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Abstract— Fluorescence lifetime imaging (FLI) provides 

unique quantitative information in biomedical and 

molecular biology studies, but relies on complex data fitting 

techniques to derive the quantities of interest. Herein, we 

propose a novel fit-free approach in FLI image formation 

that is based on Deep Learning (DL) to quantify complex 

fluorescence decays simultaneously over a whole image and 

at ultra-fast speeds. Our deep neural network (DNN), named 

FLI-Net, is designed and model-based trained to provide all 

lifetime-based parameters that are typically employed in the 

field. We demonstrate the accuracy and generalizability of 

FLI-Net by performing quantitative microscopic and 

preclinical experimental lifetime-based studies across the 

visible and NIR spectra, as well as across the two main data 

acquisition technologies. Our results demonstrate that FLI-

Net is well suited to quantify complex fluorescence lifetimes, 

accurately, in real time in cells and intact animals without 

any parameter settings. Hence, it paves the way to 

reproducible and quantitative lifetime studies at 

unprecedented speeds, for improved dissemination and 

impact of FLI in many important biomedical applications, 

especially in clinical settings. 

Index terms—Fluorescence Lifetime Imaging, Deep 

Learning, inverse-solver optimization, ultra-fast 

I. INTRODUCTION 

OLECULAR imaging has become an 

indispensable tool in biomedical studies with great 

impact on numerous fields from fundamental 

biological investigations to transforming clinical practice. 

Among all molecular imaging modalities, fluorescence 

optical imaging is a central technique thanks to its high 

sensitivity, the numerous molecular probes available, either 

endogenous or exogenous, and its ability to simultaneously 

image multiple biomarkers or biological processes at various 

spatio-temporal scales1,2. Especially, fluorescence lifetime 

imaging (FLI) has become an ever increasingly popular 

method as it provides unique insights into the cellular micro-

environment, by non-invasively examining numerous 

intracellular parameters3 such as metabolic status4, reactive 

oxygen species5 and intracellular pH6. Moreover, FLI’s 

exploitation of native fluorescent signatures has been 

extensively investigated for enhanced diagnostic of 

numerous pathologies.7-10 FLI is also the most accurate 

approach to quantify Förster Resonance Energy Transfer 

(FRET), an invaluable technique used to quantify protein-

protein interactions, biosensor activity and ligand-receptor 

engagement in vivo.11 FLI is not a direct imaging modality 

and beyond dedicated imaging platforms, the acquired 

temporal data set needs to be post-processed to quantify the 

lifetime or lifetime-based parameters. Such post-processing 

typically involves a model-based process in which iterative 

optimization methods are employed to estimate the different 

parameters of interest (mean-lifetime, FRET efficiencies or 

population fractions). Mono- or bi-exponential models, 

depending on the application at hand, are the most widely 

employed to analyze FLI datasets. Yet, it is notorious that the 

accuracy of these methods is often associated with user 

defined parameter settings employed to constrain the inverse 

problem.  These methods are also relatively slow and/or 

computationally expensive.12 This complexity together with 

a lack of standardized methods has limited the widespread 

use and impact of FLI, especially clinically. Recently, a fit-

free lifetime quantification methodology has been proposed, 

the phasor approach.13 The phasor method is a graphical 

representation of excited-state fluorescence lifetimes for in 

vitro systems. The phasor technique has been widely adopted 

due to its simplicity that allows non-imaging experts to 

perform simple and fit-free analyses of the information 

contained in the many thousands of pixels constituting an 

image14. However, although the phasor method provides a 

graphical interface that simplifies FLI data interpretation, the 

mathematics underlying its computation can be challenging. 

The approach needs to be modified for techniques such as 

time-gated fluorescence15 and typically requires some 

calibration samples to be quantitative.16  

In parallel, interests in data driven and model-free 

processing of imaging methodologies has boomed over the 

last decade. Of particular note, Machine Learning (ML) and 

Deep Learning (DL) methods have recently profoundly 

impacted the image processing field. For example, deep-

neural networks (DNNs) are currently providing high level, 

robust performances in numerous biomedical applications – 

such as in pathology through multiple imaging modalities,17-

19 natural language processing,20 image reconstruction via 
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direct mapping from the sensor-image domain21 and 

reinforcement learning applied to drug discovery.22 DL 

methods are increasingly employed in molecular optical 

imaging applications from resolution enhancement in 

histopathology23, super resolution microscopy24, 

fluorescence signal prediction from label-free images25, 

single molecular localization26, fluorescence microscopy 

image restoration27 and hyperspectral single pixel lifetime 

imaging for instance28. However, the typical application of 

DL methods to image processing is data driven and hence, 

requires large data sets that are either difficult to acquire 

and/or not readily available. Moreover, the performances of 

DL methods can be limited to the specific data set employed 

for training and hence, not generalized. 

Herein, we present a 3D Convolutional Neural Network 

(CNN) that is designed to process the classical data sets 

acquired by current fluorescence imaging systems to 

provide, in quasi real-time, the lifetime maps as well as 

associated quantities (i.e.: mean-lifetime, fractional 

amplitude of fluorescence species, FRET Efficiency (E%) or 

FRET Donor Fraction (FD%)). Our 3D CNN approach, 

unlike previous methods, does not require any user-defined 

parameter entry, is able to tackle either mono- or bi-

exponential data sets, is accurate for a large range of lifetimes 

(even ones close to the instrument response) and provides 

superior performances in photon starved conditions. 

