about the 470 

ecology of yellow fever virus and its sylvatic reservoir hosts and vectors allowed us to synthesize 471 

data from 73 published papers to mathematically formalize our ecological understanding of 472 

sylvatic transmission and spillover. Although spillover is a stochastic process that is expected to 473 

be difficult to predict, the mechanistic model that integrates vector, human host, non-human 474 

reservoir, and virus ecology allowed us to predict spillover with surprising accuracy. Historically 475 

in the Americas and presently in other regions such as sub-Saharan Africa, yellow fever 476 

regularly has entered urban transmission cycles that lead to major human epidemics. The model 477 

framework presented here could be extended to include the ecology of different vectors, hosts, 478 

and environments, including urban Ae. aegypti and more human immune interactions with other 479 

flaviviruses, to ask intriguing questions such as: What prevents yellow fever from entering urban 480 

transmission cycles in the Americas, where other flavivirus epidemics regularly occur? Why has 481 

urban transmission occurred recently in Africa and not in South America? What prevents yellow 482 

fever circulation and spillover in Southeast Asia, where sylvatic vectors and non-human primate 483 

hosts are present and the climate is suitable? Answers to these questions would further our 484 

understanding of the ecology of (re)emerging diseases in different parts of the world. More 485 

fundamentally, this work provides clear evidence for the predictive power of mechanistic, 486 

ecological models—even for rare events like pathogen spillover—and can provide useful 487 

information to enhance public health interventions of zoonotic diseases. 488 
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Tables 953 
 954 
Table 1. Spillover model variables and definitions. 955 

Variable Definition Model 
𝛽+(𝑥, 𝑡) Proportion of mosquito bites from sylvatic 

vectors on humans at location 𝑥 at time 𝑡 
Approximated as 1 − 𝑓(�⃗�, 𝑡) in locations 
with non-zero human population density, 
where 𝑓(�⃗�, 𝑡) is the percent forest cover at 
location �⃗� at time 𝑡 

𝛽1(𝑥, 𝑡) Proportion of mosquito bites from sylvatic 
vectors on non-human primates at location 𝑥 
at time 𝑡 

Approximated as 𝑓(�⃗�, 𝑡) in locations within 
at least one non-human primate range, where 
𝑓(�⃗�, 𝑡) is the percent forest cover at location 
𝑥 at time 𝑡 

𝜌.(�⃗�, 𝑡) Sylvatic vector density at location �⃗� at time 𝑡 Approximated as location maximum 
mosquito density multiplied by relative 
seasonal abundance, where maximum 
mosquito density is determined by a species 
distribution model and seasonal abundance is 
modeled from field capture data (see 
Methods: Mechanism models – Mosquito 
distribution and seasonality) 

𝐸𝐼𝑃(𝑇(�⃗�, 𝑡), ∆𝑡) Probability a mosquito that took an 
infectious blood meal becomes infectious 
with yellow fever virus given a temperature 
𝑇(𝑥, 𝑡) and ∆𝑡 days elapsing	

See Methods: Mechanistic submodels – 
Mosquito infectiousness 

𝑠(𝑇(�⃗�, 𝑡), ∆𝑡) Probability that a mosquito survives ∆𝑡 days 
given a temperature 𝑇(�⃗�, 𝑡) 

See Methods: Mechanistic submodels – 
Mosquito survival 

𝑑(‖�⃗� −	 �⃗�‖) Probability that a mosquito disperses from �⃗� 
to �⃗� 

See Methods: Mechanistic models – 
Mosquito dispersal 

𝑏(�⃗�, 𝑡) Biting rate of sylvatic vectors at location �⃗� at 
time 𝑡 

Assumed constant given limited information 
on determinants of vector biting rates 

𝜅(�⃗�, 𝑡) Infection prevalence in nonhuman primate 
reservoir at location �⃗� at time 𝑡 

For environmental risk metric, assumed 
constant given limited information of 
nonhuman primate infection prevalence. For 
periodic risk metric, used periodic curve fit 
to yearly case data (see Methods: 
Phenomenological primate dynamics). 
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Figures 958 
 959 

 960 
Figure 1. Mechanistic and statistical model schematic. Submodels of components in the 961 
mechanistic model are parameterized using independent data on reservoir species, vector species 962 
occurrences, seasonal abundances, vector mark-recapture studies, vector survival, transmission 963 
experiments, forest cover, estimated vaccine coverage, and human population estimates. 964 
Reservoir disease prevalence is estimated from annual number of municipality-months with 965 
spillover. The output from the submodels are used in a mechanistic spillover model to predict 966 
four metrics risk of yellow fever in humans: periodic disease risk, environmental disease risk, 967 
immunological disease risk, and population-scaled disease risk. Environmental disease risk 968 
metric is then used as a covariate in a boosted regression tree to predict the municipality-months 969 
with spillover and identify covariates important for predicting spillover. Other environmental 970 
covariates are also included in the boosted regression tree. Details on data used in the 971 
mechanistic model can be found in the Supplementary Materials (S). Specific locations within 972 
the Supplementary Materials are noted parenthetically by either the section or table in which 973 
details can be found. Data used in the boosted regression tree are described in the Supplementary 974 
Materials (Table S6). Layers shown on the left correspond to mechanistic model components in 975 
Fig. 2a–k.  976 
  977 

Covariates:  
Primate species richness 
Air temperature 
Precipitation 
Fire area 
Vaccine coverage 
Human population density 
Month 
Region 
Reservoir disease prevalence 
Environmental disease risk

Reservoir species occurrence (Table S1)

