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Abstract  

Background 

Single-cell RNA-sequencing (scRNA-seq) technologies have advanced rapidly in 

recent years and enabled the quantitative characterization at a microscopic resolution. 

With the exponential growth of the number of cells profiled in individual scRNA-seq 

experiments, the demand for identifying putative cell types from the data has become a 

great challenge that appeals for novel computational methods. Although a variety of 

algorithms have recently been proposed for single-cell clustering, such limitations as 

low accuracy, inferior robustness, and inadequate stability greatly impede the scope of 

applications of these methods. 

Results 

We propose a novel model-based algorithm, named VPAC, for accurate clustering of 

single-cell transcriptomic data through variational projection, which assumes that 

single-cell samples follow a Gaussian mixture distribution in a latent space. Through 

comprehensive validation experiments, we demonstrate that VPAC can not only be 

applied to datasets of discrete counts and normalized continuous data, but also scale up 

well to various data dimensionality, different dataset size and different data sparsity. 

We further illustrate the ability of VPAC to detect genes with strong unique signatures 

of a specific cell type, which may shed light on the studies in system biology. We have 

released a user-friendly python package of VPAC in Github 

(https://github.com/ShengquanChen/VPAC). Users can directly import our VPAC 

class and conduct clustering without tedious installation of dependency packages. 

Conclusions 

VPAC enables highly accurate clustering of single-cell transcriptomic data via a 

statistical model. We expect to see wide applications of our method to not only 

transcriptome studies for fully understanding the cell identity and functionality, but also 

the clustering of more general data. 
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Background 
Single-cell RNA-sequencing (scRNA-seq) has emerged as a revolutionary tool to 

reveal previously unknown heterogeneity and functional diversity at a microscopic 

resolution. Since the first protocols were published in 2009 [1], a massive expansion in 

method development has derived scRNA-seq technologies with distinct advantages and 

applicability [2]. For example, Smart-seq2 [3] and MARS-seq [4] is preferable when 

quantifying transcriptomes of fewer cells, while Drop-seq [5] is preferable when 

quantifying transcriptomes of large numbers of cells with low sequencing depth [6]. 

Advances in scRNA-seq technology have resulted in a wealth of studies aiming to 

reveal new cell types [7, 8], assess tissue composition [4, 9, 10], identify gene 

regulatory mechanisms [11, 12], investigate cell development or lineage processes [13-

15], and many others. With the exponential growth of the number of cells profiled in 

individual scRNA-seq experiments, there is a demand for novel analysis methods for 

this new type of transcriptomic data, which has not only much greater scale of datasets 

than that of bulk experiments but also various challenges unique to the single-cell 

context [16]. 

A key advantage of scRNA-seq is that it can be used to identify putative cell types 

using unsupervised clustering, which is essential to fully understand the cell identity 

and functionality. A variety of algorithms have recently been proposed for single-cell 

clustering. For example, CellTree produces tree structures outlining the hierarchical 

relationship between single-cell samples using a novel statistical approach based on 

document analysis techniques [17]. Other statistical approaches based on Dirichlet 

mixture model are shown to be well suited for single cell clustering, especially for data 

as unique molecular identifiers (UMI) matrix. For example, DIMM-SC models UMI 

count data and characterizes variations across different cell clusters via a Dirichlet 

mixture prior [18]. Para-DPMM further improves the clustering quality by introducing 
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a Dirichlet process prior to automatically infers the number of clusters from the dataset, 

and a split-merge mechanism is adopted to improve convergence and optimality of the 

result [19]. Given the high dimensionality of single-cell data, clustering directly on the 

original dimension may affect the performance due to the intrinsic noise of single-cell 

data, and usually demands tedious preprocessing such feature selection, which may 

restrict the robustness of clustering. A simple idea is to use traditional methods to 

reduce dimensions and then cluster. However, there are too many alternative 

combinations that make it difficult for us to make a choice. Methods combining 

dimension reduction with classic clustering such as t-Distributed Stochastic Neighbor 

Embedding (t-SNE) with K-means [8], and principal component analysis (PCA) with 

hierarchical clustering [20] for single-cell clustering are proposed. Combining PCA 

with K-means, a consensus clustering approach is proposed to achieve high accuracy 

and robustness [21]. CIDR further uses an implicit imputation approach to alleviate the 

impact of dropouts in scRNA-seq data in a principled manner and identifies putative 

cell types using hierarchical clustering [22]. Other recent works are also proposed to 

cluster high dimensional single-cell data with gene regulatory networks [23], or ranking 

on shared nearest neighbors (SNN) [13]. 

However, there are still limitations in single-cell clustering to be addressed. First, 

even the state-of-the-art methods have achieved encouraging performance, the 

clustering quality can still be significantly improved for challenging tasks as shown in 

the Results Section. Second, most methods are designed for one of the continuous data 

and discrete UMI counts. There is demand for methods that can be applied to single-

cell data created with different scRNA-seq technologies, such as discrete counts created 

with UMI based techniques and continuous data normalized to transcripts per million 

mapped reads (TPM)—if reads are only generated from one end of the transcript, or 
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fragments per kilobase per million mapped reads (FPKM)—if reads cover the entire 

transcript [24]. Third, a method that can be generally applied to data of various sizes or 

dimensions is desirable. Nevertheless, most proposed methods cannot scale up well 

with various data dimensionality and with different dataset size. Last but equally 

important, most public packages cannot be easily installed due to system environment 

or software version problems. In addition, some of them require other dependency 

packages, and thus further inconveniences the use of these packages. Therefore, there 

is a demand for an easy-to-install and easy-to-use package. 