Furthermore, the 3D CNN can be trained efficiently using a 

synthetic data generator and validated with experimental 

data sets, avoiding the need to acquire massive training 

datasets experimentally. Additionally, we demonstrate that 

our 3D CNN is capable of processing experimental 

fluorescent decays acquired by either Time Correlated Single 

Photon Counting (TCSCP)- or gated ICCD- based 

instruments, which are the two main technologies employed 

in the field. Herein, the potential of the proposed approach is 

demonstrated by performing FLI microscopy to quantify the 

metabolic status of live cells as well as reporting FRET to 

measure levels of receptor engagement. Moreover, the 

experimental demonstration includes applications in the 

visible as well as the near-infrared (NIR) range, allowing for 

a large range of lifetimes to be considered. In all cases, the 

3D CNN performances are benchmarked against the widely 

used FLIM processing software SPCImage29. Lastly, we 

demonstrate the potential of our 3D CNN to quantify whole-

body dynamic lifetime-based FRET occurrence in a live 

animal at unprecedented time frames (≌ 32ms per full 

whole-body image). Overall, these results demonstrate that 

DL methodologies, beyond classical image processing tasks, 

are well suited for image formation paradigms that to date 

were based on inverse problem solvers. Our reported 3D 

CNN architecture and training strategy provide a versatile 

and generalized new tool for fit-free analysis of complex 

fluorescence lifetime imaging processes. Due to its ease of 

use and ultra-fast qualities, our 3D CNN should further 

stimulate the widespread use of FLI techniques, provide 

standardized quantification capabilities (as no parameter 

settings are required) and enable new applications such as 

real-time wide-field FLI in pre-clinical and clinical studies, 

especially facilitating optical guided surgery. 

II. 3D-CNN ARCHITECTURE, TRAINING AND VALIDATION 

 

Figure 1. Illustration of our 3D-CNN (“FLI-Net”) structure and corresponding metrics of note.  During the training phase, the input 

to our DNN (a) was a set of simulated data voxels containing a TPSF at every non-zero value of a randomly chosen MNIST image.  

After a series of spatially-independent 3D-convolutions, the voxel underwent a reshape (from 4D to 3D) and subsequently branched 

into three separate series of fully-convolutional downsampling for simultaneous three-image reconstruction. b, 30 MSE validation 

curve average with corresponding standard deviation (shaded) for each parameter. c, t-SNE visualization obtained via the last 
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activation map before the tri-junction reconstruction, where each point represents a TPSF voxel assigned a randomized trio of 

lifetime and amplitude ratio values. FLI-Net performance (d) versus LSF (e) upon evaluation of simulated TPSF voxels over three 

ranges of maximum photon count. 

The 3D CNN, named “FLI-Net” (Fluorescence Lifetime 

Imaging - Network) hereafter is designed to mimic a curve-

fitting approach using layers of convolutional operations and 

non-linear activation functions. FLI-Net is designed such that 

time- and spatially resolved fluorescence decays are input as 3D 

data cube (x,y,t) and bi-exponential parameters (two lifetimes 

and one fractional amplitude) are estimated at each pixel to be 

provided in output images of the same dimension as the input 

(x,y). A rendering of the architecture of FLI-Net is provided in 

Fig. 1a. 

The network architecture consists of two main parts: 1) a 

shared branch for temporal feature extraction and 2) a 

subsequent three-junction split into separate branches for 

simultaneous reconstruction of short lifetime (𝝉𝟏), long lifetime 

(𝝉𝟐) and fractional amplitude of the short lifetime (𝑨𝑹). There 

are a couple of design choices that are critical to the performance 

of FLI-Net; providing the basis for a consequently high level of 

sensitivity, stability, speed and reconstructive accuracy. First, it 

is crucial to introduce convolutions (Conv3D) along the 

temporal dimension at each spatially located pixel at the first 

layer in order to maximize spatially-independent feature 

extraction along each TPSF. After this step, a residual block 

(ResBlock) of reduced kernel length is employed. This second 

step enables further extraction of temporal information while 

reaping the benefits obtained through residual learning 

(elimination of vanishing gradients, no overall increase in 

computational complexity or parameter count, etc.)30. The 

beneficial implementation of residual learning has been 

thoroughly documented in not only image classification and 

segmentation31 but also in areas of speech recognition32. Fully-

convolutional networks33, or networks designed such that input 

of any spatial dimensionality can be analyzed with no loss in 

performance, offer enormous benefit to problems where 1) prior 

knowledge of input size is inherently variable and 2) the 

experimental data of interest is memory exhaustive. After 

performing the common features of the whole input, the network 

splits into three dedicated branches to estimate the individual 

lifetime-based parameters of interest. In each of these branches, 

a sequence of convolutions is employed for down-sampling to 

the intended 2D image. A more detailed description of the 

network architecture is provided in the Methods section. 

To obtain large data sets to train FLI-Net and validate its 

architecture robustness, feature extraction efficiency as well as 

quantitative accuracy, we generated 10,000 temporal point-

spread function (TPSF) voxels using a bi-exponential model 

convolved with an experimental instrument response function 

(IRF). The parameters of the bi-exponential model were varied 

over the lifetime range considered in the application (Visible 

(𝝉𝟏, 𝝉𝟐)∈[0.2-3]ns; NIR (𝝉𝟏, 𝝉𝟐)∈[0.2-1.1]ns) and the fractional 

amplitude 𝑨𝑹 varied from 0 to 100% (𝑨𝑹 = 0 or 100% are 

corresponding to mono-exponential decays whereas every value 

between these extreme corresponds to bi-exponential decays). 

See Table S1 in the Supplementary Material section for a full 

summary of the parameters used for training. The IRF was 

acquired from our gated-ICCD. Last, the photon counts (p.c.) of 

the maximum of the TPSF were set between 250 and 2,000 

counts followed by the addition of Poisson noise. The training 

data set was split into training (8,000) and validation (2,000) data 

sets. Additional information on the generation of this data set can 

be found in the Methods. To demonstrate the robustness of FLI-

Net, training and validation were performed over 30 times with 

randomly initialized training/validation partitions. The plotted 

average of 30 validation mean-squared error (MSE) curves 

trained over 150 epochs with corresponding standard deviation 

bounds for all three output branches is provided in Fig. 1b and 

illustrates the DNN’s excellent convergence stability. To 

evaluate if the feature extraction of the shared branch was robust 

and effective, we registered the output of the shared branch’s 

final activation layer during feed-through of 5,000 newly 

simulated TPSF data voxels (not used in training or validation). 

