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Abstract

Stain-free, single-cell segmentation and tracking is tantamount to the holy
grail of microscopic cell migration analysis. Phase contrast microscopy (PCM)
images with cells at high density are notoriously difficult to segment accu-
rately; thus, manual segmentation remains the de facto standard practice.
In this work, we introduce Usiigaci, an all-in-one, semi-automated pipeline
to segment, track, and visualize cell movement and morphological changes in
PCM. Stain-free, instance-aware segmentation is accomplished using a mask
regional convolutional neural network (Mask R-CNN). A Trackpy-based cell
tracker with a graphical user interface is developed for cell tracking and data
verification. The performance of Usiigaci is validated with electrotaxis of
NIH/3T3 fibroblasts. Usiigaci provides highly accurate cell movement and
morphological information for quantitative cell migration analysis.
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1. Motivation and significance1

Cell migration is a fundamental cell behavior that underlies various phys-2

iological processes, including development, tissue maintenance, immunity,3

and tissue regeneration, as well as pathological processes such as metastasis.4

Many in vitro as well as in vivo platforms have been developed to investigate5

molecular mechanisms underlying cell migration in different microenviron-6

ments with the aid of microscopy. To analyze single- or collective-cell migra-7

tion, reliable segmentation of each individual cell in microscopic images is8

necessary in order to extract location as well as morphological information.9

Among bright-field microscopy techniques, Zernike’s phase contrast mi-10

croscopy (PCM) is favored by biologists for its ability to translate phase dif-11

ferences from cellular components into amplitude differences, so as to make12

the cell membrane, the nucleus, and vacuoles more visible [1]. However,13

PCM images are notoriously difficult to segment correctly using conven-14

tional computer vision methods, due to the low contrast between cells and15

their background [2]. For this reason, many cell migration experiments still16

rely on fluorescent labeling of cells or manual tracking. Fluorescent labeling17

of cells requires transgenic expression of fluorescent proteins or cells tagged18

with fluorescent compounds, both of which can be toxic to cells and which19

require extensive validation of phenotypic changes. Although thresholding20

fluorescent images is relatively straightforward, cells that are in close prox-21

imity are often indistinguishable in threshold results. On the other hand,22

manual tracking of cell migration is labor-intensive and prone to operator23

error. Conducting high-throughput microscopy experiments is already possi-24

ble thanks to methodology and instrumental advances, but current analytical25

techniques to interpret results quantitatively face major obstacles due to im-26

perfect cell segmentation and tracking [3]. Moreover, cell movement is not27

the only parameter of interest in cell migration. For cell migration guided28

by environmental gradients, shear stress, surface topology, and electric field29

can also impact cell morphology [4–7].30

Although many software packages have been developed for cell track-31

ing, the majority of them handle only fluorescent images and require good32

thresholding results [8]. While some software tackles stain-free cell tracking,33

outlining each individual cell accurately to the cell boundary is difficult; thus,34

these packages are limited to positional tracking and cannot resolve adjacent35

or touching cells [8–12]. Migrating cells in ameboid or mesenchymal mode36

often have thin protruding cellular structures for locomotion, such as blebs37

or lamellipodia [13]. These structures exhibit very low contrast in PCM,38

which prevents reliable segmentation, even though they are essential for cell39

migration.40
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In recent years, advances in machine learning using convolutional neu-41

ral networks (CNNs) have proven effective at solving computer vision prob-42

lems [14–16]. Among them, Deepcell architecture, proposed by Van Valen et43

al., has demonstrated that cells in close proximity can be segmented using44

pixel-wise classification of the background, the cell membrane, and the cell45

cytoplasm [15]. However, fluorescent staining of cell nuclei is still needed for46

optimal segmentation of these PCM images.47

To address the above challenges, we introduce newly developed stain-48

free, instance-aware cell tracking software for PCM, called Usiigaci. Stain-49

free, instance-aware segmentation of phase contrast microscopy images is50

appealing to biologists because cells are free of labeling damage and their51

analysis does not suffer from false readings. Moreover, both locations and52

outlines of cells can be analyzed in their entirety.53

2. Software description54

2.1. Software overview55

Usiigaci, pronounced as ushi:gachi by Hepburn romanization, is a Ryukyuan56

word that refers to tracing the outlines of objects, which is an appropriate57

description of the function of our software. Usiigaci has a semi-automated58

workflow consisting of three modules: a segmentation module, a tracking59

module, and a data processing module, all written in standard Python syn-60

tax (Figure 1).61

Figure 1: The all-in-one segmentation, tracking, and data processing workflow of Usiigaci.