Motivated by the above understanding, we propose in this paper a model-based 

algorithm named VPAC (Variational Projection for Accurate Clustering) of single-cell 

transcriptomic data. VPAC is a novel extension of the framework of probabilistic 

principal components analysis (PPCA) [25], which has been shown to be effective in 

dimensionality reduction for scRNA-seq data [26]. VPAC projects single-cell samples 

to a latent space, where the samples are constrained to follow a Gaussian mixture 

distribution [27]. With a coordinate ascent variational inference (CAVI) algorithm, 

VPAC can implement parameter estimation efficiently and steadily. Using five scRNA-

seq datasets, we show that our model is not only superior to existing methods in the 

clustering of single-cell transcriptomic data, but also able to be applied to single-cell 

data of both discrete counts and normalized continuous data. Through comprehensive 

experiments, we further show the robustness of our model for various data 

dimensionality, different dataset size and different data sparsity, and the ability of our 

model to detect genes with strong unique signatures of a specific cell type. 
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Methods 

Data collection 

We collected a dataset of three T cell types (CD4+/CD25+ regulatory T cells, 

CD4+/CD45RA+/CD25- naive T cells and CD8+/CD45RA+ naïve cytotoxic T cells) 

from 10X Genomics [28]. The dataset measures the expression of 32,738 genes in 

32,695 cells, which were enriched from fresh peripheral blood mononuclear cells 

(PBMCs) and sequenced by Illumina NextSeq 500 instrument. Clustering on this 

dataset was claimed as a challenging task by Z.Sun et al. [18] and T.Duan et al. [19]. 

We used this dataset to demonstrate the ability of our method to scale up well with 

various data dimensionality and with different dataset size on datasets from UMI based 

techniques. We also downloaded three preprocessed datasets of different scales used by 

Para-DPMM [19], which is the state-of-the-art method for clustering discrete UMI 

counts, to fairly evaluate the performance of our model. 

A dataset of 561 cells derived from seven cell lines (A549, H1437, HCT116, 

IMR90, K562, GM12878, and H1) was downloaded from the NCBI Gene Expression 

Omnibus via accession GSE81861 [29]. Sequenced using the 101-bp paired-end 

protocol on the Illumina HiSeq 2000 platform, the dataset measures the expression of 

55,186 DNA regions, and the expression was quantified as FPKM values. We used this 

dataset to demonstrate the robustness of our model for FPKM-normalized data of 

various dimensions. From the Single Cell Portal, we downloaded a plate-based scRNA-

seq dataset of 24,649 genes in 27,998 cells from 12 clusters. The dataset was sequenced 

using a modified Smart-seq2 protocol, and the expression levels of genes were 

quantified as TPM values [30]. With this dataset, we further demonstrated the 

robustness of our model for TPM-normalized datasets of different size. 
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In order to illustrate the superior ability of our model to account for the sparsity of 

scRNA-seq data, we collected a dataset of 301 cells captured from 11 cell types using 

microfluidics. This dataset is publicly available from the NCBI Sequence Read Archive 

under accession SRP041736, and the quantification of gene expression levels in TPM 

for all 23730 genes in all samples was performed [31]. We also collected a Smart-seq2 

sequenced dataset of 742 dendritic cells from six clusters with two batches from the 

Single Cell Portal to illustrate the application of our model [32, 33]. 

The statistical model of VPAC 

Let N be the number of single-cell samples, D the number of genes, and M the desired 

number of clusters. We assume that the gene expression vector 𝐱𝐧 of cell n is generated 

from a projection of a latent L-dimensional vector 𝐳𝐧 (𝐿 ≪ 𝐷). We use n = 1, ..., N to 

index over samples, i = 1, ..., L to index over latent dimensions, and j = 1, ..., M to index 

over clusters in all derivations below. The distribution of xn could be a complex high-

dimensional distribution. We assume 𝐱𝐧 follows a multivariate Gaussian distribution 

given 𝐳𝐧 , while the latent vector 𝐳𝐧  follows a Gaussian mixture distribution. An 

intuitive understanding of this assumption is that, when projecting, constraining 

samples to follow a Gaussian mixture distribution in the latent space contributes to the 

accurate clustering. As a generative model, VPAC independently draw each sample 𝐱𝐢 

through the following process 

𝑃(𝐳𝑛|𝐦, 𝐓, s) = ∏ 𝒩(𝐳𝑛|𝐦𝑗 , T𝑗
−1)

s𝑗𝑛

𝑀

𝑗=1

 

𝑃(𝐱𝐧|𝐳𝐧, 𝐖, 𝝁, 𝜏) = 𝒩(𝐱𝐧|𝐖𝐳𝐧 + 𝝁, 𝜏−1𝐈𝐷) 

The binary latent variable s𝑗𝑛 , which is given discrete distributions governed by 𝝆, 

describes which component in the mixture gives rise to the latent vector 𝐳𝐧, i.e., if 𝐳𝐧 
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is generated from component j then s𝑗𝑛 = 1 , and s𝑗𝑛 = 0  otherwise. We choose a 

Dirichlet distribution for the prior of 𝝆  

𝑃(𝒔|𝝆) = ∏ ∏ 𝜌𝑗
s𝑗𝑛

𝑁

𝑛=1

𝑀

𝑖=𝑗

 

𝑃(𝝆) = Dir(𝜌1 ⋯ 𝜌𝑀|𝛿1 ⋯ 𝛿𝑀) 

We complete the specification of Gaussian mixture distribution by introducing 

conjugate priors Gaussian distribution and Wishart distribution over the means m and 

precisions T. 𝛾 is a small and fixed parameter chosen to give a broad prior to m, while 

the degrees of freedom 𝜐 and scale matrix V give a broad prior to T 

𝑃(𝒎) = ∏ 𝒩(𝐦𝑗|0, 𝛾−1𝐈)

