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Abstract 
The role of aggregation of misfolded Tau protein in the pathogenesis of Alzheimer’s disease is the subject 
of rapid biomarker development and new therapeutic strategies to slow or prevent dementia.  We tested 
the hypothesis that Tau pathology is associated with functional organization of widespread 
neurophysiological networks. We used electro-magnetoencephalography (E/MEG) in combination with 
[18F]AV1451 PET scanning to quantify Tau-dependent network disruption. Using a graph theoretical 
approach to MEG connectivity, we quantified nodal measures of functional segregation, centrality and 
efficiency of information transfer. We correlated these metrics against the nodes’ uptake of [18F]AV1451. 
There were both regional- and frequency-specific effects of Tau levels on the efficiency of information 
transfer and network segregation in early AD. Tau correlated with temporal regional participation 
coefficient (in delta, theta, beta bands); and temporal lobar eigenvector centrality (in theta, alpha, beta 
bands), but greater eccentricity at higher frequencies (gamma). The results support the translational 
development of neurophysiological “signatures” as biomarkers of Alzheimer’s disease, with potential to 
facilitate experimental medicines studies. 
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1. Introduction 
There is a pressing need for new therapeutic strategies to prevent or arrest Alzheimer’s disease, especially 
where applicable at the prodromal stage of disease. The evaluation of new candidate compounds requires 
robust tools that are sensitive to the pathogenic mechanisms in early stages of disease. Commonly used 
tools to quantify the effects of Alzheimer’s disease pathology in people vary in the degree of invasiveness 
(e.g. magnetic resonance imaging versus lumbar puncture), cost and scalability for large trials (e.g. blood 
tests versus positron emission tomography), and the degree to which they provide mechanistic insight into 
the pathogenesis of Alzheimer’s disease (e.g. cognitive tests versus tau-ligand PET).   
 
In this study, we assess a neurophysiological perspective that links recent advances in preclinical and 
translational models of Alzheimer’s disease. There are two key aspects to our approach. First, is the 
recognition of the effect of Tau and Aβ on synaptic dysfunction (Ittner et al., 2010; Murray et al., 2015), 
early in the cascade of Alzheimer pathogenesis and without atrophy or cell death. This in turn impairs the 
network dynamics, which underpin cognition (Ahmed et al., 2014; Kimura et al., 2014). Tau and Aβ 
induced changes in GABAergic function (Li, G. et al., 2009), and glutamatergic function (Hsieh et al., 2006; 
LaFerla and Oddo, 2005; Li, S. et al., 2009; Liu et al., 2004; Shankar et al., 2007) will further disrupt 
effective communication in local and large scale neurocognitive networks. 
 
Second, is the recognition of neurophysiological signatures of Alzheimer’s disease. For example, 
magnetoencephalograhy (MEG) distinguishes Alzheimer’s disease pathology from frontotemporal lobar 
degeneration by their spectral signatures, while retaining functional anatomical concordance with the 
clinical syndromes  (Sami et al., 2018). The brain’s evoked and induced responses as recorded by MEG and 
electroencephalograhy (EEG) distinguish Alzheimer’s disease from controls, in advanced disease (Dauwels 
et al., 2010; Sitnikova et al., 2018), mild cognitive impairment stage , and even pre-symptomatically in 
carriers of autosomal dominant mutations (Ochoa et al., 2017; Suarez-Revelo et al., 2016). The spectral 
features of non-invasive clinical studies recapitulate invasive and ex-vivo recordings of transgenic model 
systems (Koss et al., 2016; Kurudenkandy et al., 2014; Sami et al., 2018). Thus, MEG and EEG offer one way 
to capture synaptic dysfunction before extensive brain atrophy. However, the relationship between these 
physiological indices and the characteristic Tau pathology of human Alzheimer’s disease is unknown. 
 
In the current study, we exploit the spatiotemporal precision of MEG to study network connectivity and 
oscillatory patterns, across different frequency bands. We use a graph theoretical approach, to extract 
regional and frequency specific summary measures of complex network function (Bullmore and Sporns, 
2009). These graph metrics reflect the efficiency of information transfer and the extent to which a given 
region contributes to information processing at the modular or global level. For example, Alzheimer’s 
disease decreases the clustering coefficient and path length (i.e. measures of network efficiency at the 
local and global level) of network interactions in the alpha and beta bands (de Haan et al., 2009; Stam et 
al., 2009), while the reduction of small worldness (Vecchio et al., 2016) and eigenvector centrality of 
temporal areas (de Haan et al., 2012b) suggest an imbalance between local functional specialization and 
global integration.  
 