A Mask R-CNN model pretrained with the Microsoft COCO dataset [17]62

was further trained using 50 manually annotated PCM images with single63

cell outlines as a classification class (more details in S1.4 and S1.5 in the SI64

document for preparing custom training data and to initiate new training).65

Using this trained model, PCM images are provided as input to the Mask66

R-CNN-based segmentation module and highly accurate instance-aware seg-67

mented masks are generated [18]. Outlines of individual cells in the images68
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are correctly segmented into identifiers (IDs), even if they are in close prox-69

imity. IDs are then linked and tracked in the tracking module. With the70

aid of a graphical user interface (GUI) in the tracking module, side-by-side71

comparison of PCM images and tracked masks allow users to validate seg-72

mentation and tracking results. At this point, unwanted cell tracks, such73

as imperfectly segmented or tracked cells, mitotic cells, or dead cells can be74

excluded by users prior to data processing. Thereafter, step-centric and cell-75

centric parameters of cell migration, as well as visualization of cell migration76

data are computed and generated automatically from the tracked results in77

the data processing module (Table S.1 in the SI document).78

Based on the three modules described above, Usiigaci is an all-in-one,79

semi-automated solution for stain-free cell migration analysis in PCM, with80

a biologist-friendly workflow.81

2.2. Software architecture and functionality82

A diagram of segmentation and tracking modules of Usiigaci is shown83

in Figure 2. The segmentation module of Usiigaci is based on a Mask R-84

CNN model that is implemented in TensorFlow and Keras, as originally85

open-sourced by Matterport Inc. under the MIT license [19–21]. A detailed86

diagram of Mask R-CNN architecture is shown in Fig. S.3 in the SI doc-87

ument. The Mask R-CNN model is built upon the Faster R-CNN model88

that has achieved rapid identification of objects through searching regions89

of interest (ROIs) on feature maps [18, 22]. Raw images undergo multi-90

ple convolutional operations in a R-CNN backbone, which is composed of a91

residual function network (ResNet-101, [23]) and a feature pyramid network92

(FPN, [24]), to generate 5 feature maps (C1 to C5). ROIs are searched on93

feature maps using region proposal layers. An accurate instance-segmented94

ROI map is generated by an ROI align layer to correct for misalignment in95

the ROIPooling operation. After upsampling, entire outlines of individual96

cells are segmented into polygons bearing unique IDs in the exported mask.97

As a result, highly accurate, instance-aware segmentation of stain-free PCM98

images is realized.99

After segmentation, each mask contains segmented cell outlines bearing100

a unique identifier (ID). The IDs are then used for linking and tracking in101

the tracking module built on the Trackpy library [25]. The features of an ID,102

such as location, equivalent diameter, perimeter, eccentricity, orientation,103

and true solidity, are used as parameters in Trackpy for tracking. IDs in104

each consecutive mask in a time-lapse experiment belonging to the same cell105

are searched by the Trackpy library using its default nearest neighbor search106

option, namely the k-dimension tree algorithm [26–28].107
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Figure 2: Diagram of segmentation and tracking modules of Usiigaci. PCM images are
processed in a Mask R-CNN segmentation module with a region proposal network, which
has a backbone of ResNet-101 and a feature pyramid network (FPN), to generate instance-
segmented masks. Objects in the masks are linked and tracked in a Trackpy-based tracker
using the k-dimensional tree algorithm. Important cell migration parameters are then
computed from the tracked results.