𝑀

𝑗=1

 

𝑃(𝐓) = ∏ 𝒲(𝐓𝑗|𝜐, V)

𝑀

𝑗=1

 

By introducing a hierarchical prior 𝑃(𝐖|𝜶)  over the projection matrix W in 

𝑃(𝐱𝐧|𝐳𝐧, 𝐖, 𝝁, 𝜏), VPAC can automatically determine the appropriate dimensionality 

for the latent space to avoid discrete model selection. Each item of the L-dimensional 

vector 𝜶 controls the corresponding column of the matrix W by playing a role as the 

precision of a Gaussian distribution 

𝑃(𝐖|𝜶) = ∏ 𝒩(𝐖𝑖|𝟎, 𝛼𝑖
−1𝐈𝐷)

𝐿

𝑖=1

 

We again introduce broad priors over the parameters 𝜶, 𝝁  and 𝜏  to complete the 

specification of VPAC 

𝑃(𝜶) = ∏ Γ(𝛼𝑖|𝑎𝛼, 𝑏𝛼)

𝐿

𝑖=1

 

𝑃(𝝁) = 𝒩(𝝁|0, 𝛽−1𝐈) 
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𝑃(𝜏) = Γ(𝜏|𝑎𝜏, 𝑏𝜏) 

The graphical model representation of VPAC is shown in Figure 1. The broad priors 

introduced above are obtained by setting 𝑎𝛼 = 𝑏𝛼 = 𝑎𝜏 = 𝑏𝜏 = 𝛽 = 𝛾 = 10−3. The 

initial parameters 𝜹 of the Dirichlet distribution are set as 
1

𝑀
. The joint distribution of 

all of the variables is given by 

𝑃(𝝆, 𝐬, 𝐓, 𝐦, 𝐙, 𝜏, 𝝁, 𝜶, 𝐖, 𝐗) 

= ∏[𝑃(𝝆)𝑃(𝐬|𝝆)𝑃(𝐓)𝑃(𝐦)𝑃(𝐳𝑛|𝐦, 𝐓, 𝐬)][𝑃(𝜏)𝑃(𝝁)𝑃(𝜶)𝑃(𝐖|𝜶)𝑃(𝐱n|𝐳n, 𝐖, 𝝁, 𝜏)

𝑁

𝑛=1

] 

 

Figure 1  Representation of VPAC as a probabilistic graphical model. The observed 

variable x is shown by the shaded node, while the plate notation comprises a dataset of 

N independent observations together with the corresponding latent variables. 

Variational inference of parameters 

We use variational methods to find a lower bound on 𝑃(𝐗) because it is analytically 

intractable to directly evaluate 𝑃(𝐗). With 𝜽 denoting the set of all parameters and 

latent variables in VPAC, we introduce an approximating distribution 𝑄(𝜽) of the true 

posterior distribution. The log marginal likelihood is then given by 
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ln 𝑃(𝐗) = ln ∫ 𝑃(𝐗, 𝜽)𝑑𝜽 

= ln ∫ 𝑄(𝜽)
𝑃(𝐗, 𝜽)

𝑄(𝜽)
𝑑𝜽 

≥ ∫ 𝑄(𝜽) ln
𝑃(𝐗, 𝜽)

𝑄(𝜽)
𝑑𝜽 = ℒ(𝑄) 

The function ℒ(𝑄)  is the evidence lower bound (ELBO) on the true log marginal 

likelihood. The goal is to find a suitable 𝑄(𝜽) to maximize the ELBO or minimize the 

Kullback-Leibler divergence between ℒ(𝑄) and the true log marginal likelihood 

𝐾𝐿(𝑄 ∥ 𝑃) = − ∫ 𝑄(𝜽) ln
𝑃(𝜽|𝐗)

𝑄(𝜽)
𝑑𝜽 

We assume the variational approximation is mean-field, i.e., 𝑄(𝜽) = ∏ 𝑄𝑡(𝜃𝑡)𝑡 . The 

corresponding factors are 

𝑄(𝐳) = ∏ 𝒩(𝐳𝒏̃|𝐦𝒛
(𝒏)

, 𝚺𝒛
(𝒏)

)

𝑁

𝑛=1

 

𝑄(𝐖) = ∏ 𝒩(𝐰𝒊̃|𝐦𝑾
(𝒊)

, 𝚺𝑾)

𝐿

𝑖=1

 

𝑄(𝝁) = 𝒩(𝝁̃|𝐦𝝁, 𝚺𝝁) 

𝑄(𝜶) = ∏ Γ(𝜶𝑖̃|𝑎𝛼̃ , 𝑏𝛼𝑖̃)

𝐿

𝑖=1

 

𝑄(𝜏) = Γ(𝜏̃|𝑎𝜏̃, 𝑏𝜏̃) 

𝑄(𝝆) = Dir(𝜌1̃ ⋯ 𝜌𝑀̃) 

𝑄(𝒔) = ∏ ∏ 𝐏
𝑗𝑛

𝑠𝑗𝑛

𝑀

𝑗=1

𝑁

𝑛=1

 

𝑄(𝐦) = ∏ 𝒩 (𝐦𝒋̃|𝐦𝐦
(𝒋)

, 𝚺𝐦
(𝒋)

)

𝑀

𝑗=1
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𝑄(𝐓) = ∏ 𝒲 (𝐓𝑗̃|𝜐𝑇
(𝑗)

, 𝐕T
(𝑗)

)