We tested the relationship between such neurophysiological network changes and the progression of Tau 
pathology. Previous studies using fMRI based network connectivity measures (rather than MEG/EEG) have 
shown that the degree of connectivity of each cortical region correlates with expression of the MAPT gene 
for Tau  (Rittman et al., 2016) and the accumulation of Tau as measured by [18F]AV1451 PET (Cope et al., 
2018). This ligand binds to Tau aggregates in Alzheimer’s disease, in proportion to disease severity (Brier et 
al., 2016; Passamonti et al., 2017), and mirrors the distribution of pathology and functional deficits in 
variant presentations of Alzheimer’s disease (Ossenkoppele et al., 2016). We therefore used [18F]AV1451 
PET to test the relationship between Tau pathology burden and MEG connectivity.   
 
Our primary goal was to quantify the correlation of Tau burden with physiological network properties in 
early Alzheimer’s disease.  A secondary goal was to measure the effect of Tau burden on the rate of 
change in these network properties, over six months.  We hypothesized that in Alzheimer’s disease, (i) 
efficiency of information transfer at the local and global level is disrupted; (ii) the influence of central 
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nodes on the network weaken; (iii) segregation of functional modules is reduced; (iv) and that these 
changes in graph metrics correlate with local increases in Tau burden across the cortex.  

2. Materials and Methods 

2.1 Study design 
The Deep and Frequent Phenotyping study is a collaboration between the Dementias Platform UK and the 
NIHR Translational Research Collaboration in Dementia. It aims to assess the acceptability and feasibility of 
extensive and frequent phenotyping, to aid the design of larger scale future biomarker studies (Koychev et 
al., 2017). Here we report data from the pilot study phase, which included patients with early symptomatic 
Alzheimer’s disease.  The study was approved by the National Research Ethics Committee London (REC 
reference 14/LO/1467). All participants had mental capacity and provided written informed consent. 
 

2.2. Participants 
12 participants with probable Alzheimer’s disease (McKhann et al., 1984) were recruited from local 
memory clinics (mean age: 69.94, age range: 54-82.7, 9 males, 3 females). Participants had a mean MMSE 
score of 24/30 (SD = 2.27), mean CDR score of 0.6/3 (SD = 0.31), and mean ADAS-Cog score of 13.9/70 (SD 
= 5.43) Participants had stable medication dose for at least a month, and for cholinesterase inhibitors 
and/or Memantine stable medication dose for at least three months.  
 

2.3. MEG acquisition 
MEG scans were acquired at rest (eyes open) over five minutes at four sites at baseline (Functional 
Imaging Laboratory at University College London, Oxford Centre for Human Brain Activity in University of 
Oxford, York Neuroimaging Centre at University of York, and MRC Cognition and Brain Sciences Unit at the 
University of Cambridge) using three types MEG scanners (CTF/VSM Omega 275, Elekta Vector View 306 
and 4D Magnes 3600). Nine participants had a repeat E/MEG scan 6 months later. 
 
Participants were seated in a magnetically shielded room and positioned under the MEG scanner in the 
upright position. EOG and ECG electrodes were used where available, plus head position indicator coils. 
For coregistration of the participant’s T1-weighted MRI scan to the MEG sensors, three fiducial points 
(nasion, left and right pre-auricular) and head surface points were digitized using Polhemus digitization. 
Simultaneous E/MEG was recorded continuously at 1000 Hz.  
 