These high-dimension features were flattened and projected to a 

3D feature space via t-SNE34. Their display as a scatter plot is 

provided in Fig. 1c. The continuous gradient observed in the 3D 

plot of the t-SNE values versus the mean lifetimes simulated 

𝝉𝒎  =  𝑨𝑹𝝉𝟏  +  (𝟏 − 𝑨𝑹)𝝉𝟐; 𝝉𝒎 ∈ ([0.2, 0.65] ns) indicates an 

efficient and sensitive feature extraction for lifetime-based 

parameter estimation. Beyond feature extraction, we provide 

also the summary of the quantitative accuracy of the network in 

estimating the three above mentioned lifetime-based parameters 

(𝝉𝟏, 𝝉𝟐, 𝑨𝑹). The accuracy of the results is evaluated via the 

Structural Similarity Index (SSIM) between the simulated and 

estimated values (SSIM=1 indicating perfect one-to-one 

concordance). The SSIMs are also reported for three ranges of 

maximum photon counts (i.e., p.c.good∈[250-500]; 

p.c.challenging∈[100-250]; p.c.low∈[25,100]) as lifetime-based 

biomedical imaging is notoriously a photon-starved application. 

In all three cases, FLI-Net (Fig. 1d) significantly outperforms 

the classical LSF (Fig. 1e) method, which as expected, 

demonstrates worsening performances at very low photon 

counts (𝑺𝑺𝑰𝑴̅̅ ̅̅ ̅̅ ̅̅  = 0.82). Note, that although the network was only 

trained using TPSF data possessing intensity values greater than 

500 maximum photon counts in this specific instance, it 

performs extremely well for low photon counts levels too (even 

in the 25-100 range with a 𝑺𝑺𝑰𝑴 ̅̅ ̅̅ ̅̅ ̅̅ = 0.95 for the worse case). 

Overall, these training and validating results establish that FLI-

Net can be efficiently and robustly trained via synthetic data 

representing both mono- and bi-exponential decays. Moreover, 

FLI-Net outperforms the classical LSF approach in estimating 

the three lifetime-based parameters that are commonly 

employed in FLI applications. To further establish the usefulness 

and unique potential of FLI-Net, we evaluated its performance 

when using experimental data sets after training with simulation 

data generated through the workflow previously described. 
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Figure 2. Visible FLIM microscopy data of NAD(P)H.  a-d, Representative maps of NAD(P)H 𝝉𝒎 obtained with the commercial 

software SPCImage and FLI-Net (e-h). i-j, Averaged NAD(P)H 𝝉𝒎 values obtained across all FLIM data using both techniques. k, 

Linear regression with corresponding 95% confidence band (grey shading) of averaged NAD(P)H 𝝉𝒎 values from all cell-lines pre 

and post-exposure to Na cyanide (n = 3) obtained via SPCImage and our DNN (slope = 1.01 (SE = .05); p < 1e-5; intercept = -6.9e-3 

(SE = 4.2e-2); R2 = 0.985). The microscopy data acquired post-exposure are notated with an asterisk. l, SSIM measurements for all 

NAD(P)H 𝝉𝒎 images. Further metrics of note are included in the Supplementary Material.

III. FLUORESCENCE LIFETIME IMAGING MICROSCOPY 

Fluorescence lifetime imaging microscopy (FLIM) is the most 

widely used FLI application. For this study, we have selected 

metabolic and FRET imaging as they are some of the most 

challenging, yet sought after, FLIM applications. We report first 

the performance of FLI-Net in quantifying the metabolic status 

of live cells as reported by NAD(P)H imaging. Secondly, we 

report on FLI-Net’s accuracy in quantifying ligand-receptor 

engagement via lifetime-based FRET in the visible and NIR 

range.   

Metabolic imaging: Quantification of the fractional 

concentration between free and protein-bound NADH provides 

important information regarding cellular metabolic state. Given 

that both free and protein-bound NADH possess the same 

absorption and emission profiles, but differ significantly in 

fluorescence lifetime, FLIM has been used extensively for 

sensitive free vs. bound NADH quantification in vitro.35 First, 

confocal FLIM data were collected from four human cell lines 

(MCF10A as a non-cancerous mammary epithelial cell line, the 

remaining being cancer cell lines representing different types of 

breast cancer) using a Zeiss LSM 880 Airyscan NLO 

multiphoton confocal microscope equipped with HPM-100-40 

high speed hybrid FLIM detector (GaAs 300-730 nm; Becker & 

Hickl) and a Titanium: Sapphire laser (Ti: Sa) (680-1040 nm; 

Chameleon Ultra II, Coherent, Inc.). These different cell lines 

have been shown to exhibit markedly different metabolic states, 

as reported by NADH 𝝉𝒎.36 Additionally, the cells were exposed 

to 2.5 mM of Na cyanide (NaCN), which is a well-known 

inhibitor of many metabolic processes leading to reduced NADH 

𝝉𝒎
36. FLIM acquisition was performed prior to exposure and 

after 30-minute incubation of live cells with NaCN. The FLIM 

NADH 𝝉𝒎 images for each case are provided in Fig. 2, both for 

FLI-Net and SPCImage. A visual inspection of these images 

shows that FLI-Net and SPCImage provides strikingly similar 

results. The descriptive statistics of NADH 𝝉𝒎 of SPCImage 
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versus FLI-Net for each case is summarized in Fig. 2i-l. The 

excellent concordance between the two analytic frameworks is 

highlighted in Fig. 2k by very high coefficients of determination 

(R2∈[0.985]) and low p-value (p < 1e-5). Additionally, we 

provide the SSIM between FLI-Net and SPCImage in Fig. 2l. 

The SSIM values indicate an excellent spatial congruence 

between FLI-Net and SPCImage in all cases, with the lowest 

measured value obtained for MDA-NaCN (𝑺𝑺𝑰𝑴̅̅ ̅̅ ̅̅ ̅̅  = 0.87). 

Ligand-receptor engagement: FLIM-FRET imaging enables 

the quantification of biosensor activity that can report on many 

cellular processes and/or ligand-receptor engagement and 

subsequent cellular internalization. FLIM-FRET is typically 

performed using visible light and by quantifying the reduction in 

the donor 𝝉𝒎 associated with FRET quenching. Herein, visible 

FRET-FLI microscopy data were collected using a Zeiss LSM 

510 equipped with HPM-100-40 high speed hybrid FLIM 

detector (GaAS 300-730 nm; Becker & Hickl) and a Titanium: 

Sapphire laser (Ti: Sa) (Chameleon) (apparatus, fluorescence 

labeling, and data acquisition details described elsewhere37). 