𝑀

𝑗=1

 

Because the proposed model is conjugate, we can derive a CAVI algorithm to update 

the variational parameters 

𝚺𝐳
(𝑛)

= (〈𝜏〉〈𝐖T𝐖〉 + ∑〈s𝑗𝑛〉〈𝐓𝑗〉

𝑀

𝑗=1

)

−1

 

𝐦𝐳
(𝑛)

= ((𝐱𝑛 − 〈𝝁〉)T〈𝜏〉〈𝐖〉 + ∑〈s𝑗𝑛〉〈𝐦𝑗
T〉〈𝐓𝑗〉

𝑀

𝑗=1

) 𝚺𝐳
(𝑛)

 

𝚺𝐖 = (diag(〈𝜶〉) + 〈𝜏〉 ∑〈𝐳𝑛
T𝐳𝑛〉

𝑁

𝑛=1

)

−1

 

𝐦𝐖
(𝑖)

= 〈𝜏〉𝚺𝐖 ∑〈𝐳𝑛〉(x𝑛𝑖 − 〈𝜇𝑖〉)

𝑁

𝑛=1

 

𝚺𝝁 = (𝛽 + 𝑁〈𝜏〉)−1𝐈 

𝐦𝝁 = 𝚺𝜇 ∑(𝐱𝑛 − 〈𝐖〉〈𝐳𝑛〉)T〈𝜏〉

𝑁

𝑛=1

 

𝑎𝛼̃ = 𝑎𝛼 +
𝐷

2
 

𝑏𝛼𝑖̃ = 𝑏𝛼 +
1

2
〈‖𝐖𝑖‖2〉 

𝑎𝜏̃ = 𝑎𝜏 +
𝑁𝐷

2
 

𝑏𝜏̃ = 𝑏𝜏 +
1

2
∑{‖𝐱𝑛‖2 + ‖𝝁‖2 + Tr(〈𝐖T𝐖〉〈𝐳𝑛𝐳𝑛

T〉) + 2〈𝝁T〉〈𝐖〉〈𝐳𝑛〉

𝑁

𝑛=1

− 2𝐱𝑛
T〈𝐖〉〈𝐳𝑛〉 − 2𝐱𝑛

T〈𝝁〉} 

𝜌𝑗̃ = 𝜌𝑗 + ∑ 𝑠𝑗𝑛

𝑁

𝑛=1

 

𝐏𝑗𝑛 =
P𝑗𝑛̃

∑ 𝑃𝑙𝑛̃
𝑀
𝑙=1

 

𝐏𝑗𝑛̃ = exp {
ln|𝐓𝑗|

2
+ ln〈𝜌𝑗〉

−
1

2
Tr[〈𝐓𝑗〉(〈𝐳𝑛𝐳𝑛

𝑇〉 − 〈𝐦𝑗〉〈𝐳𝑛〉𝑇 − 〈𝐳𝑛〉〈𝐦𝑗〉𝑇 + 〈𝐦𝑗𝐦𝑗
𝑇〉)]} 

𝚺𝐦
(𝑗)

= (𝛾𝐈 + 〈𝐓𝑗〉 ∑〈s𝑗𝑛〉

𝑁

𝑛=1

)

−1
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𝐦𝐦
(𝑗)

= 𝚺𝑚
(𝑗)

〈𝐓𝑗〉 ∑〈s𝑗𝑛〉z𝑗𝑛

𝑁

𝑛=1

 

𝜐𝑻
(𝑗)

= 𝜐 + ∑〈s𝑗𝑛〉

𝑁

𝑛=1

 

𝐕𝑻
(𝑗)

= 𝐕 + ∑[〈𝐳𝑛𝐳𝑛
T〉〈s𝑗𝑛〉 − 〈𝐳𝑛〉〈s𝑗𝑛〉〈𝐦𝑗

T〉 − 〈𝐦𝑗〉〈𝐳𝑛
T〉〈s𝑗𝑛〉 + 〈𝐦𝑗𝐦𝑗

T〉〈s𝑗𝑛〉]

𝑁

𝑛=1

 

We implement VPAC in Python using common packages for data analysis (including 

Numpy, Scikit-learn and Scipy), without other dependency packages. Users can 

directly import our VPAC class and conduct clustering. 

Assessment of performance  

We used adjusted rand index (ARI) [34] and normalized mutual information (NMI) [35] 

to assess the clustering performance, namely, the similarity between the clustering 

results and known cell types provided by their original references. Suppose T is the 

known cell types, C the predicted clustering results, N the total number of single-cell 

samples, 𝑥𝑖 the number of samples clustered to the i-th cluster of C, 𝑦𝑗 the number of 

samples belong to the j-th cell type of T, and 𝑛𝑖𝑗 the number of overlapping samples 

between the i-th cluster and the j-th cell type. ARI is computed as 

ARI =
∑ (𝑛𝑖𝑗

2
)𝑖𝑗 − [∑ (𝑥𝑖

2
)𝑖 ∑ (𝑦𝑗

2
)𝑗 ]/(𝑁

2
) 

1
2 [∑ (𝑥𝑖

2
)𝑖 + ∑ (𝑦𝑗

2
)𝑗 ] − [∑ (𝑥𝑖

2
)𝑖 ∑ (𝑦𝑗

2
)𝑗 ]/(𝑁

2
)
 

where ( 
 
) denotes a binomial coefficient. By denoting the entropy of C and T as H(C) 

and H(T), respectively, and the mutual information between them as MI(C,T), NMI can 

be computed as 

NMI(C, T) =
MI(C, T)

√H(C)H(T)
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Results 

VPAC accurately clusters scRNA-seq data 

To verify the clustering performance of VPAC, we conducted each experiment five 

times and computed two widely used metrics, ARI and NMI. We compared the 

performance of our method with two baseline methods (using their default parameters), 

including Para_DPMM, the state-of-the-art method for clustering discrete UMI counts 

[19], and pcaReduce, another method combining dimension reduction with clustering 

[20]. 