2.4. PET and MR  
All PET scans were acquired at Imanova. MR scans were acquired at the Cambridge, Oxford and London 
sites, using Siemens 3T Trio with a 32-channel phased array head coil.  1 mm isotropic whole-brain 
structural 3D T1-weighted MPRAGE images were acquired using TI = 880 ms, TR = 2000 ms, and FA = 8˚ 
with a parallel imaging factor of 2. Two dynamic PET scans for Aβ and Tau were acquired on separate days. 
Participants were injected an intravenous bolus of [18F]AV1451 (120 min, 163 ± 10 MBq) and [18F]AV45 
tracers (60 min, 150 ± 24 MBq) for Tau and Aβ respectively. A low dose CT scan immediately before each 
PET scan was used to estimate attenuation. The scans were acquired on Siemens PET/CT scanners (either 
Hi-Rez Biograph 6 or Biograph 6 TruePoint with TrueV, Siemens Healthcare, Erlangen, Germany). Dynamic 
images were reconstructed using a 2D Filtered Back Projection (FBP) algorithm resulting in a 128 x 128 
matrix with 2 mm isotropic voxels. Corrections were applied for attenuation, randoms, scatter, and tracer 
radioactive decay.  
 
Summary steps of the PET and MR preprocessing are given in Fig 1A (Firouzian et al., 2018). PET and MRI 
imaging processing was performed using MIAKATTM (www.miakat.org). Each participant’s whole brain was 
extracted using the FMRIB software library (FSL) (Jenkinson et al., 2012), brain extraction tool (Smith, 
2002) and the corresponding grey matter probability maps were created using SPM5 
(www.fil.ion.ucl.ac.uk/spm).  Further, dynamic PET data were corrected for motion. Regional time activity 
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curves (TACs) were generated using the atlas and dynamic PET images. The simplified reference tissue 
model (SRTM) with cerebellar grey matter as a reference region were applied to the regional TACs to 
estimate the non-displaceable binding potential (BPND) used to quantify the amount of tracer binding to 
the target proteins. The resulting BPND maps were coregistered to participant’s T1-weighted MRI scan. To 
correct for the partial volume effects, the Müller-Gärtner method was applied voxel-wise, which employs a 
3-compartment model of the brain (i.e. white matter, grey matter and CSF tissue maps), as implemented 
in the PETPVE12 toolbox (Gonzalez-Escamilla et al., 2017). MR images and corrected PET images were 
normalized and resliced to match the atlas dimensions and resolution (1 mm isotropic). Current analysis 
focused on cortical Tau burden only. 
 

Fig 1. Details of the analysis 

A. Pipeline showing the steps of 
E/MEG and PET/MR processing 
leading up to the graph theoretical 
analysis. B. Alzheimer’s disease 
related ROIs used in the regional 
analysis, subcortical areas not 
shown. Key: SRTM, simplified 
reference tissue model; PVC, partial 
volume correction.  

 
 
 
 
 
 
 
 
 
 
 

2.5. E/MEG preprocessing and source localization 
The raw MEG data acquired through Elekta scanners were pre-processed using MaxFilter 2.2 (Elekta Oy). 
Maxfiltering included detection and interpolation of bad sensors, signal space separation to remove 
external noise from the data and head movement correction. MEG data acquired through the CTF system 
were analyzed as third order synthetic gradiometers. Cardiac and blink artefacts were removed using an 
independent component analysis with 800 maximum steps and 64 principal components via the EEGLAB 
toolbox (Delorme and Makeig, 2004). On average 1.36 blink components (SD = 0.95) and 0.8 cardiac 
components (SD = 0.41) were removed. Summary steps of the E/MEG preprocessing are given in Fig 1A. 
 
Data were further processed in SPM12 (www.fil.ion.ucl.ac.uk/spm). Data were bandpass filtered to five 
frequency bands of interest using fifth-order Butterworth filters: delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-
12 Hz), beta (12-30 Hz), and gamma (30-100 Hz). Data in the gamma band were further notch filtered to 
remove line noise. The continuous data were epoched into 4s long consecutive segments, resulting in 
approximately 75 epochs per participant. These segments were visually inspected for any remaining 
artefacts (e.g. motor) and bad channels and trials were removed. On average 5.46 (SD = 7.39) trials and 
2.25 channels (SD = 2.75) were removed per participant. Data were then downsampled to 200 Hz.  
 
The E/MEG data were source localized using all sensor types (Henson et al., 2009). The source space was 
modelled with a medium sized cortical mesh consisting of 8196 vertices via inverse normalization of SPM’s 
canonical meshes. Sensor positions were coregistered to the native T1-weighted MPRAGE scans using the 
fiducial and head shape points. Single shell and BEM models were used for forward modelling of MEG and 
EEG data respectively. Total power (induced and evoked)was estimated over the trials using the minimum 
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norm estimate solution (R2 model fit: M = 91.49; SD = 6.56). Across all participants, the two visits and the 
frequency bands, five inversions showed R2 lower than 80%, and were excluded from the following 
analyses. 
 