T47D human breast cancer cells were incubated with Tf-AF488 

and Tf-AF555 visible FRET pair with a range of acceptor-donor 

(A:D) ratio from 0:1 to 2:1. As the A:D ratio increases, it is 

expected that FRET occurrence increases with the donor 𝝉𝒎  

decreasing accordingly. The 𝝉𝒎  for each condition as estimated 

via FLI-Net are provided in Fig. 3 (upper panel). In all cases, the 

𝝉𝒎 estimated are within the expected range and, overall, follow 

the decreasing trend expected as A:D ratio increases. To assess 

if FLI-Net provides similar results as SPCImage, we show in 

Fig. 3c and Fig. 3d the respective distribution of estimated 𝝉𝒎. 

For the four A:D ratios reported, the mean-lifetime distributions 

are in excellent agreement between FLI-Net and SPCImage. 

Furthermore, we computed the Bhattacharyya coefficient (BC) 

to measure the similarity of these paired probability 

distributions. As displayed in Fig. 3e (further discussed in 

Methods), the BCs are all very close to ≅ 1 indicating that FLI-

Net and SPCImage provide almost identical 𝝉𝒎 distributions for 

all cases. Additionally, we computed the MSE to assess spatial 

congruency between the two post-processing methods. As 

reported in Fig. 3f, the MSEs values are low, indicating a very 

good pixel-pixel correspondence. 

Beyond the quantitative and spatial accuracy of FLI-Net as 

demonstrated by its benchmarking against SPCImage, we 

compared its computational speed versus SPCImage on the same 

computational platform. The time required for analysis of each 

TCSPC voxel, which possessed 256 time-points (visible FLIM) 

with a pixel resolution of 512 × 512, was just 2.5 seconds on 

average using our 3D CNN compared to ≅ 45 seconds with 

SPCImage. Though it is important to note that one input 

parameter of importance to SPCImage is the photon count 

restrictions that leads to fitting only a small subset of the pixel 

in the input voxel, whereas FLI-Net processes the voxel’s 

entirety. Taking into account this embedded constraint under 

SPCImage, FLI-net is ≅ 30 times faster than SPCImage per pixel 

processed (FLI-Net = 9.5e-3 ms/pixel; SPCImage = 0.28 

ms/pixel).  

 

Figure 3. Visible FLIM microscopy data. Representative 𝝉𝒎 maps obtained via FLI-Net using T47D cells containing Tf-AF488 (A:D 

= 0:1) or different donor-acceptor ratios of Tf-AF488 and Tf-AF555 (0.5:1, 1:1 and 2:1). a-b, Representative ROI comparison between 

FLI-Net (a) and SPCImage (b). c-d, Distribution histograms of 𝝉𝒎 obtained via FLI-Net compared to SPCImage. e-f, Bhattacharyya 

coefficient and MSE results for three microscopy voxels at each A:D ratio. 
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Figure 4. NIR TCSPC FLIM microscopy data. Representative FRET-Donor percentage maps obtained via FLI-Net using T47D 

cells containing Tf-AF700 (A:D = 0:1) or A:D ratios of Tf-AF700 and Tf-AF750 (0.5:1, 1:1 and 2:1). a-b, Example ROI comparison 

between FLI-Net (a) and SPCImage (b). c-d, FRET percentage distribution overlays for both techniques. e-f, Bhattacharyya coefficient 

and MSE results for three microscopy voxels at each volumetric fraction. 

Visible FLIM is favored by relatively large lifetimes 

compared to the IRF temporal spread. This facilitates fitting 

methodologies as the IRF has minimal impact on the 

quantification accuracy. Though, with the impetus of translating 

optical molecular imaging to deep tissue imaging, great efforts 

have been deployed over the last two decades to develop NIR 

dyes. Yet, NIR dyes are typically characterized by shorter 

lifetimes that can be of the order of the IRF full-width at half-

maximum (FWHM), rendering FLI quantification far more 

challenging. NIR microscopy data collected using a Zeiss LSM 

880 confocal microscope equipped with same NIR FLIM 

detector (apparatus, fluorescence labeling, and data acquisition 

details described here)37 were used to further test FLI-Net’s 

robustness during in vitro NIR FLIM FRET analysis. T47D cells 

were incubated with Tf-AF700 and Tf-AF750 NIR FRET pairs 

with a range of acceptor-donor (A:D) ratio from 0:1 to 2:1. For 

the NIR FRET analysis and especially its in vivo applications, 

the parameter of interest is the fractional amplitude AR that 

reports on the fraction of donor undergoing FRET (FD%- or 

𝑨𝑹)38. We provide in Fig. 4, upper panel, the estimated FD% for 

all cases investigated herein via FLI-Net (the corresponding 

SPCImage images are provided in the Fig. S-D2). As expected, 

as the A:D ratios increase, the FD% increases as well. Moreover, 

FLI-Net results, as in the previous FLIM examples, are in 

remarkable agreement both spatially and quantitatively with 

SPCImage results as evidenced with BCs close to ≅1 and very 

low MSE for all A:D ratios (see Fig. 4(c,d)). Similarly, to the 

visible FLI, FLI-net is ≅ 30 times faster than SPCImage per 

pixel processed (FLI-Net = 6.8e-3 ms/pixel; SPCImage = 0.21 

ms/pixel). Even in challenging case of NIR dyes with short 

lifetimes, FLI-Net shows remarkable speed and precision in 

measuring FRET signal as indicative of receptor engagement in 

cancer cells. 

IV. MACROSCOPIC FLUORESCENCE LIFETIME IMAGING (GATED ICCD) 

Another important application of FLI is in the imaging of 

large tissue at the macroscopic scale (MFLI). The applications 

hence range from high-throughput in vitro imaging39, ex vivo40 

or in vivo tissue imaging41 for diagnostics, especially within the 

framework of optical guided surgery42, and preclinical studies43. 

Particularly, there is great interest in employing NIR MFLI as in 

this spectral window the background fluorescence is reduced, 

and deep tissue imaging can be performed with high sensitivity. 