In order to fairly evaluate the performance of our model, we compared the 

performance of VPAC with other two baseline methods on the three T cell datasets of 

different scales provided by T.Duan et al [19]. The small scale dataset (S-Set) consists 

of 1200 cells with the 1000 top variable genes, the medium scale dataset (M-Set) 

consists of 3000 cells with the 3000 top variable genes, and the large scale dataset (L-

Set) consists of 6000 cells with the 5000 top variable genes. As shown in Table 1, our 

method consistently outperforms the two baseline methods for a large margin on all the 

three datasets, where it achieves average 11.3% improvement on ARI and 8.1% 

improvement on NMI compared to Para_DPMM, even the clustering on these datasets 

was claimed as a challenging task [18, 19]. In addition, our method consistently 

achieves stable performance, which demonstrates its higher robustness than the 

baseline methods. In terms of training efficiency, taking the L-Set as an example, 

VPAC cost 241 seconds, Para_DPMM cost 1000 seconds and pcaReduce cost 37 

seconds on average. It is worth noting that the default minimal training time of 

Para_DPMM is 1000 seconds, which slightly improves the performance of 

Para_DPMM shown in the original research. 
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Table 1. Performance comparison on three datasets of different scales 

Dataset S-Set M-Set L-Set 

Model ARI NMI ARI NMI ARI NMI 

VPAC 0.769 ± 0.000 0.759 ± 0.000 0.765 ± 0.000 0.765 ± 0.000 0.779 ± 0.000 0.769 ± 0.000 

Para_DPMM 0.675 ± 0.004 0.696 ± 0.007 0.704 ± 0.000 0.713 ± 0.001 0.700 ± 0.002 0.711 ± 0.002 

pcaReduce 0.290 ± 0.005 0.289 ± 0.004 0.279 ± 0.007 0.252 ± 0.007 0.311 ± 0.023 0.309 ± 0.044 

 

VPAC scales up well with various data dimensionality 

To illustrate the robustness of our model for various data dimensionality, we selected 

different numbers of top variable genes (features) based on their standard deviations 

across the cell transcriptome profiles. We first used the dataset of 32,695 cells enriched 

from PBMCs, which is the full version of the three preprocessed datasets, to 

demonstrate the superior performance of VPAC for discrete UMI counts of various 

dimensionality. As illustrated in Figure 2a, our method significantly outperforms the 

two baseline methods and achieves consistent performance across datasets of different 

numbers of features. Note that pcaReduce raised an error when training the dataset with 

30k features even the memory is sufficient. We further evaluated the robustness of our 

model for FPKM-normalized data using a dataset of 561 cells derived from seven cell 

lines. As shown in Figure 2b, different with the performance for discrete UMI counts, 

the performance of pcaReduce is superior to that of Para_DPMM, and the performance 

of these two baseline methods are obviously unstable, while VPAC, again, outperforms 

the baseline methods and achieves consistent performance across datasets of different 

numbers of features. The results demonstrate that VPAC can scale up well with various 

data dimensionality whether the scRNA-seq data is discrete or continuous. 
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Figure 2  Performance comparison on datasets of various dimensionality. (a) The 

performance on discrete UMI counts. (b) The performance on continuous FPKM-

normalized data. 

VPAC scales up well with different dataset size 

Different scRNA-seq technologies can be used to quantify transcriptomes for different 

numbers of cells. In order to demonstrate the robustness of our model for different 

dataset size, we randomly selected different proportions of single-cell samples from the 

whole cell population. Besides, we selected top 90% variable genes (features) to avoid 

errors raised by pcaReduce. We again used the cells enriched from PBMCs to illustrate 

the superior performance of VPAC for discrete UMI counts of different dataset size. 

As illustrated in Figure 3a, our method significantly outperforms the two baseline 

methods and achieves superior performance across datasets of different numbers of 
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samples, while the performance of Para_DPMM deteriorates as the number of samples 

increased. We further illustrated the robustness of our model for TPM-normalized data 

using a dataset of 24649 cells from 12 clusters. As shown in Figure 3b, VPAC is still 

superior to the baseline methods and achieves more stable performance across datasets 

of different numbers of samples, while the performance of pcaReduce is still unstable 

even outperforms Para_DPMM again. The results above demonstrate that VPAC can 

also scale up well with different dataset size whether the scRNA-seq data is discrete or 

continuous. 

 

Figure 3  Performance comparison on datasets of different size. (a) The 

performance on discrete UMI counts. (b) The performance on continuous TPM-

normalized data. 
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VPAC scales up well with different data sparsity  

Single-cell gene expression data suffer from the high sparsity problem because they 

contain an abundance of dropout events that lead to zero expression measurements. In 

order to illustrate the superior ability of our model to account for the sparsity of scRNA-

seq data, we randomly zeroed different proportions of non-zero items five times on a 

TPM-normalized dataset of 301 cells with about 2.7 × 105 reads per cell [31]. As 

illustrated in Figure 4, VPAC is superior to the baseline methods and achieves more 

stable performance. The performance of both VPAC and pcaReduce obviously 

deteriorate when we set 80% of the non-zero expression data to zero, while 

Para_DPMM again fails on clustering the TPM-normalized dataset. The results 

demonstrate that our model has the ability to account for the sparsity of scRNA-seq 

data, and thus benefits the clustering tasks with the exponential growth of the Drop-seq 

based single-cell transcriptomic data. 

