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« Abstract

15 Learning algorithms have at their disposal an ever-growing number of metagenomes for biomining and
16 the study of microbial functions. We propose a novel representation of function called nanotext that
17 scales to very large data sets while capturing precise functional relationships.

18 These relationships are learned from a corpus of 32 thousand genome assemblies with 145 million
19 protein domains. We treat the protein domains in a genome like words in a document, assuming that
2 protein domains in a similar context have similar “meaning”. This meaning can be distributed by the
2 Word2Vec embedding algorithm over a vector of numbers. These vectors not only encode function but
» can be used to predict even complex genomic features and phenotypes.

23 We apply nanotext to data from the Tara ocean expedition to predict plausible culture media and
2 growth temperatures for microorganisms from their metagenome assembled genomes (MAGs) alone.

» nanotext is freely released under a BSD licence (https://github.com/phiweger/nanotext).
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s Introduction

2z An organism can be reduced to the functions its genome encodes. However, the definition of function
s and its representation remain elusive?. Protein domains in a genome are basic units of function, like
20 words are basic units of “meaning” in a document. Embeddings of protein domains in a vector space are
s anovel representation that captures even subtle aspects of function. When extended to entire genomes,
a1 functional “topics” of these genomes can be inferred, which reflect their current taxonomy. Domain and
2 genome embeddings have many useful properties especially as input to learning algorithms and offer the
13 possibility for use in large scale metagenomic applications such as biomining and genotype-phenotype

3« mapping.

s In metagenomics, the bottleneck of discovery has shifted from data generation to analysis. Many
s current sequencing efforts are extremely data-intensive, regularly reconstructing thousands of unknown
» genomes in a single study>®. Gene catalogs compiled from metagenomes have millions to billions

910 many without a documented functional role!!. This wealth of data holds tremendous

s of records
» potential, from substantially revising the tree of life!?, the discovery of new enzymes and metabolites for
w0 biotechnological use!® to predictive models that distinguish diseases based on microbial composition'?.
o To adress these questions, learning algorithms such as meural nets are powerful pattern detection
2 tools'®. Learning is most effective when the signal in the data is “stable”, i.e. if given a similar input,
1 the target variable is similar too. Such a stable signal has been found in the functions performed by a
w4 microbial community, rather than in its taxonomic makeup'®!7, although this view is debated!®. To

s “fit” metagenome-derived functions into learning algorithms, two questions need to be answered: (1)

s How is “function” defined? (2) How is it represented?

a7 (1) Protein-mediated function can be defined as a sequence of protein domains. Domains are typically

a8 identified as highly conserved regions in a multiple alignment of similar protein sequences'®2°.
19 Most proteins have two or more domains and the nature of their interactions determines the
50 protein’s function(s)?!. Although chemically, the basic building blocks of proteins are amino
51 acids, protein domains are arguably the basic units of “meaning”. This is supported by their
52 independent evolution?'~2? and by the fact that the structure of domains is often more conserved
53 than their amino acid sequence??:24, especially in viruses?®.

s« (2) Many representations of function exist. Zhu et al. used a network-based approach to assign

55 functional similarity to pairs of genomes on the basis of encoded proteins?%27. Other approaches

28,29

56 use direct counts of protein domains to distinguish organisms Both approaches discard

57 context information, which is very important in bacterial and fungal genomes: Not only are genes
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58 frequently co-located in e.g. biosynthetic gene clusters (BGCs)3? or polysaccharide utilisation loci
59 (PULs)3!, but often they are situated in polycistronic open reading frames (ORFs)32. Multiple
60 adjacent ORFs are frequently regulated in concert by expression as a single mRNA33, adding
61 further context dependence. Count-based representations have another disadvantage; they are
6 high-dimensional and sparse. To encode the count of a protein domain out of the 17 thousand
63 domains in the Pfam database!?, the resulting one-hot-encoded vector would have an equal number
64 of dimensions with all elements zero except one. Such sparse vectors can make learning very
6 inefficient.

e A representation that both preserves the context information and results in dense vectors are word

o embeddings>*3°

. They assign words that occur in similar contexts to similar vectors in vector space.
e¢ The assumption then is that words with similar vectors have similar “meaning”. Indeed, word embed-
s dings have been shown to capture precise syntactic and semanic relationships in text such as synonyms.
70 Word embeddings are trained on a large collection of unlabeled texts (corpus). Training an embedding
7 results in a vector of numbers for each distinct word in the corpus (vocabulary). Different training

36,37 Several extensions have been developed:

2 algorithms exist, the most popular of which is Word2Vec
73 For example, character information can be included in the embedding model®® or it can be extended
2 to entire documents to create “topic” vectors?®4°. Similar words or topics can be identified using the
s cosine similarity of the associated vectors. Because word and document vectors capture similarity,
7 they are effective as input for learning algorithms and facilitate training. Without such a “language

77 model”, a learning algorithm would have to learn about syntax and semantics in parallel to the actual

7 learning task. However, pretrained embeddings already hold this information.