The technology of choice to perform MFLI is gated ICCD as it 

provides fast acquisition speeds over a large field of view. As a 

tradeoff, MFLI does not provide the efficiency of TCSPC 

collection and is characterized by IRF of the size of the gate 

employed (typically 300ps or above). Hence, quantification of 

lifetime-based quantities can be very challenging. To 

demonstrate the potential of FLI-Net for MFLI based on gated 

ICCD (and hence its potential for widespread FLI applications), 

we evaluated its performance in two settings: well-plate imaging 

with concentration-controlled mixtures of two NIR dye mixtures 
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and dynamic NIR-FRET in vivo imaging in live intact, small 

animals.  

 

Figure 5. Sensitive comparison of FLI-Net with LSF via MFLI of NIR dyes possessing sub-nanosecond lifetime. a-c, Mean-lifetime 

values obtained through MFLI of six intricately prepared samples (a) each containing various volumetric fractions of two NIR dyes: 

HITCI (356 ± 4 ps) and ATTO 740 (576 ± 11 ps) in PBS buffer, both of which are excited at 740 nm and emit around 770 nm.16 The 

values obtained from the DNN (b) show a similar 𝝉𝒎 trend to that of the least-squares fit (c) but possess a histogram that is centered 

much more closely to the ground-truth values of both 𝝉𝟏 and 𝝉𝟐. 

A series of MFLI data acquired from multi-well plates, each 

containing a volumetric fraction of two fluorescent dyes 

prepared as (further described in Methods), were used as a 

highly sensitive test of the FLI-Net’s capability to quantitatively 

retrieve accurate lifetimes and fractional amplitudes in 

controlled settings (ranging from mono- to bi-exponential). Each 

TPSF was captured with a time-gated, wide-field MFLI 

apparatus described in detail elsewhere.44 Fig. 5 illustrates a 

sensitive comparison of FLI-Net with an LSF approach 

implemented in MATLAB (further described in Methods). For 

a one-to-one comparison, the range of  𝝉𝟏 and  𝝉𝟐 values used 

for TPSF generation to train the network was set to the bounds 

chosen for the LSF fitting. The summary of the quantification of 

the two dye lifetimes (𝝉𝟏, 𝝉𝟐), as well as the  𝝉𝒎 associated with 

the different dye ratios, for both FLI-Net and LSF are provided 

in Fig. 5b/c respectively. As can be observed, the trends 

exhibited for  𝝉𝒎 are not only following the expected trendline 

but are also in excellent agreement between the two estimation 

techniques. Though, in all cases, FLI-Net provides lifetime 

distributions for both 𝝉𝟏  and 𝝉𝟐 that are centered on the expected 

lifetime values with a relative narrow spread. 

 V. IN VIVO DYNAMICAL LIFETIME BASED IMAGING 

To demonstrate the applicability of FLI-Net in a dynamic 

setting, we performed in vivo NIR FRET imaging in live and 

intact small animals. As demonstrated in previous studies11,44, 

the occurrence of FRET reports on the labeled Tf/TfR 

(ligand/receptor) engagement non-invasively. The NIR-Tf 

probes label the liver, as a major site of iron homeostasis 

regulation displaying higher levels of TfR expression. In 

contrast, the urinary bladder is labeled via its role as an excretion 

organ due to the accumulation of free dye or small labeled 

peptides via degradation. A total of 170 frames were acquired 

over a two-hour time span. Each frame consisted of 256 × 320-

pixel × 160 time-gates. An experiment with a delayed injection 

of the acceptor compared to the donor at A:D ratio of 2:1 was 

performed (donor: Tf-AF700 and acceptor: Tf-AF750) as well 

as a FRET negative control in which only donor was injected. 

Fig. 6 a/b report on the spatially resolved FRET donor fraction 

(FD% or  𝑨𝑹) as estimated via FLI-Net for a few frames and for 

the above mentioned two conditions. In all cases the two main 

organs of interest, the liver and the bladder, are well resolved. 

Additionally, we provide the time trace of FD% over the whole 

170 frames as computed for the liver and bladder ROI, both for 

FLI-Net and LSF (Fig. 6c/d and e/f, respectively). As expected, 

the FD% is reduced throughout the imaging period in the bladder 

as no TfR-Tf binding occurs, while the FD% increases sharply 

in the liver at A:D ratio of 2:1 due to abundant TfR expression 

in this organ. Such results are in accordance with our previous 

studies using the same biological system45.  Of importance, FLI-

Net provided a smoother mean FD% estimate over the organs 

with lower standard deviation range. Additionally, at the onset 

of the experiments, at which time point only the donor has been 

injected in the animal and hence, no FRET can occur, the 

baseline of FD% in the liver and bladder are similar (as 

expected) as estimated using FLI-Net conversely to the LSF 

estimates. Lastly, FLI-Net demonstrated these remarkable 

performances at speeds readily employable for real-time use, ≅ 

32 ms/frame versus ≅ 7.5 × 106 ms/frame with assistance of a 

binary mask for the LSF. 
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Figure 6. Dynamical FRET-MFLI performed over a two-hour time span. Four equally-spaced (in-time) MFLI-FRET image overlays 

obtained from two mice: tail-vein injected Tf-AF700 (donor-only control) (a) and tail-vain injected Tf-AF700 followed 20 min later 

by injection of Tf-AF750 (b). Imaging was performed over a time-span of approximately 2 hours after Tf-AF700 injection (further 

detailed in the Supplementary Materials). c-f, comparison of LSF versus FLI-Net results for FRET donor percentage (∝ Tf/TfR 

engagement). The shaded region associated with each curve corresponds to the standard deviation of all values obtained for both the 

liver and urinary bladder at each time-point. The computation time required for the LSF was > 2 hours using only the masked regions 

(liver and urinary bladder), whereas FLI-Net produced all ~ 170 parameter maps, using the entire 256 × 320-pixel acquisition, in < 48 

seconds (~ 32 ms/voxel). 