Linking and tracking are followed by automatic post-processing, where108

segmentation and tracking results are corrected in two steps. In the first109

step, a cell wrongly segmented as two IDs is corrected by merging the two110

IDs. In the second step, IDs in consecutive frames belong to the same track,111

but suffering from interrupted events are re-linked. A GUI based on the112

PyQt and PyQtGraph library for the tracking module is developed so that113

users can verify segmentation and tracking results [29, 30]. Manual verifica-114

tion is important because imperfections in segmentation can cause errors in115

tracking. In addition, cells that undergo mitosis and cells that enter or exit116

the viewfield during the experiment generate tracking results that are not117

meaningful in single cell migration studies (Fig. S.6 in the SI document).118

In the GUI of the tracking module, by imposing a simple criterion, select119

complete tracks, the valid tracks IDs of which exist in every frame, can be se-120

lected. Thereafter, users can manually verify whether the tracking is correct121

by cross-referencing against raw images. The amount of labor in the proposed122

workflow is less than that associated with conventional manual tracking [4].123

Subsequently, centroid and morphology parameters such as angle, perimeter,124

and area of each ID in valid tracks can be extracted and produced using the125

scikit-image library [31].126

Analysis of single-cell migration data is accomplished in the data pro-127

cessing module to compute migration parameters for each ID throughout the128

time-lapse experiment (Fig. S.1.B). Several data processing libraries, includ-129

ing the Python data analysis library (Pandas), NumPy, and SciPy, are used130
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Figure 3: Microscopy of NIH/3T3 cells stained with CellTracker Green under PCM
and fluorescence microscopy, compared with segmentation results of Usiigaci, Fogbank,
PHANTAST, and Deepcell on the PCM image. Different color represents instances of
each region of interest. In Usiigaci, Fogbank, and Deepcell, each cell is segmented into
an instance outline with a unique ID and color. In segmented masks of fluorescence-
thresholded or PHANTAST, cells are segmented into ROIs using the analyze particle
function in ImageJ and filled with pseudocolors using the ROImap function in the LOCI
plug-in. Usiigaci accurately segmented each individual cell with accuracy superior to that
of other software.

for processing cell migration data [32–34]. Step-centric and cell-centric fea-131

tures, such as turning angle, net trigonometric distance, speed, orientation,132

and directedness are computed automatically in a Jupyter Notebook (Table133

S.1) [35, 36]. Moreover, automated visualization of cell migration in cell tra-134

jectory plots, box plots, and time-series plots is generated with the aid of135

Matplotlib and Seaborn plotting libraries (Fig. S.9) [37, 38].136

3. Validation of Usiigaci137

3.1. Segmentation module138

Stain-free tracking of NIH/3T3 fibroblasts electrotaxis in a 300 V/m di-139

rect current electric field (dcEF) for 10 hr under PCM is used to demon-140

strate unique features of Usiigaci. Details of cell experiments and imaging141
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are described in the supplementary information. Segmentation and tracking142

performance of Usiigaci is benchmarked against state-of-the-art free software143

such as PHANTAST [11], Fogbank [12], Deepcell [15] as well as proprietary144

software such as Imaris and Metamorph.Segmentation results of Usiigaci and145

aforementioned software are shown in Figure 3 and quantitatively analyzed146

by segmentation evaluation metrics (Table S.2 in the SI document). Segmen-147

tation similarity can be evaluated using the mean ratio of intersection over148

union (mIoU), which is also known as the Jaccard index (Figure 4).149

By fluorescence thresholding, thicker cell bodies can be segmented easily,150

but thinner structures, such as lamellipodia or blebs, often fail to be seg-151

mented and contribute to higher specificity and lower mIoU (Table 1 & Fig.152

S.7 in the SI document). In Fogbank and PHANTAST, images are thresh-153

olded by local contrast, thus segmentation is effective only if single cells are154

well isolated. The segmentation similarity achieved by Fogbank and PHAN-155

TAST is moderately high (mIoU 0.46 and 0.63), but single-cell tracking in156

images with high cell density is not effective using these two methods, be-157

cause individual cells cannot be distinguished. By classifying cell membranes158

through machine learning methods, Deepcell segments high density cells bet-159

ter than conventional methods. However, due to the pixel-level classification160

methods in Deepcell, adjacent cells without clear boundaries are sometimes161

difficult to segment. In Usiigaci, entire outlines of cells are segmented cor-162

rectly in an instance-aware fashion, even if cells are densely packed. The163

segmentation similarity of Usiigaci with a single trained model is 2.2 times164

higher than that of the fluorescence threshold method. Usiigaci’s segmenta-165

tion also outperforms other benchmarked segmentation software (Table 1 &166

Figure 4). Moreover, the segmentation speed of Usiigaci is fast in comparison167

to manual segmentation and benchmarked software (see Fig. S.8 in the SI168

document).169

However, the potential limitation of Usiigaci’s Mask R-CNN (essentially a170

machine learning method), is that segmentation accuracy may be profoundly171

impacted if the segmentation image is significantly different from that in the172

training dataset (see detailed discussion in section S2.3 in the SI document).173