 

Figure 4  Performance comparison on datasets of different sparsity. 

Applications of VPAC 

To demonstrate potential applications of VPAC, we collected a dataset of 742 dendritic 

cells from six clusters [32, 33]. By setting the number of clusters to 6 and the 

dimensionality of latent space to 10, VPAC achieved an ARI of 0.876 and an NMI of 
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0.898. Actually, the items of 𝜶 with large values in VPAC will result in ‘switching off’ 

the corresponding column of the matrix W, and thus provide guidance for determining 

the appropriate dimensionality for the latent space. As shown in Figure 5, the 

visualization of the projection matrix W (the left one) indicates there are four principal 

directions in the latent space, while the visualization of the projection matrix obtained 

by classical PCA (the right one) cannot effectively reveal the number of principal 

directions. Therefore, by setting the dimensionality of latent space to 5 (in practice we 

have found that one more dimensionality, which may contain some additional 

information, tends to give better results), VPAC achieved an ARI of 0.875 and an NMI 

of 0.903, which are approximately equal to the results with the dimensionality of latent 

space setting to 10, which means the only one parameter we should determine for 

VPAC is the number of clusters. 

 

Figure 5  Visualization of the projection matrix W of VPAC (the left one) and that 

of classical PCA (the right one). 
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We used the t-SNE algorithm to visualize the dimension-reduced data in latent 

space of VPAC by projecting the data into a two-dimensional space so that certain 

hidden structures can be depicted intuitively. Note that t-SNE is a visualization tool, 

and it is not intended to be used for clustering scRNA-seq data [18]. As shown in Figure 

6a, VPAC accurately clustered different cell types accounting for cells from different 

batches. It is worth noting that VPAC intended to cluster DC2 and DC3 cell types 

together while inferring a small cluster (in the bottom) containing some individual cells. 

According to the original research for this dataset, it is reasonable to cluster DC2 and 

DC3 together because both of them correspond to new subdivisions of the 

CD1C/BDCA-1+cDC2, while DC1 corresponds to the cross-presenting CD141/BDCA-

3+ cDC1, DC4 corresponds to CD1C
–
CD141

–
CD11C+ DC, DC5 is a unique DC subtype, 

AS DCs, and DC6 corresponds to the interferon-producing pDC [32]. With this 

understanding, we set the number of clusters to 5. VPAC successfully clustered the 

DC2/3 cluster and achieved an ARI of 0.892 and an NMI of 0.943. In addition, as 

illustrated in Figure 6(b), VPAC accounted for batch effects even there are still very 

few samples wrongly clustered, which means that our method is robust to scRNA-seq 

data from different batches. 

 

Figure 6  Visualization of the dendritic cells in latent space inferred by VPAC 

using t-SNE. The dendritic cells are colored by cell-type labels provided by the original 

study, different shapes of points represent different experimental batches, and the 
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dashed circles represent potential clusters inferred by VPAC with setting of the number 

of clusters to (a) 6, and (b) 5. 

We further conducted gene co-expression network analysis to identify which genes 

have a tendency to show a coordinated expression pattern of the DC2/3 cluster inferred 

by VPAC. By calculating the Pearson correlation coefficient (PCC) of each gene pairs, 

we plotted a co-expression network with a threshold 0.4 of PCC [36]. As illustrated in 

Figure 7, the three genes, namely S100A9, S100A8 and CD14, with the highest degree 

of connectivity are expected to be drivers required for signaling pathways of essential 

functions. It is worth noting that, in the original research, these three genes were 

claimed as acute and chronic inflammatory genes that play as a strong unique signature 

to distinguish the DC2/3 cluster, which means our method has the ability to reveal the 

genes with strong unique signatures of a specific cell type. 

 

Figure 7  The co-expression network of the DC2/3 cluster inferred by VPAC. 
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It is worth noting that VPAC successfully clustered the novel DC5 samples 

detected by the original research. In order to study the potential mechanism implied in 

VPAC, we further analyzed the samples in the latent space inferred by VPAC. As 

shown in Figure 8, the fifth items in latent vectors of the DC5 cluster are much larger 

than that of other clusters, which means that the fifth direction of the latent space can 

effectively distinguish the DC5 cluster. We sorted the absolute values of the fifth 

column in projection matrix W, which are the absolute weights of linear combinations 

of genes, and found that the two genes with the highest absolute weights (0.290 and 

0.288) are AXL and SIGLEC6, which have much higher absolute weight than the 

successive gene CX3CR1 with a weight of 0.225. Interestingly, AXL and SIGLEC6 

serve as unique markers for the population emerged from the unbiased cluster analysis 

(cluster DC5) according to the original literature, which further demonstrates that our 

method has the inherent ability to detect genes with strong unique signatures of a 

specific cell type while accurately clustering. 

 

Figure 8  The values of fifth items in the latent vectors inferred by VPAC.  
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Discussion 
scRNA-Seq technologies have advanced rapidly in recent years and enable the 

quantitative characterization of cell types based on transcriptome profiles. VPAC is 

proposed to identify putative cell types using unsupervised clustering. The superiority 

of our method over other baseline methods, such as Para_DPMM and pcaReduce, is 

mainly attributed to the variational projection while constraining single-cell samples to 

follow a Gaussian mixture distribution in the latent space. In addition, with the 

hierarchical prior over the projection matrix, VPAC can automatically determine the 

appropriate dimensionality for the latent space to avoid discrete model selection, which 

means the only one parameter we should determine for VPAC is the number of clusters. 