2.7. Graph theoretical analysis 
A cortical graph was based on the Harvard Oxford atlas (HO) thresholded at 25%, with 98 cortical parcels 
including the hippocampi. The data were extracted from all the vertices that constitute each parcel, and 
their first eigenvariate was computed. Multivariate leakage correction method was applied that removes 
the zero lag effects across all parcels using symmetric orthogonalization (Colclough et al., 2015), allowing a 
more accurate estimation of functional dependencies. The Hilbert envelope of each parcel’s time series 
was computed to extract the analytic signal, and epochs were concatenated. Pairwise functional 
connectivity between parcels was computed using amplitude envelope correlations (AEC), which was 
previously shown to be the most consistent network connectivity estimate at the group level (Colclough et 
al., 2016). The AEC of every pair of parcels formed the association matrices. 
 
Choices of the analysis parameters were made based on test-retest reliability outcomes. The association 
matrices were thresholded at 25% density. This threshold was chosen because reliability of the metrics at 
low sparsities (< 10%) is low: networks get fractured and disconnected (Dennis et al., 2012). Reliability of 
the metrics is improved at higher densities (Braun et al., 2012), and have been shown to be stable 
between sparsities of 0.2 to 0.3, with a sharp drop in reliability above 0.3 (Dennis et al., 2012). We opted 
for thresholded weighted graphs as they generate more stable measurements compared to binarized 
graphs (Wang et al., 2011). Graph metrics were then calculated on the weighted association matrices 
using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) in Matlab 2017a (The Mathworks Inc., 
2017). We use four metrics to capture essential global and local characteristics of the network 
communication at the nodal level. Metrics were computed for each of 98 nodes, five frequency bands and 
12 participants, then normalized against 500 random graphs with equivalent degree.  
 
(1) Eigenvector centrality is an extension of degree centrality. Degree centrality measures how many links 
connect with a node, giving equivalent weights to links coming from each connecting node. Eigenvector 
centrality is a meta-metric that quantifies the functional influence of a node on every other node in the 
graph, by weighting the importance of each nodal connection based on the influence of the nodes with 
which they connect. It is measured as the first eigenvector of the adjacency matrix corresponding to the 
largest eigenvalue (Bonacich, 1972).  
(2) Clustering coefficient is the fraction of triangular connections formed by a node with other nodes. A 
node is strongly clustered if a large proportion of its neighbors are neighbors of each other. Since nodes 
that have high local clustering are also well connected locally, this measure captures local efficiency of 
information transfer.  
(3) Eccentricity is defined as the longest distance between a node and any other node in the network. It is 
a nodal measure of global efficiency, reflecting long-range efficiency of information transfer and network 
integration, where high values of eccentricity indicate low global efficiency of communication.  
(4) Participation coefficient reflects the diversity of nodes’ intermodular connections (i.e. connectivity to 
multiple functional modules), and is computed using the Louvain community detection algorithm (Blondel 
et al., 2008). Participation coefficient captures the segregation of functional networks, where a high 
participation coefficient would indicate connectivity to a high number of segregated functional modules. 
Modular networks maintain a balance between functionally specialized modules that have high within and 
between-module connectivity. Because of this fine balance, higher participation coefficient values does 
not necessarily correspond to better modularity; they could reflect a breakdown of functional segregation.  
 

2.8. ROI selection 
ROI selection was based on brain regions widely reported to accumulate neurofibrillary tangles and show 
atrophy in early stages of Alzheimer’s disease including Braak areas (Braak et al., 2006; Jack et al., 2018; 
Johnson et al., 2016; Ossenkoppele et al., 2016). ROIs consisted of hippocampus, entorhinal cortex, 
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parahippocampal gyrus, angular gyrus, supramarginal gyrus, posterior and temporo-occipital middle and 
inferior temporal gyri, anterior and posterior fusiform cortex, precuneus, posterior cingulate gyrus, middle 
and superior frontal gyri and orbitofrontal cortex bilaterally.  
 