VI. DISCUSSION 

FLI imaging is a popular technique that enables accurate 

probe quantification in biological tissues revealing unique 

information of great value for the biomedical community. To 

derive the lifetime-based quantities, model-based methodologies 

or graphical approaches have been proposed but they rely on 

relatively complex inverse formulation, may necessitate 

calibration samples and/or need to be adapted to the application 

investigated and instrumentation employed. In contrast, Deep 

Learning methodologies can deliver ultra-fast and parameter-

free processing performance. Our proposed 3D CNN 

architecture, as well as training methodology, offers the potential 

of a generalized tool for ultrafast, parameter/fit- free, 

quantitative FLI imaging for a wide range of applications and 

technologies. Especially, our methodology is centered on model-

based learning that is efficient, robust and accurate. Such 

approach avoids the need to acquire massive training datasets 

experimentally and can encompass numerous applications 

and/or technologies.  

Beyond the unique features of FLI-Net, our FLIM and MFLI 

studies establish our analytic framework as a robust and 

quantitatively accurate tool for FLI studies over a large range of 

lifetimes (visible-NIR), photon count and technologies 

employed. Of particular note, FLI-Net was robust in estimating 

lifetime-based parameters both in the cases of mono- and bi-

exponential decays without setting any parameters (see Table 

S4/S5 and Fig. S9) As FLI-Net was trained using both these 

models, there was no need to have it trained on a specific case, 

whereas, fit techniques require the user to select the model based 

on its preferences/expectations. Hence, FLI-Net is free of such 

bias. Additionally, we have selected to benchmark FLI-Net 

versus the commonly employed fitting software in the field.47 

However, it is important to note that such methodologies are 

well known to perform poorly in the cases of low photon counts. 

This was also a fundamental limitation in a previous study 

proposing to use a basic Artificial Neural Network, ANN-

FLIM46 that was not able to retrieve the life-time based 

parameters in all cases, especially with low p.c. Conversely, 

FLI-Net produced robust estimate in such conditions as depicted 

in Fig. 1d (p.c.low∈[25,100]). These results indicate that FLI-Net 

performs well in photon starved conditions which are prevalent 

in biological studies. Last, FLI-Net is an approach that estimates, 

by design, the lifetime-based parameters for whole image at 

once. The computational time reported herein are hence for the 

full FLI acquisition and not limited to an ROI, as typically done 

for fitting techniques. Moreover, in the case of MFLI, the 

computational times were enabling real-time live animal 

imaging (≅ 32 ms/frame). Hence, FLI-Net is well positioned to 

profoundly impact clinical applications such as fluorescence 
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guided surgery currently employed in a few scenarios. In this 

context, FLI is expected to play a major role either by providing 

unique contrast mechanisms such in pH-transistor like probes42 

or improve sensitivity for current clinically approved dyes43. 

However, to date, FLI imaging formation was not attainable at 

speed relevant to current clinical practice, but FLI-Net can 

overcome this important barrier for clinical translation.  

Herein, we have demonstrated the quantitative accuracy, as 

benchmarked against current methods, both in microscopic and 

preclinical settings. Of note, all experiments provided quantities 

in agreement with the expected biological outcomes. For 

instance, FLI-Net was able to clearly discriminate between non-

cancerous and cancerous cells, as well as between different types 

of cancer cells (AU565 and T47D vs. MDA-MB-231). In 

contrast to SPCImage, FLI-Net reported on a significant 

difference between the 𝝉𝒎 of untreated and Na cyanide across 

all cell types (Fig. 2i). In the case of the cell line AU565, 

SPCImage quantified an increase in metabolic status after Na 

cyanide exposure conversely to FLI-Net and the expected effect 

of this metabolic inhibitor. Moreover, a crucial advantage of 

FLI-Net vs. SPCImage is that it takes into consideration all 

pixels in the image instead of relying on biased ROI selection. 

Beyond the overall image quantification as reported, it is 

important to note also that FLI-Net images show punctate 

distribution of Tf-containing endosomes and heterogeneity of Tf 

uptake across cancer cells. This illustrates the potential of FLI-

Net to report on important biological information without 

requiring any parameter settings or ROI selection by the users. 

Such findings in the microscopic settings are also confirmed in 

the preclinical studies in which the FRET Donor fraction (FD%) 

prior to the delayed injection of the Acceptor were in accordance 

with expectation for FLI-Net but overestimated when using LSF 

in the case of the liver. Taken altogether, these results suggest 

that FLI-Net provides highly reliable results with increased 

sensitivity and reproducibility compared to current iterative 

methodologies. 

Beyond the topical application of fit-free FLI, the overall 

architecture of FLI-Net and the associated training methodology 

has potential for application across a myriad of biomedical 

imaging techniques that currently utilize a least-squares model-

based fit for parameter extraction. It is common for many of 

these techniques to cite speed as a main hurdle they have yet to 

overcome for successful adoption into the clinical or commercial 

realm. We believe that this work provides ample supporting 

information and a robust proof of concept for similar adaptation 

and implementation in projects regarding analytic optimization 

across the field. 

 

VII. METHODS

FLI-Net architecture and training methodology: 
The FLI-Net architecture consists of two main parts – 1) a 

shared branch focused on spatially-independent temporal feature 

extraction and 2) a subsequent three-junction split for 

independent reconstruction of 𝝉𝟏, 𝝉𝟐, and 𝑨𝑹 images 

simultaneously. Within the shared branch, spatially-independent 

convolutions along time (illustrated in Fig. S1 as the blue 

rectangular prism with kernel size of (1 × 1×10)) was set as the 

network’s first layer in order maximize TPSF feature extraction. 

A corresponding stride of k = (1,1,5), used initially to reduce 

parameter count and increase computational speed, resulted in 

no observable decrease in performance.  A residual block, 

possessing a kernel size of (1 × 1 × 5), followed immediately 

afterwards to further extract time-domain information. 

To ultimately obtain image reconstruction of size (x × y) via 

a sequence of downsampling, a transformation from 4D to 3D 

was required. Thus, after the 3D-residual block (output of x × y 

× n × 50) the tensor was reshaped to dimension (x × y × (n × 

50)), where n corresponds to a scalar value dependent on the 

number of TPSF time-points as well as the chosen network 

hyperparameters. This value can be determined via the following 

expressions: 

𝑷 =  
𝑭𝑳𝟎

𝟐
(𝒏𝑻𝑷%𝑺) 

𝒏 =  ((𝒏𝑻𝑷 − 𝑭𝑳𝟎  +  𝑷)/𝑺 +  𝟏) 

Where 𝒏𝑻𝑷, P, 𝑭𝑳𝟎, and S denote the number of time-points, 

padding (obtained through first equation), filter length along the 

temporal direction of the first 3D-convolutional layer (length of 

10 in this study) and the corresponding stride value used in the 

first convolutional layer (value of 5 in this study), respectively. 