A proper training dataset created by end users with a user-specific exper-174

imental configuration may be necessary for optimal results. The detailed175

description of training data preparation and training process in supplemen-176

tary section S1.4 and S1.5 should help users to achieve optimal results if a177

new training dataset is required.178

3.2. Tracking module179

Mask R-CNN segments cells in an instance-aware manner such that each180

segmented cell possesses a unique ID (shown with pseudo-color in Figure 3).181
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Figure 4: Segmentation similarity averaged among three NIH/3T3 cell images using
various methods. MR: Manual reference; Seg.: Segmented results; FN: False negative; TP:
True positive; FP: False positive; TN:True negative. Segmentation similarity is measured
by the mean intersection over union between ground truth and segmented results (mIoU =∑

i TPi∑
i(FNi+TPi+FPi)

, as shown in the inset), or also known as the Jaccard index.

Table 1: Segmentation performance averaged among three NIH/3T3 cell images using
various methods. Ch:channel

Ch Jaccard index F1 score Precision Recall Specificity Accuracy

Manual PCM 1 1 1 1 1 1

Automatic threshold FL 0.27±0.03 0.46±0.02 0.97±0.02 0.30±0.01 1±0 0.91±0.01

PHANTAST PCM 0.46±0.02 0.59±0.09 0.70±0.19 0.51±0.02 0.97±0.03 0.91±0.03

Fogbank PCM 0.63±0.02 0.77±0.02 0.65±0.02 0.93±0.02 0.94±0.01 0.94±0.01

Deepcell 3models-avg PCM 0.36±0.04 0.56±0.06 0.39±0.06 0.96±0.01 0.92±0.01 0.92±0.01

Usiigaci 3models-avg PCM 0.72±0.01 0.85±0.01 0.83±0.02 0.87±0.01 0.95±0.04 0.96±0.01

The IDs in consecutive images are linked and tracked in the tracking module.182

A GUI is developed to provide manual data verification for users to identify183

potential errors in segmentation and tracking (Figure 5). A simple criterion,184
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select complete tracks, is built in the GUI for selecting tracks with IDs that185

exist in every frame. Imposing the criterion ensures high probability of valid186

tracks (Fig. S.6). Furthermore, the validity of cell tracks can be verified by187

users. Tracks that are biologically invalid, such as those having cells that188

have undergone mitosis or cell death, can be excluded manually. Usiigaci189

provides a labor-saving workflow while preserving the capacity for human190

intervention, which is essential to ensure data validity in single-cell migration191

analysis [39].192

We characterized tracking performance using multiple object tracking193

(MOT) metrics and tracking quality measures on a triplicate 10-hr NIH/3T3194

electrotaxis dataset (Table S.3). MOT metrics measure the performance of195

trackers based on how accurately the objects in every frame are tracked.196

Tracking quality can be understood more intuitively by classifying individ-197

ual cell tracks in tracking quality measures. Detailed definition of tracking198

performance is discussed in the supplementary section S1.7.199

The MOT performance of Usiigaci with or without manual verification200

is benchmarked against manual tracking as shown in Table 2 [40, 41]. In201

manual tracking, the multiple object tracking precision (MOTP) and multi-202

ple object tracking accuracy (MOTA) are arbitrarily defined as 1. A total203

of 4520 events are identified, summed from all frames. After tracking by the204

Usiigaci tracker, 4470 events are identified with MOTA of 91.9%. By impos-205

ing the select complete track criterion, events belonging to invalid tracks (Fig.206

S.6 B-H) are easily removed. The MOTPs describing the total error in posi-207

tions of matched object-hypothesis pairs in Usiigaci before and after manual208

verification are 70.2% and 75.6%, which are similar to the Jaccard index in209

segmentation [40]. The masks of tracked cells correlate well with those by210

manual segmentation at pixel level, which suggests that cell movements and211

morphology changes can be tracked and analyzed quantitatively.212

Tracking quality using the Usiigaci tracker can be understood more in-213

tuitively by classifying individual cell tracks. By manual tracking, 104 valid214