41,42 43,44
b)

7 Embeddings have been trained on biological objects such as genes proteins , chemical
0 structures*® and nucleotide sequences?®~48. Most of these approaches focus on the primary sequence.
a1 However, as discussed above, structure is oftentimes conserved although the underlying sequence is
& not. Furthermore, many sequence variations do not affect function, but act as noise during training,
&z for example in the case of synonymous single nucleotide polymorphisms (SNPs). In this article,
s we asked how an organism’s functions might be representable in vector space in such a way as to
s facilitate downstream learning tasks. To approach this question, we trained a vector representation of
s protein-mediated function on a large, diverse collection of bacterial genomes and their protein domain
s annotations. The result is a pre-trained embedding model called nanotext. We then investigated

ss which functional aspects are captured by the embedding vectors and finally applied the embedding to

s several unsolved learning tasks.
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o Results

o Embeddings of protein domains capture functional relationships

2 To train a protein domain embedding, we aggregated sequences of PFAM domains'? into a corpus of 32
o3 thousand bacterial genomes with 145 million annotated domains. The set of domains in the corpus
w forms the vocabulary and is comprised of about 10 thousand domains. Training resulted in a vector
o representation of size 100 for each unique protein domain and genome in the corpus. We make the
e resulting pre-trained model available as nanotext. Each domain vector is comprised of latent features,

o which describe the associated domain’s functional meaning along multiple dimensions.

e Protein domain embeddings can distinguish functional context with near-perfect accuracy. Generally,
o embedding accuracy can be tested using a variety of tasks®. However, no single task captures all
w0 aspects of the representation, because embeddings capture meaning, and meaning is multifaceted.
1w Specific assessment tasks usually rely on labelled datasets e.g. of synonyms. No such dataset exists for
102 protein domains. We therefore estimate embedding accuracy using the semantic odd man out (SOMO)
03 task®!: For a set of words, we try to identify the one that does not “fit” into the context. For example,
1w “Cereal” would be odd in a set comprising “Zebra”, “Lion” and “Flamingo”. For each ORF in our
105 corpus with more than one domain, we select a random domain from the vocabulary. The mean of the
ws embedding vectors of this set is then calculated. The “odd” domain is the one with the largest cosine
w7 distance to this mean, and in the correct case corresponds to the randomly chosen domain. We achieve
s a 99.27% accuracy on the SOMO task, which is much higher compared to embeddings generated from

e natural language texts®!.

o Many domain vectors cluster according to known functional classes, which we derived from an existing

i1 mapping of protein domains to putative enzyme functions®°.

To visualize clusters, we projected all
12 associated domain vectors into two dimensions using the t-SNE visualization algorithm®2. We found
us  that many domains cluster according to their enzyme function label (Figure 1), while others do not.
us  This might reflect that many domains have several functions and that those functions can overlap.

us  However, the observed clustering is indicative that the domain embeddings are plausible.

us  Domain vectors can be used to explore domains of unknown function (DUF). We illustrate this with
s a case study of DUF1537: Since its introduction to Pfam as a protein family of unknown function, ex-
us periments have identified it as ATP-dependent four-carbon acid sugar kinase with now two associated
s domains — PFO7005 and PF1704253. Zhang et al. used a gene cooccurence network to identify “con-

10 served genome neighborhoods”. Querying our embedding model for functionally similar domains to
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Figure 1: Supplement. Domain vectors cluster according to known functional classes.
Projection of the domain vectors from 100 dimensions into two using t-SNE. Some
clusters correspond to a single functional class (enzyme commission (EC) numbering
scheme), which suggests that the learned domain embeddings capture functional rela-
tions.

11 PF07005 and PF17042 (because DUF1537 has since been removed), we find exactly the same “conserved”
12 domains as Zhang et al. (Table 1). When we query the embedding model with PFO7005 (SBD_N) for
13 its closest vector, we find PF17042 (NBD_C) and vice versa, with a cosine similarity of the associated

124 word vectors of 0.93, respectively.

125 Composing domain vectors creates new meaning. A surprising result of the original work on word vec-
s tors was that they capture linguistic regularities, which can be composed using vector algebra?¢. For
27 example, vector(“king”) - vector(“man”) + vector(“woman”) is close to vector(“queen”)36. These se-
128 mantic regularities are captured by protein domain embeddings, too. For example, the vector for the en-
1o zyme urease (Urease_beta, PF00699) minus its N-terminal domain (Urease_alpha, PF00449) plus the
1 catalytic domain of ribulose bisphosphate carboxylase (large chain, RuBisC0O_large, PF00016) results
m  in a vector whose nearest neighbor is the N-terminal domain of the carboxylase (RuBisCO_large_N,

12 PF02788, cosine similarity 0.93).

113 Functional similarity captures taxonomic properties

13« A genome can be abstracted as a sequence of protein domains, or by analogy as a document containing
1 words. Embeddings of genomes result in a type of topic model*® with an associated topic vector
s composed of latent features. The topic of a document might be how much “sports” or “politics” it
17 contains, while the topic of a genome might reflect how anaerobic an organism is or which metabolic

138 constraints it operates under. Note that a topic is merely a cluster of document vectors in embedding
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10 space. It is not assigned a label, because it is learned from unlabelled data. We furthermore introduce
w the term functional similarity analogous to nucleotide similarity, to describe the distance between any

w1 two genome vectors as measured by their cosine similarity.