2.9. Correlations and statistical analysis 
We tested the relationship between the network properties and Tau burden both at the lobar level and at 
the level of the above ROIs. Metrics calculated for each participant were partially correlated with the Tau 
burden at each parcellation using Pearson’s correlations, whilst controlling for participants’ age. The nodes 
were grouped into five functional areas (i.e. lobes): frontal, temporal, parietal, occipital and limbic areas. 
To test changes at the lobe level, the correlation coefficients extracted from the nodes from each 
functional area were Fisher z-transformed then tested using one sample t-tests.  
 
Finally, to explore longitudinal changes in network function, the differences in connectivity and graph 
metrics for the lobes and ROIs were compared between the baseline and 6-month visit using paired t-
tests. In addition, to quantify the relationship between the longitudinal changes and Tau pathology, we 
correlated the Tau burden with these changes in connectivity. The resulting p values were corrected for 
multiple comparisons of metrics, bands and lobes, using false discovery rate at 0.05. The graph metrics in 
the MNI space were back-projected onto the canonical Freesurfer cortical surface for ease of visualization 
using the MNI2FS toolbox (https://github.com/dprice80/mni2fs). 
 
 

3. Results 

3.1. Tau deposition and connectivity 
All participants showed the typical widespread bilateral Tau deposition (Passamonti et al., 2017; Schöll et 
al., 2016). Fig 2A shows [18F]AV1451 BPND maps across participants, with highest levels at the precuneus, 
posterior cingulate, posterior middle temporal, anterior fusiform, inferior parietal lobules, and the 
putamen. Fig 2B shows the [18F]AV1451 BPND binding for each participant, ordered from left to right in 
decreasing MMSE scores. Fig 2C displays the mean degree maps at the baseline visit, across the frequency 
bands.  The maps were visualized using the BrainNet Viewer (www.nitrc.org/projects/bnv). There was 
strong connectivity between frontal, temporal and limbic nodes, and strong connectivity within occipital 
and parietal nodes.  
 

3.2. Impact of Tau burden on network properties 
Participation coefficient was significantly related to the Tau deposition in delta, theta, alpha and beta 
bands. Fig 3A shows the back-projected participation coefficient values at each node onto the cortical 
surface across five frequency bands. The values are thresholded for each frequency band to allow better 
visualization of cortical distribution. We find the highest values around the frontal, posterior temporal 
lobes as well as posterior cingulate gyrus and precuneus indicating that these areas have higher number of 
connections to functional modules in lower frequency bands. Fig 4A displays the distribution of correlation 
values between participation coefficient and Tau within functional lobes. The results of the lobar level 
correlations of the metrics with Tau are given in Table 1. 
 
We found contrasting patterns between functional involvement and segregation with Tau across 
functional lobes. The participation coefficient in the frontal, limbic and temporal lobes showed a positive 
relationship with Tau burden, where this effect was stronger for lower frequency bands, suggesting 
increases in involvement of nodes in multiple functional modules, i.e. decreases in functional segregation  
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Fig 2. [18F] AV1451 binding maps and connectivity patterns. 

A. Map of tau deposition overlap across the participants, measured as the [18F]AV1451 non-displaceable binding potential 
where lighter colors indicate higher Tau burden across the sample. The map shows the characteristic AD tau distribution that 
spreads over temporoparietal, posterior medial and superior frontal areas bilaterally. Strongest overlap is observed around 
the precuneus, angular gyri, posterior middle temporal, and inferior temporal areas. B. Tau deposition maps of individual 
participants ordered by decreasing MMSE scores, displaying the left lateral and medial views. C. Degree maps displaying the 
mean connectivity patterns across five frequency bands on left lateral and medial surfaces. Connections are thresholded to 
display the strongest 10% for ease of visualization. Increasing node size and edge thickness indicate higher degree and 
stronger connectivity respectively. Note that the connectivity patterns across the bands largely overlap where the strongest 
connections are between the temporal nodes and the frontal and limbic nodes. Occipital nodes show strong within lobe, but 
weak between lobe connectivity. Parietal nodes show weak connectivity both within and between lobes. 

 
of the cortex. We found the opposite pattern in the occipital and parietal nodes being stronger in higher 
frequency bands. Decreases in participation coefficient in these lobes indicate an increasing isolation from 
remaining functional networks in the brain. The ROI analysis results given in Table 2 corroborate this 
pattern and reveal that the strongest effects in participation coefficient among the Alzheimer’s ROIs are 
observed in the entorhinal and parahippocampal cortices. 
 