tracks are found among 155 total tracks. Using the Usiigaci tracker, 291215

tracks are generated and many of which are erroneous due to different types216

of error (Fig S.6). The valid track ratio in Usiigaci is only 19.5% without217

manual verification. However, by the select complete tracks criterion, users218

can select only the tracks with the same ID in every frame. Valid cell tracks219

will be among those selected with the criterion. Users can also verify whether220

there are any erroneous tracks and exclude them if necessary. Five mitosis221

tracks exist in the remaining results and they are excluded manually. The222

valid tracks obtained from Usiigaci after manual verification correspond to223

54% of valid tracks identified by a human operator. However, more viewfields224

can be analyzed to increase the number of valid tracks with the labor-saving225

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524041doi: bioRxiv preprint 

https://doi.org/10.1101/524041
http://creativecommons.org/licenses/by-nc-nd/4.0/


workflow of Usiigaci.226

Figure 5: The GUI of the tracking module in Usiigaci. PCM images of a time-lapse
experiment are shown in the left panel to compare with the Mask R-CNN segmented
masks in the right panel. After tracking, cell tracks are listed on the right and users can
verify data against PCM images and exclude bad cell tracks.

3.3. Data processing module227

Quantitative cellular dynamics require both accurate cell segmentation228

and cell tracking. After tracking, the data processing module of Usiigaci229

generates quantitative results of step-centric and cell-centric parameters in230

cell migration based on the tracking results. Visualization of cell migration231

is carried out automatically to generate visual representations that can be232

understood intuitively (Fig. S.9 in the SI document).233

We further examine overall accuracy in the context of cell migration234

among the results segmented and tracked using various methods. Direct-235

edness is a metric to show directional cell migration. Directness is defined as236

the average cosine between the net trigonometric distance and electric cur-237

rent vector (Fig. S.1B). A group of cells migrating toward the cathode has238

a directedness of 1, and random migrating cells possess a directedness of 0239

(Table S.1). The directedness of NIH/3T3 cells in dcEF is used to benchmark240

the accuracy of results tracked by various tracking methods including manual241

tracking in ImageJ, the track object module in Metamorph, Imaris Track,242
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Table 2: Summary of multiple object tracking of NIH/3T3 electrotaxis after 10-hr under
300 V/m dcEF (31 frames). Metrics are compared among manual tracking and Usiigaci
with and without the select complete tracks criterion and manual verification. MOTP:
Multiple object tracking precision; MOTA: Multiple object tracking accuracy.

MOT metrics Manual
Usiigaci

(unverified)

Usiigaci

(select complete track)

Total events 4520a 4470 1736

Miss events 0 145 0

Mismatch events 0 70 0

False positive events 0 165 0

MOTA 1 0.919±0.01 n/a

MOTP (mIoU) 1 0.702±0.012b 0.756±0.009b

Tracking quality measure

Total tracks 155c 291d 61

Valid single tracks 104 56 56

Interrupted single cell tracks 0 21 0

Mitosis cell tracks 5 5 5

Entering viewfield tracks 19 19 0

Loss of tracking tracks 0 152 0

Exiting viewfield tracks 27 27 0

Mismatch tracks 0 2 0

False positive tracks 0 9 0

Valid track ratio 0.67e 0.19f 0.92g

a Total objects identified by a human operator.
b Mean intersection over union ratio of all matched-object pairs in mean±standard error of

mean.
c Total cell tracks identified by a human operator.
d Total cell tracks generated by Usiigaci’s tracker.
e Ratio of valid cell tracks to total cell tracks in the dataset identified by a human operator.
f Ratio of valid cell tracks to total cell tracks generated by Usiigaci’s tracker.
g Ratio of valid cell tracks to total cell tracks after the select all tracks criterion.
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and tracking with Lineage Mapper (Figure 6 & Fig. S.10). PCM images,243

fluorescence images, or segmented masks from either Usiigaci, PHANTAST,244

Fogbank, or Deepcell are used in each tracking software accordingly. Only245

valid cell tracks that contains cells being tracked in every frame are ana-246

lyzed. Capture rate is defined as the ratio between valid cell tracks by a247

certain method and valid cell tracks identified manually.248

While cell tracking in proprietary software such as Imaris and Metamorph249

yields results similar to the manual reference, both software packages only250

provide positional information about cells, while morphological information251

of cells is not available. Moreover, Imaris demands fluorescent labeling of252

cells to obtain good segmentation results (Table S.4).253

Figure 6: Directedness of NIH/3T3 electrotaxis after 10-hr, 300 V/m dcEF stimula-
tion analyzed by different segmentation and tracking methods. Data and labels are ar-
ranged based on the type of images-(segmentation method tracking method) (capture
rate). LM:Lineage Mapper; FL:fluorescence; PCM: phase contrast microscopy; ** denotes
P<0.01; **** denotes P<0.0001.
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Even though open-source cell tracking software, such as Lineage Mapper254