12 Genome embeddings can be used to assign genomes to taxa. Unlike protein domain vectors, genome
1z vectors can be inferred for previously unseen, out of vocavulary (OOV) genomes. To illustrate this, we
s used a collection of 957 metagenome assembled genomes (MAGs) based on data from the Tara Ocean
us  Ezpedition®”. These MAGs did not feature in our embedding training set or in reference databases such
s as RefSeq®®. Using unknown MAGs imitates the use case of biomining newly sequenced metagenomes.
17 We would expect genome vectors to cluster according to their taxonomy, because organisms with the
us same taxonomic label frequently share many functions. To visualize this, we projected the genome
us  vectors into two dimensions using t-SNE°2. We identify clearly delineated clusters that can be assigned
50 to distinet phyla (Figure 2, A). The clustering is hierarchical as to taxonomic rank, in the sense that
1 clusters of e.g. phyla are themselves composed of clusters of distinct classes (Figure 3, A). Interestingly,
12 many MAGs could not be assigned a taxonomic rank by Delmont et al. using marker genes’, but have
153 their genome vector cluster clearly with known organisms (Figure 3, B). Genome vectors could be a
15« complement if not replacement for marker gene-based approaches, without the need to select these

155 genes based on prior knowledge®®.

155 Unlike marker-gene based approaches, genome vectors are remarkably stable when MAGs are incom-
157 plete. From the Delmont et al. high-quality, near-complete MAGs, we successively removed an in-
153 creasing percentage of contigs in silico, inferred genome vectors, and then identified their nearest
19 neighbors in vector space. We found that the functional similarity of “truncated” genome vectors to
o their “complete” self decreases only slowly with increasing degrees of incompleteness (Figure 2, B). For
60 an illustrative MAG (TARA_RED_MAG_00040), we find that up to 90% of contigs can be removed until
162 the corresponding genome vector moves notably in embedding space (Figure 2, C). Thus nanotext

163 can assign taxonomy to even highly incomplete genomes.

1« Functional and nucleotide similarity are complementary measures of how different two genomes are.
s For some genomes, both measures correlate (Figure 2, D). However, there are pairs of genomes with
166 low nucleotide similarity but high functional similarity (Figure 2, D). In these cases, both measures
167 offer complementary information. Investigating such a cluster, we found three genomes which in the
168 original study could not be assigned to a taxon below the rank of domain Bacteria. Based on functional
160 similarity however, these genomes were clearly related, while they would not have been grouped by
o their nucleotide similarity alone (Table 2). We could confirm that the three genomes were of the

w1 same order Gemmatimonadales by searching against a large reference collection of MinHash signatures


https://doi.org/10.1101/524280
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/524280; this version posted January 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A W phylum
40- Acidobacteria +  Euryarchaeota
Actinobacteria *  Firmicutes
20- Bacteroidetes * Haptophyta
o~ Candidate Phyla Radiation + Heterokonta
. .
© & * Candidatus Marinimicrobia Ignavibacteriae
O_
N Chloroflexi Planctomycetes
* «  Chlorophyta Proteobacteria
S S - e
-20- s b +  Cryptophyta Spirochaetes
B ¥ + Cyanobacteria Verrucomicrobia
-60 -30 0 30
cl
B 1.0 —** C 0- D
T  o-
E -5 £
3 804
- AN _10- 204-
505 N -10 & 5
£ E
2 -15- c 02-
O-O- _20_ ] ] ] * ]
0 02 04 06 08 -5 0 5 10 15 67 08 09 1.0
incompleteness cl functional sim.

Figure 2: Functional similarity captures taxonomic properties. (A) Visualisation of
genome vectors using t-SNE projection into two dimensions (components). Clear clus-
ters can be observed which correspond largely to the phylum assigned to the MAGs
from which the genome vectors were derived by Delmont et al.”. Note how archael
genomes and algae form separate clusters (left turquoise and bottom right, respectively)
although the embeddings were only trained on bacterial genomes. (B) Detail from
(A): The MAG TARA_RED_MAG_00040 was truncated by removing an increasingly large,
random subset of its contigs. Then, for each truncated genome, the genome vector was
inferred and the closest MAG from Delmont et al. marked (black points in (A) and (B)).
Remarkably, the truncation has little effect on the placement of the genome vector. Up
to 90% of contigs can be removed while the associated genome vector remains in the
same region in vector space. (C) Effect of MAG truncation on functional similarity:
For a random subset of 100 MAGs from Delmont et al. we removed an increasing
percentage of contigs, calculating the cosine similarity between the truncated genome
and the original one. It decreases very slowly as genomes are increasingly truncated.
This makes cosine similarity an attractive measure of genome similarity in metagenomic
contexts where assembled genomes are more often incomplete than not. (D) Pairwise
comparison of MAGs from Delmont et al. between nucleotide (Jaccard) similarity and
functional (cosine) similarity. There are several genomes which are very different in
terms of average nucleotide identity as approximated from their k-mer composition
using MinHash®®. However, some pairs nevertheless exibit high functional similarity
(black) which suggests similar taxa. Notably, there are no genomes of high nucleotide
but low cosine similarity (upper left triangle), which would be implausible.
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Figure 3: Supplement. Genome vectors cluster hierarchically by taxonomic rank. (A)
The genome vectors of phylum Proteobacteria (pink in Figure 2, A) are labelled accord-
ing to taxonomic class, and a subset of those vectors (pink) was then labelled by order
(according to Delmont et al.). (B) As was the case for phyla, clusters represent distinct
taxonomic entities. At the level of order, many MAGs could not be labelled in the orig-
inal study, possibly because certain marker genes were missing (grey). However, their
proximity to genomes with known taxonomy is clearly informative. Note for example
the grey points around the order Alteromonadales 3 (yellowish green), which could be
plausibly grouped with it.