The comprehensive experiments demonstrate the generality and robustness of our 

model. 

Our model can certainly be improved in some aspects. First, a more complex non-

linear projection can be introduced to better model the scRNA-seq data. Second, more 

constraints or assumptions can be included in our model considering the characteristics 

of scRNA-seq data, such as the high sparsity. Recent studies have shown the 

introduction of zero-inflated assumption can effectively model the dropout evens of 

single-cell data [26, 37], which may also improve the performance of our model. Third, 

our model can be extended to incorporate other types of functional genomics data such 

as chromatin accessibility. For example, in the literature, the method of coupled 

nonnegative matrix factorizations performs clustering by the integrative analysis of 

scRNA-seq and single-cell ATAC-sequencing data [38]. Finally, the performance and 

efficiency of the model may be further improved by parameters inference using 

stochastic optimization and deep neural networks, which have been shown to be 

effective in statistical models for single-cell data analysis [39, 40]. 
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Conclusions 
We have proposed a model-based algorithm, named VPAC, for accurate clustering of 

single-cell transcriptomic data through variational projection. Benefitting from the 

variational projection while constraining single-cell samples to follow a Gaussian 

mixture distribution in the latent space, VPAC is superior to existing methods in the 

clustering of datasets of discrete counts, normalized continuous data, various data 

dimensionality, different dataset size and different data sparsity. We have further 

demonstrated the ability of VPAC to detect genes with strong unique signatures of a 

specific cell type, which may shed light on the studies in system biology. Eventually, 

with the explosive growth of scRNA-seq data, we expect that such a statistical approach 

will provide us superior performance and be widely applicable. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/523993doi: bioRxiv preprint 

https://doi.org/10.1101/523993


 - 24 - 

Declarations 

Abbreviations 

scRNA-seq: single-cell RNA-sequencing; UMI: unique molecular identifiers; t-SNE: t-

Distributed Stochastic Neighbor Embedding; PCA: principal component analysis; SNN: 

shared nearest neighbors; TPM: transcripts per million mapped reads; FPKM: fragments 

per kilobase per million mapped reads; PPCA: probabilistic principal components 

analysis; CAVI: coordinate ascent variational inference; PBMCs: peripheral blood 

mononuclear cells; ELBO: evidence lower bound; ARI: adjusted rand index; NMI: 

normalized mutual information; PCC: Pearson correlation coefficient 

Ethics approval and consent to participate 

Not applicable. 

Consent for publication 

Not applicable. 

Availability of data and material 

The datasets supporting the conclusions of this article are publicly available from 

10xgenomics (https://support.10xgenomics.com/single-cell-gene-expression/datasets), 

the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), the NCBI 

Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/), and the Single Cell 

Portal (https://portals.broadinstitute.org/single_cell). 

Competing interests 

The authors declare that they have no competing interests. 

Funding 

This research was partially supported by the National Key Research and Development 

Program of China (No. 2018YFC0910404), the National Natural Science Foundation of 

China (Nos. 61873141, 61721003, 61573207, 71871019 and 71471016), and the 

Tsinghua-Fuzhou Institute for Data Technology. 

Authors' contributions 

RJ designed the research. SC and KH designed and implemented the models. SC and 

HC collected data and analyzed the results. SC, KH, HC and RJ wrote the manuscript. 

All authors read and confirmed the manuscript. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/523993doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/Traces/sra/
https://portals.broadinstitute.org/single_cell
https://doi.org/10.1101/523993


 - 25 - 

Acknowledgements 

We thank Yong Wang for his helpful discussions. Rui Jiang is a RONG professor at the 

Institute for Data Science, Tsinghua University. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/523993doi: bioRxiv preprint 

https://doi.org/10.1101/523993


 - 26 - 

References 
1. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau 

J, Tuch BB, Siddiqui A et al. mRNA-Seq whole-transcriptome analysis of a 

single cell. Nat Methods. 2009; 6(5):377-382. 

2. Hedlund E, Deng Q. Single-cell RNA sequencing: Technical advancements 

and biological applications. Mol Aspects Med. 2018; 59:36-46. 

3. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. 

Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat 

Methods. 2013; 10(11):1096-1098. 

4. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, 

Mildner A, Cohen N, Jung S, Tanay A et al. Massively parallel single-cell 

RNA-seq for marker-free decomposition of tissues into cell types. Science. 

2014; 343(6172):776-779. 

5. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, 

Bialas AR, Kamitaki N, Martersteck EM et al. Highly Parallel Genome-wide 

Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 

161(5):1202-1214. 

6. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, 

Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative Analysis of Single-

Cell RNA Sequencing Methods. Mol Cell. 2017; 65(4):631-643 e634. 

7. Segerstolpe A, Palasantza A, Eliasson P, Andersson EM, Andreasson AC, Sun 

X, Picelli S, Sabirsh A, Clausen M, Bjursell MK et al. Single-Cell 

Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 

Diabetes. Cell Metab. 2016; 24(4):593-607. 

8. Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers 

H, van Oudenaarden A. Single-cell messenger RNA sequencing reveals rare 

intestinal cell types. Nature. 2015; 525(7568):251-255. 

9. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, 

Jureus A, Marques S, Munguba H, He L, Betsholtz C et al. Brain structure. 

Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-

seq. Science. 2015; 347(6226):1138-1142. 

10. Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle 

O, Marioni JC, Buettner F. Computational assignment of cell-cycle stage from 

single-cell transcriptome data. Methods. 2015; 85:54-61. 

11. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, 

Salame TM, Tanay A, van Oudenaarden A, Amit I. Dissecting Immune 

Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell. 

2016; 167(7):1883-1896 e1815. 

12. Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, Liu Z, Zeng Q, Cheng L, 

Sun YE et al. Genetic programs in human and mouse early embryos revealed 

by single-cell RNA sequencing. Nature. 2013; 500(7464):593-597. 

13. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of 

single-cell gene expression data. Nat Biotechnol. 2015; 33(5):495-502. 

14. Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L, Yuan GC. 

Bifurcation analysis of single-cell gene expression data reveals epigenetic 

landscape. Proc Natl Acad Sci U S A. 2014; 111(52):E5643-5650. 

15. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, 

Desai TJ, Krasnow MA, Quake SR. Reconstructing lineage hierarchies of the 

distal lung epithelium using single-cell RNA-seq. Nature. 2014; 

509(7500):371-375. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/523993doi: bioRxiv preprint 

https://doi.org/10.1101/523993


 - 27 - 

16. Stegle O, Teichmann SA, Marioni JC. Computational and analytical 

challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3):133-145. 

17. duVerle DA, Yotsukura S, Nomura S, Aburatani H, Tsuda K. CellTree: an 

R/bioconductor package to infer the hierarchical structure of cell populations 

from single-cell RNA-seq data. BMC Bioinformatics. 2016; 17(1):363. 

18. Sun Z, Wang T, Deng K, Wang XF, Lafyatis R, Ding Y, Hu M, Chen W. 

DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell 

transcriptomic data. Bioinformatics. 2018; 34(1):139-146. 

19. Duan T, Pinto JP, Xie X. Parallel Clustering of Single Cell Transcriptomic 

Data with Split-Merge Sampling on Dirichlet Process Mixtures. 

Bioinformatics. 2018. 

20. Zurauskiene J, Yau C. pcaReduce: hierarchical clustering of single cell 

transcriptional profiles. BMC Bioinformatics. 2016; 17:140. 

21. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, 

Natarajan KN, Reik W, Barahona M, Green AR et al. SC3: consensus 

clustering of single-cell RNA-seq data. Nat Methods. 2017; 14(5):483-486. 

22. Lin P, Troup M, Ho JW. CIDR: Ultrafast and accurate clustering through 

imputation for single-cell RNA-seq data. Genome Biol. 2017; 18(1):59. 

23. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, 

Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J et al. SCENIC: 

single-cell regulatory network inference and clustering. Nat Methods. 2017; 

14(11):1083-1086. 

24. Grun D, van Oudenaarden A. Design and Analysis of Single-Cell Sequencing 

Experiments. Cell. 2015; 163(4):799-810. 

25. Tipping ME, Bishop CMJJotRSSSB. Probabilistic principal component 

analysis. Journal of the Royal Statistical Society. 1999; 61(3):611-622. 

26. Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell 

gene expression analysis. Genome Biol. 2015; 16:241. 

27. Corduneanu A, Bishop CM: Variational Bayesian model selection for mixture 

distributions. In: Artificial intelligence and Statistics: 2001. Morgan 

Kaufmann Waltham, MA: 27-34. 

28. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo 

SB, Wheeler TD, McDermott GP, Zhu J et al. Massively parallel digital 

transcriptional profiling of single cells. Nat Commun. 2017; 8:14049. 

29. Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, 

Hon LK, Tan WS et al. Reference component analysis of single-cell 

transcriptomes celucidates cellular heterogeneity in human colorectal tumors. 

Nat Genet. 2017; 49(5):708-718. 

30. Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, Ashenberg O, 

Su CW, Smillie C, Shekhar K et al. T Helper Cell Cytokines Modulate 

Intestinal Stem Cell Renewal and Differentiation. Cell. 2018; 175(5):1307-

1320 e1322. 

31. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, 

Szpankowski L, Fowler B, Chen P et al. Low-coverage single-cell mRNA 

sequencing reveals cellular heterogeneity and activated signaling pathways in 

developing cerebral cortex. Nat Biotechnol. 2014; 32(10):1053-1058. 

32. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, 

Griesbeck M, Butler A, Zheng S, Lazo S et al. Single-cell RNA-seq reveals 

new types of human blood dendritic cells, monocytes, and progenitors. 

Science. 2017; 356(6335). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/523993doi: bioRxiv preprint 

https://doi.org/10.1101/523993


 - 28 - 

33. Hua K, Zhang X. A case study on the detailed reproducibility of a human cell 

atlas project. 2018:467993. 

34. Hubert L, Arabie PJJoc. Comparing partitions. Journal of classification. 1985; 

2(1):193-218. 

35. Strehl A, Ghosh JJJomlr. Cluster ensembles---a knowledge reuse framework 

for combining multiple partitions. 2002; 3(Dec):583-617. 

36. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 

Schwikowski B, Ideker T. Cytoscape: a software environment for integrated 

models of biomolecular interaction networks. Genome Res. 2003; 

13(11):2498-2504. 

37. Ferreira PF, Carvalho AM, Vinga S. Scalable probabilistic matrix factorization 

for single-cell RNA-seq analysis. bioRxiv. 2018:496810. 

38. Duren Z, Chen X, Zamanighomi M, Zeng W, Satpathy AT, Chang HY, Wang 

Y, Wong WH. Integrative analysis of single-cell genomics data by coupled 

nonnegative matrix factorizations. Proc Natl Acad Sci U S A. 2018; 

115(30):7723-7728. 

39. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling 

for single-cell transcriptomics. Nat Methods. 2018; 15(12):1053-1058. 

40. Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single 

cell transcriptome data with deep generative models. Nat Commun. 2018; 

9(1):2002. 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/523993doi: bioRxiv preprint 

https://doi.org/10.1101/523993