After this transformation, a convolutional layer of size (1×1) 

possessing 256 filters along with a subsequent residual block 

couplet possessing size (1×1) was employed before the tri-

reconstruction junction. The (1×1) size of these 2D 

convolutional filters proved crucial in maintaining spatially-

independent feature-extraction. 

FLI-Net was written and trained using the machine-learning 

library Keras48 with Tensorflow49 backend in python. 10,000 

TPSFS voxels were used during training (8000) and validation 

(2000), along with a batch size dependent on the target input 

length along time (32 for NIR, 20 for visible). Mean-squared 

error (MSE) was set as the loss function for each branch. The 

RMSprop50 optimizer was chosen with an initial learning rate set 

to 1e-6. The network was normally trained for 250 epochs using 

a NVIDIA TITAN Xp GPU. This training time varied slightly 

depending on TPSF length; ranging between 50s and 80s per 

epoch (for voxels possessing 160 and 256 time-points, 

respectively). 

Generation of the Simulation Data: 

For every training sample, an MNIST51 binary image was 

chosen at random and every non-zero pixel was assigned a value 

of intensity (I), short lifetime (𝝉𝟏), long lifetime (𝝉𝟐) and 

fractional amplitude (𝑨𝑹) (Fig. S2a). These values at each pixel, 

along with a randomly selected IRF (an example of which is 

given in Fig. S2b as the pink dashed line), were subsequently 

used in the generation of each TPSF (𝜞(𝒕)) via the equation:  

𝛤(𝑡)  = 𝐼𝑅𝐹(𝑡) ∗ 𝐼[𝐴𝑅𝑒−𝑡/𝜏1 + (1 − 𝐴𝑅)𝑒−𝑡/𝜏2 ] 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/523928doi: bioRxiv preprint 

https://doi.org/10.1101/523928
http://creativecommons.org/licenses/by-nc-nd/4.0/


Each TPSF was normalized to a maximum intensity value of 

one in the last step. 

Pre-processing of gated-ICCD data: 

It is common for raw fluorescence time decay data to be 

represented initially at each time-point using a separate TIFF 

image. Concatenation of these along the temporal axis along 

with a subsequent removal of pixels possessing maximum 

photon counts of less than 250 was performed before the use of 

a Savitzky-Golay filter52 (length five, 3rd order) The effect of 

dark-noise was removed via subtraction with the mean value of 

time-points 1-10 (before the IRF begins ascent). Afterwards, 

each value was normalized to one by division with its maximum 

value. 

Use of the Savitzky-Golay filter, or a filter that preserves the 

slope of the TPSF’s ascent while also having no broadening 

effect on the curve (as is the case with gaussian or moving 

average filters) was essential for analysis of the mice data given 

FLI-Net sensitivity along time and seemingly useful for future 

work regarding extraction of depth-related parameters from the 

TPSF. Fig. S3 further illustrates this reasoning. 

Pre-processing of TCPSC microscopy data: 

Given that the TCSPC microcopy data possessed 

significantly lower photon counts spatially relative to MFLI, 

local neighborhood binning was employed. The SPCImage 

software’s pre-processing technique involves performing this 

binning, along with discounting any pixels possessing a 

maximum photon count below a specific threshold, at every 

pixel before fitting.29 This allows the software to somewhat keep 

the initial resolution while simultaneously fitting every pixel to 

a TPSF of enhanced photon count. This processing sequence was 

replicated for FLI-Net data sets. A maximum photon count 

threshold was placed initially (normally at 3 or 4), directly 

followed by a local neighborhood binning (5x5 kernel). Each 

subsequent pixel was convolved with a Savitzky-Golay filter 

(length 5, 3rd order). Prior work has illustrated the accurate 

retrieval of FRET parameters over a large variation in gate-width 

during MFLI as well as after introduction of artificial gating in 

TCSPC FLIM analysis.53-55 Given that the IRFs used in our data 

generation procedure were obtained from a gated-ICCD system, 

a floating average filter of length eight was introduced to mimic 

this effect without any reduction in temporal length. The 

processing methodology following steps are the same as was 

described in the prior section. 

NAD(P)H FLIM in vitro: 

All cell lines were obtained from ATCC (Manassas, VA, 

USA) and cultured in respective media at 37°C and 5% CO2.  

T47D and MDA-MB231 cells were grown in Dulbecco's 

modified Eagle's medium (Life Technologies) supplemented 

with 10% fetal bovine serum (ATCC), 4 mM l-glutamine (Life 

Technologies), 10 mM HEPES (Sigma). AU565 cells were 

cultured in RPMI medium (Life Technologies) supplemented 

with 10% FBS and 10 mM HEPES.  MCF10A cells were 

cultured in DMEM/F12 medium (Life Technologies) 

supplemented with 5% horse serum (Life Technologies), 20 

ng/mL EGF (Peprotech), 0.5 mg/mL hydrocortisone (Sigma), 10 

ug/mL bovine insulin (Sigma), 100 ng/mL cholera toxin (Sigma) 

and 50Units/mL/50μg/mL penicillin/streptomycin (Life 

Technologies).  For imaging experiment, the cells were plated 

on MatTec 35 mm glass bottom plates (Ashland, MA) 400,000 

cells per plate, cultured overnight in corresponding phenol red-

free complete medium and imaged in the same medium. In 

parallel, cells were incubated for 30 minutes with 2.5 mM NaCN 

in complete medium for metabolic inhibition. For FLIM imaging 

of NAD(P)H autofluorescence emission was performed using 

the Becker & Hickl HPM-100-40 detector which was attached 

to the NDD port on the LSM 880 using a Zeiss T-adapter that 

contained a 680 nm SP blocking filter (Semrock FF01-680-/SP-

25 blocking edge multiphoton short-pass filter) followed by a 

550/88 BP (Semrock FF01-550/88-25 single band pass filter) at 

spectral range of 506-594 nm.  The pixel dwell time was 2.58 µs 

and the frame size 512 x 512 pixels.  The emission was collected 

for 60 seconds. 