172 (Table 3)56 .


https://doi.org/10.1101/524280
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/524280; this version posted January 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 Internati

onal license.

Table 1: Supplement. Domains found in the neighborhood of the DUF1537 protein family,
later to be discovered to confer kinase function (PFO7005, PF17042). All contextual
domains identified by a previous study®® can be retrieved from the domain embedding
by their high cosine similarity to the query vector.

domains cosine similarity description

NBD_C 0.93 members of the DUF1537
family

Aldolase_II 0.63 class IT aldolase

DctQ, DeoRC 0.53, 0.57 substrate binding proteins of
TRAP transporters

KdgT, GntP_permease 0.60, 0.61 permease components of the
TRAP transporters

RuBisCO_large 0.56 ribulose 1,5-bisphosphate
carboxylase/ oxygenase

PdxA 0.56 4-hydroxy-l-threonine

4-phosphate dehydrogenase

Table 2: Supplement. Pairwise comparison of three MAGs which show low pairwise
nucleotide (Jaccard) similarity but high functional (cosine) similarity (see also Figure
2, D). Note how functional similarity is higher than simple protein domain overlap,
because it considers the context of individual domains as well.

MAG pair

nucleotide sim.

functional sim.

domain overlap

m05, m40
m05, m42
m40, m42

0.10 0.95
0.08 0.93
0.48 0.93

0
0
0

.83
.70
.71

Table 3: Supplement. Case study MAGs and their closest assembled genomes in NCBI

by nucleotide similarity.

MAG closest assembly nucleotide sim. order

TARA_ANE_MAG_00005 TUBA2589 0.862 Gemmatimonadales
TARA_RED_MAG_00040 UBA2960 0.744 Gemmatimonadales
TARA_TON_MAG_00042 UBA2960 0.518 Gemmatimonadales

10
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3 Genome vectors as inputs for machine learning tasks

e Many machine learning algorithms require vectors of numbers as their input. Genome vectors in
s nanotext can be used as direct input to these algorithms without preprocessing or feature engineering.
e Furthermore, sets of genome vectors can be composed to form new, meaningful topic vectors. A genus
w7 or an environment can be described from its constituent genomes, e.g. by simply summing over them.
s To illustrate this potential, we chose a complex learning tasks which has two components: Given a
o genome assembly, we want to (1) recommend culture media in which the associated organism is likely to
o grow, and (2) estimate the growth temperature required for culture from the community composition of
1,1 the environmental sample. More specifically, task (1) is a genotype-phenotype mapping (classification)
1w and we use a fully connected neural net to approach it. Task (2) is a regression for which we use

183 gradient boosting trees.
18a  Culture medium prediction

15 Metagenomics is oftentimes the first window into a microbial environment. However, to study the
15 physiology of individual community members, cultivating a microorganism of interest is very important.
17 While most bacteria are still not culturable, there are recent high-throughput culturing efforts, which
e are able to culture a surprisingly high number of bacteria®. It is likely that many bacteria identified in
189 metagenomics are culturable, but it is difficult (without a deep niche-specific knowledgeS?) to choose

61,62 Furthermore, many of these media are similar, in that

wo among the thousands of medium recipes
1 they are based upon another or share a significant number of ingredients. It is likely that many similar
12 media can be used to culture a single organism. The notion of “similar media” can be approached using
103 embeddings of medium ingredients®3. For each of the more than one thousand media in the catalogue
e of the German collection of microorganisms and cell cultures (DSMZ), we trained a 10-dimensional
15 embedding vector. To predict medium vectors from genome vectors, we then had to link two databases,
s namely the genome assemblies and annotations from the Genome Taxonomy Database (GTDB)!? and

157 matching phenotype records from BacDive5?.