is available [42], segmented data may not be directly compatible with Lineage255

Mapper if single cells are not segmented into individual instances correctly256

in every frame. Because Lineage Mapper is fully automatic, a manual veri-257

fication process is not available in Lineage Mapper. Imperfect segmentation258

results lead to erroneous tracking results and invalid tracks cannot be ex-259

cluded by users. Directedness of cells segmented by Fogbank and tracked by260

Lineage mapper (P<0.01, Tukey’s post-hoc) differs from the manual refer-261

ence. Cells segmented by Deepcell are not tracked well with Lineage Mapper262

(P<0.0001, Tukey’s post-hoc). Therefore, segmented results from PHAN-263

TAST and Deepcell on NIH/3T3 electrotaxis cannot yield good data by264

tracking with Lineage Mapper. While Usiigaci’s segmented masks can also265

be tracked using Lineage Mapper, only 22% of cells are tracked compared266

to the manual tracking reference. The results from Lineage Mapper are also267

significantly different compared to a manual reference (P<0.0001, one-way268

ANOVA), presumably due to erroneous tracking that cannot be verified man-269

ually. Misinterpretation may be made due to bad results if users do not fully270

grasp the inner workings of the tracking process (Figure 6).271

In contrast, by segmenting and tracking with Usiigaci, 54% of cells can272

be automatically tracked when compared to manual tracking. Moreover,273

directedness and migration speed of cells analyzed by Usiigaci are comparable274

to the manual reference and Metamorph. Migration speed can be over- or275

under-estimated in Imaris or Lineage Mapper. Detailed tracking results are276

shown in Table S.4 in the SI document.277

Usiigaci is the only automated cell tracking method that provides both cell278

movement and morphology change information among benchmarked software279

packages. With high segmentation and tracking accuracy, Usiigaci delivers280

quantitative cell migration analysis to biologists as an easy-to-use tool. A tu-281

torial video of Usiigaci’s usage is provided in the supplementary information282

(Video S.1).283

4. Impact and conclusions284

Usiigaci offers a reliable quantitative solution for segmentation, tracking,285

and analysis of cell migration in two-dimensional PCM. No label or special286

treatment of cells is required, so that cells can be analyzed under more nat-287

ural conditions. Entire outlines of cells are automatically segmented and288

tracked in Usiigaci, which enables biologists to analyze both movement and289

morphological changes in cellular dynamics in a quantitative manner that ex-290

isting software cannot provide. The labor-saving workflow also alleviates the291

workload in comparison to the manual cell tracking method that is conven-292
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tionally adopted. The manual verification function enables users to verify the293

tracking data and ensure data validity. The analytical capability of Usiigaci294

can contribute to the international effort to standardize cell migration exper-295

iments [43]. The trainable nature of the Mask R-CNN model allows Usiigaci296

to analyze images acquired in other bright-field microscopic techniques, and297

potentially for 3D cell tracking in the near future. Similar deep learning298

methods for biomedical image analysis are used to accomplish in silico label-299

ing of cellular components instain-free images and 3D segmentation of noisy300

medical images [44–47]. Advances in deep learning methods for biomedical301

image analysis provide unique opportunities to advance biomedical discovery.302
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Nr. Code metadata description Please fill in this column
C1 Current code version v1.0
C2 Permanent link to code/repository

used for this code version
https : //github.com/oist/Usiigaci

C3 Legal Code License MIT License
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Python, TensorFlow, Keras,
Trackpy, NumPy, SciPy, Pandas,
PyQtGraph

C6 Compilation requirements, operat-
ing environments & dependencies

Ubuntu 16.04 Linux, Python3.4+,
CUDA9.1, TensorFlow 1.4, Keras
2.1

C7 If available Link to developer docu-
mentation/manual

None

C8 Support email for questions hsieh-fu.tsai@oist.jp

Table 3: Code metadata
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