Environmental covariates (Table S2), 
vector species occurrence (S2.1.2)

Seasonal abundance (S2.2.2)

Transmission experiments (S2.4.2)

Forest cover (Table S1)

Mark-recapture studies (S2.5.2)

Survival (S2.3.2)

Non-forest cover (Table S1)

Vaccine coverage estimates (Table S1)

Human population estimates (Table S1)

SUBMODEL OUTPUT DATA OUTCOME

MECHANISTIC MODEL STATISTICAL MODEL

Reservoir distribution

Vector distribution

Vector seasonal abundance

Vector dispersal

Vector survival

Vector infectiousness

Reservoir-vector contact

Human-vector contact

Human susceptibility

Human distribution

Population-scaled 
disease risk

Periodic 
disease risk

Immunological 
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disease risk
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Boosted  
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 978 
Figure 2. Data used to estimate ecological and human population components of spillover 979 
(a–k) and estimates of overall spillover risk (l–o). Number of primate reservoir species (a), 980 
vector species probability of occurrence (b), reservoir-vector contact probability (c), human-981 
vector contact probability (d), human susceptibility approximated by one minus estimated 982 
vaccine coverage (i), and human distribution (j) vary spatially. Vector seasonal abundance is 983 
modeled as a function of rainfall using mosquito capture data (e). Vector dispersal depends on 984 
distance and is estimated from mark-recapture studies (f). Vector survival has been measured at 985 
different temperatures in laboratory (open circles) and field (closed circles) settings and was used 986 
to estimate temperature-dependent vector lifespan (g). Transmission studies at different 987 
temperatures inform modeled probability of vector infectiousness as a function of days since 988 
infecting bite and temperature (h). Phenomenologically modeled reservoir disease prevalence 989 
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(light blue line, k) is approximated from human case data (blue dots, k). All mechanistic model 990 
components (a–k) are derived from empirical data in previously published studies. Components 991 
a–h are used to predict environmental risk of disease spillover (l), components a–i are used for 992 
immunological risk (m), components a–j are used for population-scaled risk (n) and components 993 
a–h and k are used for periodic risk (o). The four disease risk metrics presented here for 994 
illustrative purposes were estimated for January 2001 (l–o). 995 
  996 
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 997 
Figure 3. Municipality maximum periodic risk best predicts spillover. Each point is the 998 
calculated area under the curve (AUC) from spillover predicted by modeled risk, where higher 999 
AUC represents a model better able to distinguish between spillover and non-spillover 1000 
observations. The risk models (from left to right on the x-axis) are environmental risk, periodic 1001 
risk, immunological risk, and population-scaled risk. Municipality-wide maxima (red dashed 1002 
lines and circles) and means (blue dotted lines and triangles) are shown for each metric. 1003 
  1004 

●

●

● ●

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Model performance by mechanism

Mechanism

AU
C

Environmental
Risk

Periodic
Risk

Immunological
Risk

Population−
scaled
Risk

Maximum risk

Mean risk

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/523704doi: bioRxiv preprint 

https://doi.org/10.1101/523704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

 1005 
Figure 4. Modeled environmental risk captures seasonal variation and periodic risk 1006 
captures interannual variation in spillover. Each colored line is the seasonal average of 1007 
modeled maximum environmental risk in a municipality (a) and the yearly average of modeled 1008 
maximum periodic risk in a municipality (c). White lines are the regional average over the 1009 
municipal curves. Black points represent the total number of municipality-months with spillover 1010 
in that region per month (a) and per year (c), or the municipalities with at least one month with 1011 
spillover (b). Correlations between regional average environmental risk (white lines) and 1012 
regional number of municipality-months with spillover (black points) shown in parentheses (a, b) 1013 
for regions where spillover has occurred (all except the Northeast). Regions of Brazil are shown 1014 
with corresponding colors (c). The Southeast (shown in blue) was the region with the majority of 1015 
cases during the large outbreaks in 2016–2018.   1016 
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 1018 
Figure 5. Partial dependence plots of top six predictors of spillover in a municipality-month 1019 
from boosted regression tree analysis. Plots are listed in order of predictive importance with 1020 
relative influence (%) listed. In order, the variables identified as most important predictors were 1021 
average temperature in the municipality-month (a), one-month lagged maximum environmental 1022 
risk (b), estimated vaccine coverage (c), average rate of precipitation in the municipality-month 1023 
(d), current month maximum environmental risk (e), and municipality population density (log-1024 
scaled for visibility, f). Histograms show the distribution of observed municipality-months at 1025 
each covariate value (left y-axis) and solid lines show the marginal effects of covariate on model 1026 
prediction (right y-axis). Marginal effects highlight the characteristics of municipality-months 1027 
that experienced spillover in Brazil 2001–2016.    1028 
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 1030 
Figure 6: Mechanistic model predicts consistent low, seasonal risk across states in 1031 
Southeast region of Brazil, where a large outbreak occurred in 2016–2018. Data are only 1032 
available until the end of 2016 (blue dashed line), so do not include the duration of the 2016–1033 
2018 outbreaks (pink boxes). Only 2001–2016 spillovers are shown, defined as municipality-1034 
months with human yellow fever cases (red points). Grey lines are municipality estimates of 1035 
maximum environmental risk and the black line is the environmental risk averaged over all 1036 
municipalities in the state. Prior to the large outbreak in 2017–2018, spillover had occurred in 1037 
Minas Gerais and São Paulo (right panels) but not in Espírito Santo or Rio de Janeiro (left 1038 
panels). 1039 
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