118 Genome vectors can be used to accurately predict appropriate culture media for a given microorganism
wo based on its genome (Figure 4, A). This is perhabs unsurprising, because genome vectors represent a
20 genome’s functions which act as a constraint on growth conditions. We used a fully-connected neural
20 net to predict likely media from the catalogue of the DSMZ. Because the result is a medium vector,
22 we can search for similar media using cosine similarity. This provides a good starting point for culture
203 experiments. A common-sense baseline is to always predict the most common label of the data set

20 (medium no. 514), which would result in an accuracy of 0.17, i.e. medium no. 514 represents 17% of

11
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Figure 4: Prediction tasks. (A) Prediction of culture media from genomes. Classifica-
tion task for genotype-phenotype mapping, namely predicting the culture medium for
the associated microorganism of a given MAG. Shown is a stacked histogram of the
culture media in the BacDive database (x-axis) and their count (y-axis). White bars
indicate correct predictions, i.e. the target medium is in the top-10 list of closest media
compared to the predicted vector. Grey bar fractions indicate false predictions. Only
the 20 most common media in the database are displayed on the x-axis. (B) Predicted
top media for Tara MAGs. The most common media (excluding their variants) in the
prediction set are no. 514 (“Bacto Marine Broth”), no. 1120 (“PYSE Medium”) —
e.g. used to study Colwellia maris isolated from seawater5”, no. 830 (“R2A Medium”)
— developed to study bacteria which inhabit potable water®®, no. 1066 (“Marinobac-
ter Lutaoensis Medium”), no. 878 (“Thermus 162 Medium”), no. 269 (“Acidiphilium
Medium”) and no. 607 (“M13 Verrucomicrobium Medium”) — which includes artificial
seawater as an ingredient. All these media are representatives of a “marine topic” and
plausible starting media for the organisms associated with the MAGs. (C) Inferring
the water temperature of the environment for a given set of genomes (regression task).
The ten most abundant MAGs from each Tara sampling location (n=93) were used to
infer and sum across genome vectors. The resulting aggregate vector was used as input
to a Gradient Boosting Tree classifier. Water temperature is predicted with an R? of
0.66. The dataset is very biased towards moderate temperatures, which likely reduces
the predictive accuracy.

12
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205 the media data. A prediction is classified correctly, if the target medium is in the first (1, 10) closest
206  media by cosine similarity, analogous to a common evaluation scheme in multi-class image labelling
27 tasks'®. On the test set, our model obtains a top-1-accuracy of 63.5% and a top-10-accuracy of 82.5%
28 (Figure 4, A). On the Tara MAGs for which Delmont et al. could assign a genus, we obtained a
20 top-l-accuracy of 50% and a top-10-accuracy of 73.2% (Figure 4, B). The lower accuracy on the Tara

a0 data is likely due to genomes without a close representative in the training data.

an To further assess how well the model generalizes to unseen genome-media pairs, we investigated two
22 cyanobacterial Tara MAGs, which had their genus annotated by Delmont et al., but for which no
23 representative is recorded in BacDive: TARA_ION_MAG_00012 is an MAG that corresponds to the genus
a1 Prochlorococcus. For this organism, there exist established culture media such as “Artificial based
25 AMP1 Medium”%4. We were interested in whether our model could predict a similar medium, which
26 could then serve as a starting point for experimentation, were the media in current use unknown. We
a7 labelled the AMP1 ingredients according to the protocol established by the KOMODO media database®!
28 and then inferred the target medium vector by summing over the ingredient vectors. Surprisingly,
20 one of the top 10 media predicted for the Prochlorococcus MAG — no. 737, “Defined Propionate
20 Minima Medium” (DPM) — has a cosine similarity of 0.979 to the target AMP1 medium. Half of the
o1 AMP1 medium ingredients can be found in DPM medium, including vital trace elements. Several
2 mnon-overlapping ingredients are part of buffers, and can likely be replaced by similar but distinct
23 ingredients. Because our medium embedding can represent such “synonyms”, the AMP1 and DPM
224 media are in fact more similar than they appear from shared ingredients alone. A similar generalization
25 of the medium prediction model can be observed for Tara MAG TARA_ASW_MAG_00003 of the genus
26 Cyanothece, which has received considerable attention due to its biotechnological potential®®. We again
27 encode a common culture medium for this genus — “ASP 2 Medium”%¢ — as a medium vector. The
28 predicted medium based on the Cyanothece genome is no. 630, “Modified Thermus 162 Medium”, with

20 a cosine similarity of 0.98 and again a considerable overlap of ingredients.
20 Water temperature prediction

an Genome vectors can be aggregated into new vectors which represent “topic summaries”. Aggregate
22 genome vectors of microbial communities can predict environmental properties. We use the most
213 abundant 10 MAGs in each of the 93 Tara sampling locations to predict the water temperature at
2 each respective sampling site, which is known from the Tara expedition’s metadata®”. Besides the fact
255 that the sample size is relatively small and the distribution skewed towards moderate temperatures,

xe  we predict the correct water temperature with an R? of 0.66 (Figure 4, C).

13


https://doi.org/10.1101/524280
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/524280; this version posted January 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

»  Discussion

238 In this paper, we showed that protein domain and genome embeddings capture many functional aspects
239 of the underlying organism. The main assumption of our approach is that the function of a genome can
a0 be abstracted as a sequence of protein domains. Much like words determine the topic of a document,

2n protein domains act as atomic units of “meaning” that describe the functions of a genome.

22 This view of function is very reductive, and much more comprehensive definitions exist!. For example,
23 we do not consider functional RNAs®” or functions that emerge from an interplay of different members

s of an ecosystem®®69,

However, our results suggest that this reduced definition of function captures
25 many aspects that are already useful, e.g. for assigning taxa or genotype-phenotype mappings. This
us  success might also be related to our focus on bacteria, where many functions are protein-mediated and
27 the functional mechanisms are much simpler than in eukaryotes. We also completely omit archaea and

a8 viruses in this study. However, the embedding model we provide with nanotext can be easily extended

29 by including said functional groups in the training corpus.