Visible FLIM-FRET in vitro: 

T47D cells were plated on MatTec 35 mm glass bottom 

plates as described above and cultured overnight. After that cells 

were washed with HBSS buffer, incubated for 30 min in DHB 

imaging medium (phenol red-free DMEM, 5 mg/mL bovine 

serum albumin (Sigma), 4 mM L-glutamine, 20 mM HEPES 

(Sigma) pH 7.4) to deplete native transferrin followed by 1h 

uptake of holo (iron-loaded) Tf-AF488 and Tf-AF555 (Life 

Technologies, NY) with various Acceptor: Donor ratio in DHB 

solution keeping Tf-AF488 concentration of 20 μg/mL constant. 

The uptake was terminated by washing with phosphate buffer 

saline and fixing in 4% paraformaldehyde.  The images were 

acquired on Zeiss LSM 550 equipped with FLIM detector 

(Becker and Hickl) as described previously56. 

NIR FLIM-FRET in vitro: 

Human holo Tf (Sigma) was conjugated to Alexa Fluor 700 

or Alexa Fluor 750 (Life Technologies) through monoreactive 

N-hydroxysuccinimide ester to lysine residues in the presence of 

100 mM Na bicarbonate, pH 8.3, according to manufacturer’s 

instructions. T47D cells were processed for Tf uptake in the 

same manner as described above. NIR FRET FLIM was 

performed on Zeiss LSM 880 Airyscan NLO multiphoton 

confocal microscope using a HPM-100-40 high speed hybrid 

FLIM detector (GaAs 300-730 nm; Becker & Hickl) and a 

Titanium: Sapphire laser (Ti: Sa) (680-1040 nm; Chameleon 

Ultra II, Coherent, Inc.).  The Ti: Sa laser was used in 

conventional one-photon excitation mode.  Because of this, the 

FLIM detector must be attached to the confocal output of the 

scan head. On the LSM 880 with Airyscan, the confocal output 

from the scan head was used for the ‘Airy-Scan’ detector and 

thus it was not directly accessible.  However, to accommodate 

the HPM-100-40 detector a Zeiss switching mirror was inserted 

between the scan head and the Airyscan detector. The 90° 

position of the switching mirror directs the beam to a vertical 

port to which the FLIM detector was attached via a Becker & 

Hickl beamsplitter assembly. A Semrock FF01-716/40 band 

pass filter and a FF01-715/LP blocking edge short-pass filter 

were inserted in the beamsplitter assembly to detect the emission 

from Alexa 700 and to block scattered light, respectively. The 

80/20 beamsplitter in the internal beamsplitter wheel in the LSM 

880 was used to direct the 690nm excitation light to the sample 

and to pass the emission fluorescence to the FLIM detector.   
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NIR MFLI well-plate series: 

To test the sensitivity of FLI-Net for extracting bi-

exponential parameters, we mixed two NIR dyes, ATTO740 

(A740, 91394-1MG-F, Sigma-Aldrich, MO) and 1,1′,3,3,3′,3′-

hexamethylindotricarbocyanine iodide (HITCI, 252034-

100MG, Sigma-Aldrich, MO) initially prepared in PBS at 

various initial concentrations (Table S2). For each concentration 

pair, different volumes of both dyes were mixed to obtain a total 

volume of 300 μL with volume fractions ranging for 0 to 100% 

(10% steps, see Table S3). 

Dynamic NIR MFLI-FRET in vivo: 

In these experiments, the dynamics of FRET were observed 

by injecting Tf probes labeled with donor and acceptor at 

different time points. For all experiments, athymic nude female 

mice (Charles River, MA) were first anesthetized with isoflurane 

(EZ-SA800 System, E-Z Anesthesia), placed on the imaging 

stage and fixed to the stage with surgical tape (3M Micropore) 

to prevent motion.  A warm air blower (Bair Hugger 50500, 3M 

Corporation) was applied to maintain body temperature. The 

animals were monitored for respiratory rate, pain reflex, and 

discomfort. The mice were imaged with the time-gated imaging 

system in the reflectance geometry, with adaptive greyscale 

illumination to ensure appropriate dynamic range between the 

regions of interest. In particular, excitation intensity had to be 

reduced in the urinary bladder due to accumulation of NIR-

labeled Tf over time. Two hours after tail-injection of 20 μg of 

Tf-AF700, the FRET-induced mouse was imaged for ~15 

minutes before retro-orbital injection with 40 μg of Tf-AF750 

(A:D ratio 2:1). Imaging was continued for another 105 minutes. 

For the negative control mouse (0:1), no further probe was 

injected throughout the imaging session. Fig. S10 is provided for 

further clarity. The time-resolved MFLI-FRET imaging system 

used in this study was described in detail elsewhere44. 

LSF Analysis: 

The LSF implementation chosen for use was based around 

the MATLAB’s function fmincon()57. The lower and upper 

bounds of both lifetime values were, for all three cases (Fig. 1d, 

Fig. 5(e-f)., Fig 6f., Fig. S9) chosen to match the bounds used in 

generation of the TPSF data voxels utilized in training our model 

(Table S1). 

Bhattacharyya Coefficient: 

Given that every in vitro dataset possessed a distribution of 

values post-analysis, the addition of a metric for comparison of 

these probability distributions between FLI-Net output and 

SPCImage’s was included. To measure the degree of overlap 

between distributions obtained through both techniques, the 

Bhattacharyya coefficient was employed. Given two continuous 

probability distributions M(x) and N(x), the Bhattacharyya 

coefficient is calculated as follows. 

𝐵𝐶(𝑀, 𝑁)  =  ∫ √𝑀(𝑥)√𝑁(𝑥)𝑑𝑥
∞

−∞

 

Where, when M(x) = N(x), or, the probability distributions 

overlap perfectly, the Bhattacharyya coefficient is equal to 1. 

The metric is explained in further depth elsewhere58. 
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