20 To expand the corpus with more (non-bacterial) genomes, a major bottleneck is the annotation step.
s Currently most approaches are based on Hidden Markov Models (HMMs)™71, which scale poorly
2 to hundreds or even thousands of genomes. Recently, faster homology-based approaches have been
23 proposed™. It would be interesting to replace protein domain HMMs with homology-based protein
4 clusters, generated from large collections of metagenomic data such as the Soil Reference Catalog
x5 (SRC), a catalog assembled from 640 soil metagenomes with two billion protein sequences!?. With
»6  such a large number of sequences, one would need to carefully calibrate the vocabulary size, i.e. the
»s7 number of protein clusters for the embedding. The nanotext embedding was trained with a corpus-
28 to-vocabulary ratio of 10* : 1. To put this into perspective, current corpora in Natural Language
s Processing (NLP) have a ratio above 10° : 1 and well above 100 billion tokens for a vocabulary of
20 about one million words (the English language). Since even billion-scale vector collections can be
s similarity searched efficiently, scaling to more genomes in the nanotext model is not problematic™.
%2 One further advantage of a vocabulary compiled from protein clusters would be the inclusion of many
%3 unknown proteins in the embedding, which — albeit being unknown — could still be used in predictive
xa  tasks. Corpora based on metagenomes would further reduce the bacterio-centric bias inherent in our

x5 approach, by for example including viral proteins.

26 For training the embedding models, we used the Word2Vec algorithm3® and its extension to
27 documents®. Word2Vec is a special case of exponential family embeddings3®, and other embedding

s methods could be better suited. For the culture medium embeddings for example, a market basket
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%0 embedding might be more appropriate. Domain vectors could be further enriched by “subword

738,75,76 i e. by including nucleotide sequences in the model for inference of out-of-

oo information
on vocabulary words. Embeddings could even be linked across modalities””. Note that Word2Vec only
a2 learns context in a narrow window — of in our case size 10 — and thus cannot learn long-range
a3 interactions. However, this is not necessarily a limitation: The embeddings can be used as input for
o routines that explicitly focus on such long-range interactions. Besides these potential improvements,

a5 our embedding model already captures a surprising number of precise and subtle functional properties

a6 because it is context-aware, which other metrics like percentage domain overlap are not.

a7 We showed, that genome embeddings capture functional and by extension taxonomic properties of
s the underlying genomes. It would be interesting to extend this work by creating a purely “functional
a9 taxonomy”, i.e. one based only on genome vectors. Such an approach would assign taxa based on
20 whether certain genes were present or not, also known as gene exclusivity’®. By extension, it should
21 be possible to explore pangenomes using genome vectors. For example, we expect genera with an
2 open pangenome such as Klebsiella to present more genome vector variance than genera with closed

s pangenomes such as Chlamydia™.

2 Functional similarity-based pangenome studies could further be complemented with nucleotide simi-
s larity search. This combination offers orthogonal viewpoints on the relatedness of organisms, with

2  potentially higher resolution than currently possible.

27 We also illustrated how downstream machine learning tasks benefit from embeddings as input. Not
s only are embedding vectors convenient mathematical objects. Multiple embedding vectors can be com-
20 bined to represent e.g. individual genera or bacterial communities, which can then be used to create
200 genotype-phenotype mappings. We illustrated this by predicting likely culture media for assembled
21 genomes. Surprisingly, the notion of embedding similarity allows our predictive model to generalize
22 to genomes and media that were neither part of the training nor test data. Because only very lim-
203 ited data exists where genome assemblies are directly linked to culture media, we had to create a
24 genus-based mapping between the AnnoTree genome collection?? and the BacDive database?. This
25 compromise likely reduces the predictive power of the learned model. However, as several strain collec-
206 tions started to whole-genome sequence their inventory — such as the DSMZ and the Japan Collection
207 of Microorganisms (JCM, http://jem.bre.riken.jp/en/genomelist_e) — we can expect a much more

28 accurate genotype-phenotype mapping when methods such as nanotext are applied.

20 More generally, learning algorithms can become much more efficient when using embeddings as input,
w0 because the algorithms can focus on the actual learning task and need not learn the “semantics” of the

sn  problem in parallel. If for example we used raw nucleotide sequences as input to a learning algorithm,
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s2 it would have to learn concepts such as synonymous SNPs, which embeddings have already encoded.
33 Thus, embeddings reduce the amount of training data required and given a dataset of the same size
sa  will oftentimes result in faster, better learning. If needed, pretrained embeddings can be additionally
w5 trained on a downstream domain-specific learning task, e.g. as an embedding layer in a neural net. The
w6 machine learning models we used are very basic, and could in the future be replaced by more powerful

w7 models such as Siamese neural nets®® and/ or optimized using e.g. alternative loss functions®!.

w8 In conclusion, we showed that protein domain and genome embeddings capture significant aspects of
0  a genome’s functions, both on the level of domains as well as genomes, enabling a “taxonomy-free
s taxonomy”. They are well suited for subsequent machine learning tasks and solve the “curse of high
sn  dimensionality” of previous approaches based on sparse encodings. As representations of function,
sz they have several useful properties, in that they are composable, well-formatted and insensitive in
a3 light of incompleteness of the underlying assembly. Especially metagenomic areas such as taxonomic

s classification, biomining and phenotype prediction can benefit from nanotext.
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a5 Methods

;5 Annotation of Tara genomes

27 We annotated protein domains for a collection of 957 MAGs” using HMMER (hmmscan --cut_ga,
25 v3.2.1)70 against the Pfam database (v32)!?. We then removed domains with an E-value above 10~1®
se  and with a coverage below 35%. A Snakemake®? workflow implementation can be found in the project

320 repository.

21 Estimation of nucleotide distance using MinHash

22 To estimate average nucleotide identity between pairs of genomes we used the MinHash algorithm?®%33 as

»3  implemented in sourmash (https://github.com/dib-lab/sourmash)®*. To generate MinHash signatures

24 from genomes, we chose a sketch size of 500 and a k-mer size of 31.

»s Training of functional embeddings

126 We combined two large collections of bacterial genome annotations into one corpus. First we included
27 the complete AnnoTree collection?” based on the Genome Tazonomy Database (GTDB) (n = 23936,
»s  release 83)'2. Second, from the EnsemblBacteria database we randomly sampled five genomes for each
29 species (n = 8667, release 41)%°. The sampling balances the dataset; otherwise medically important
s bacteria would dominate the resulting corpus (https://osf.io/pjf7m/). Each line in the corpus is the
sn sequence of PFAM protein domains on a contig. Strand information is not preserved. We did not
sz perform any additional filtering of the protein domains. We trained embeddings on a corpus of 31730

;3 genomes with a total of about 145 million domains.

1 We obtained word vectors using the Word2Vec?3® algorithm for all words in our corpus’ vocabulary of
55 10879 domains, which is about 60% of the total number of domains in the Pfam database (v32)!°. Note
16 that not all domains in Pfam are bacterial, and we further excluded protein domains that did not occur
w7 in the corpus at least three times. We trained a document topic model using the Doc2Vec algorithm3?
1s  with a window size of 10 and a linearly decreasing learning rate (0.025 to 0.0001) over 10 epochs using
no  the distributed bag of words (PV-DBOW) training option as implemented in Gensim®. The result was
s a 100-dimensional vector. The similarity of any two genome vectors in the collection can be evaluated
s using cosine similarity, with a range from -1 (no similarity) to 1 (identical). To infer genome vectors

s for new genomes, we concatenated the protein domain sequences of all contigs and then used 200
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sz iterations for inference. This resulted in stable vector estimates with a pairwise cosine distance < 0.01.
s For the SOMO evaluation task (see results) we withheld 873 randomly selected genomes (3%) from

us  training, to validate the embedding model.

us Training of media embeddings

s To quantify how similar any pair of culture media was, we created a media embedding. Such a
us  representation has an advantage over using the name or ID of a medium in learning tasks, because
s many media are very similar, such as when an organism-specific medium is an extension of a base
0 medium. Using an ID, we would create a high-dimensional, one-hot-encoded vector to represent the
s medium. This vector would be very sparse, with 1 in the index position of a given medium and 0
2 everywhere else. The current media collection of the DSMZ lists over 1500 media, so any learning

33 algorithm would have problems with the number of dimensions.

s To reduce the number of media, we treat a medium recipe as a sequence of ingredients and used
15 Word2Vec?® to create a latent representation in the form of a 10-dimensional vector, similar in idea
s to embedding cooking recipes (https://bit.ly/2kesqgbC) or diets®3. The DSMZ media are not easily
7 parsable and contain many non-unique ingredient tags such as “beef extract” and the synonymous
s “meat extract”. Therefore we used preprocessed data from the KOMODO database of known media®!. To
30 download all 3637 recipes, we used a custom crawling script (scrape_komodo.py). Note that some
w0 current additions to the DSMZ media list do not figure in the KOMODO database. From each recipe we ex-
s tracted a list of ingredients®!. We excluded water (SEED-cpd00001###) and agar (SEED-cpd13334#i##)
2 because these ingredients are highly redundant and would act as noise during training. We embedded
3 the ingredients using Word2Vec with a window size of 5 and a learning rate as described above over
34 100 epochs using negative sampling of 15 words per window. To make sure that pairs of media ingredi-
s ents could occur in the same window, we augmented the data set by shuffling each ingredient list 100
s times®’. The result is a 10-dimensional vector for each media ingredient. To create culture medium

7 embeddings, we summed across the embedding vectors for all ingredients in a medium.

s The similarity of any two DSMZ media could then be compared using cosine similarity. For example,
30 the closest media to medium no. 1 are medium no. 306 (0.99) and no. 617 (0.99), one adding yeast
s extract and the other NaCl to medium no. 1; an ID-based representation would treat these media as
sn  distict, although they are near identical. Indeed, medium no. 617 and 953 have identical ingredients,

s2 - which is reflected by a cosine similarity of 1.

sz Embeddings are useful as input to learning algorithms only if they position similar entities in similar
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s vector space, i.e. if similar entities cluster. We therefore visualized the media vector space using t-SNE
w5 (Figure 5). Indeed, similar media cluster and thus enable learning algorithms to discriminate media
se  classes. For downstream machine learning tasks, the vector representation has two major advantages:
srn It reduces the dimentionality of the media representation by 2 orders of magnitude, from one-hot-
ss  encoding of more than one thousand media to a 10-dimensional vector. Another advantage is that
s any predicted medium (see results) can suggest n similar media as starting point, instead of just one.
ss0  While this might seem inexact, we think it offers much more information about culturing previously

1 uncultured organisms, as a wider range of media can be explored and mixed.
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Figure 5: Supplement. Culture medium embedding. We used t-SNE to project the
associated 10-dimensional embedding vector into the plane (grey points). We colored
all media with more than 0.95 cosine similarity to the top 16 most common DSMZ
media in the BacDive database. We observe clear clusters of similar media. These
clusters can be used by learning algorithms to discriminate media classes. Also note
how near-identical media such as no. 830 and no. 830c are embedded in near identical
vector space, which acts as a negative control to validate the embedding model.
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2 Linking AnnoTree genome assemblies to BacDive culture media

33 To predict a medium (vector) from a genome (vector) we needed to create a training set that matches
s the two. The BacDive database from the DSMZ holds taxonomic and phenotypic information includ-

62, However, these strains do not directly

s ing culture media for currently over 60 thousand strains
s correspond to genomes in the AnnoTree collection'?2?. To link these two, we had to pair records using

7 taxonomy at the rank of genera.

s Machine learning

0 Culture medium prediction

s For the medium prediction task, we used a multi-layer fully connected neural network. We selected the
s training data as follows: For each genus used to link the two databases, we first sampled records from
s BacDive at the genus level. Because this data is highly skewed towards medically relevant genera such
s as Mycobacterium, we randomly selected a maximum of 100 records per genus to balance the training
s data. As target y, we used the embedding vector of the the most common culture medium in BacDive
s at the genus level. For the same genus we then randomly sampled a genome vector from nanotext,
s which we used as input X. We had to use the most common medium and not sample from these media
s7  as we did for the genome input, because many BacDive records hold a list of possible culture media
s with very different recipes and by extension very distant media embeddings. For example, there are
s two media records for the genus Rubrimonas, no. 13 and 514, with a cosine similarity of 0.48 — given

w0 that our data set is small, the learning algorithm was not able to learn this complex mapping.

a1 We repeated this process 10 times to augment our dataset. Data augmentation is a common practice
a2 when training neural nets. It enables the training of more complex models, which then generalize
w3 better. Using data augmentation, we can circumvent the need to collect more data by varying the
w4 input slightly. For images this typically means flipping images horizontally or generating new training
w5 images by selecting only a subset of pixels. In seminal work on the ImageNet challenge for example, the
ws original data was augmented 2048 times'®. We used a total of 73916 genom-media pairs for training,
w7 optimized hyperparameters on a validation set of 3891 (5%) and tested the final model on a holdout set
ws  Of size 8646 (10%). The neural net architecture consisted of three fully connected layers with (512, 128,
wo  64) nodes. Before applying the non-linear transformation (rectified linear units, ReLU), we normalized
a0 the batches of size 128. After each layer we applied Dropout (0.5, 0.3, 0.1). The output layer had 10
a1 nodes to represent a culture medium vector with 10 latent elements, which were activated with a linear

a2 transformation. We optimized a cosine similarity loss of the output medium vector with the target
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sz medium vector using the Adam optimizer with a learning rate of 1072 over the course of 10 epochs.
ss  Because we used a cosine similarity loss, we did not rescale (X, y) before training. We implemented

as  the model using the deep learning library Keras (https://keras.io).
as  Water medium prediction

a7 For the water temperature prediction task we used a Gradient Boosting Trees (GBT) regressor®®. For
as  each of the 93 sampling sites in the Tara dataset, we averaged the genome vectors of the 10 most
a0 abundant MAGs, where abundance was estimated using the relative number of reads that belonged
20 to any MAG at the given sampling site”. Our target variable was the recorded temperature for this
2 site (see supplementary information in Delmont et al.). We used grid search to optimize the GBT
w22 parameters (learning rate: 0.05, maximum depth: 4, maximum percentage of features used duing
w23 iterations: 30%, minimum number of samples per leaf: 3). The final model is an ensemble of 3000
a2 trees. Because the number of samples was small compared to the input dimensions, we used leave-one-
w5 out cross-validation (LOOCV) to make predictions. The model was implemented using the machine

w26 learning library Sklearn®’.

27 Code availability

w28 All relevant resources to reproduce the major results in this article have been deposited in a dedicated
w29 nanotext repository (https://github.com/phiweger/nanotext). This includes source code, protein do-
s main and genome embeddings as well as preprocessing workflows. The corpus we trained nanotext

w1 on is also made available (https://osf.io/pjf7m/).
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