The eigenvector centrality captured a node’s central influence in communication between other central 
nodes. The values were higher for lower frequencies especially around bilateral middle and superior 
frontal as well as posterior temporal and cingulate and precuneus. We found significant effects (Table 1) in 
theta, alpha and beta bands (Fig 4B), with similar patterns of decreasing and increasing centrality in the 
occipital and temporal nodes respectively with increasing Tau levels. Regional analysis revealed (Table 2) 
positive correlations in the frontal nodes. However, in the absence of lobar level results, these effects 
indicate that the centrality changes in the frontal lobe are focal.  
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Fig 3. Distribution of normalized graph metrics across the cortex and frequency bands  

3D back-projections of the graph metrics onto the left lateral and medial cortical surfaces, going from gamma down to delta 
band. The scales are adjusted for each metric to allow better visualization of differences in cortical distribution. (A) 
Participation coefficient and (B) eigenvector centrality are higher for lower frequency bands. Their distribution is overlapping 
and concentrated around frontal, inferior parietal areas and precuneus. However, the efficiency measures (C-D), display 
higher values for higher frequency bands, suggesting that local and global efficiency are disrupted more strongly in lower and 
higher frequency bands respectively. Key: γ, gamma; β, beta; α, alpha; θ, theta; δ, delta band 

 
Fig 4. Lobar level correlations between 
metrics and Tau burden.  

Violin plots displaying the distribution of r 
values across parcels and frequency bands, 
clustered by functional lobes. Red line 
indicates r=0. Black lines indicate the mean. 
Correlations that were significantly different 
than zero after FDR correction are displayed 
in purple. A. Participation coefficient 
correlations. Note consistent positive 
correlations of tau with the frontal, limbic 
and temporal nodes, and negative 
correlations with the occipital and parietal 
nodes, indicating widespread changes in 
functional specificity and segregation. B. 
Eigenvector centrality correlations. Between 
theta and beta bands, the centrality of 
temporal and parietal nodes increases with 
increasing tau deposition, whereas occipital 
nodes are shown to have decreasing central 
role in communication. Key: all, whole brain; 
fro, frontal; lim, limbic; occ, occipital; par, 
parietal; tem, temporal; r, Pearson’s r; γ, 
gamma; β, beta; α, alpha; θ, theta; δ, delta 
band. 

Clustering coefficient values displayed in Fig 3C were higher for high frequency bands, observed in the 
bilateral middle and superior frontal gyri, temporal poles and middle temporal gyri. In contrast to our 
predictions, correlations of clustering coefficient with Tau (see Supplementary information) were modest 
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and restricted to the occipital nodes (Table 1). Regional analyses revealed a negative relationship in the 
temporal and limbic regions but a positive relationship in the frontal regions (Table 2). In the absence of 
strong lobar level effects, these results indicate that Tau-related clustering changes are more focal.  
 
Finally, Fig 3D shows the back-projections of the eccentricity values on the cortex. We found a positive 
relationship between eccentricity and Tau in the temporal nodes solely in the gamma band, i.e. decreased 
global efficiency. Regional analyses further added negative correlations in the orbitofrontal and entorhinal 
cortex.  
 

Table 1. Lobar level analysis results across metrics and bands 

Metric-Band-Lobe M SD df t pun pfdr 

Participation Coefficient       
Beta       

Occipital -0.28 0.34 17 -3.31 0.004 0.027 
Parietal -0.39 0.35 13 -3.78 0.002 0.021 

Temporal 0.16 0.23 29 3.87 <0.001 0.007 
Alpha       

Frontal 0.22 0.32 21 3.08 0.006 0.035 
Limbic 0.27 0.26 13 3.67 0.003 0.023 

Occipital -0.23 0.26 17 -3.58 0.002 0.021 
Parietal -0.20 0.24 13 -2.96 0.011 0.060 
Theta       

Temporal 0.28 0.29 29 5.05 <0.001 <0.001 
Whole brain 0.13 0.41 97 3.91 <0.001 <0.003 

Delta       
Frontal 0.24 0.34 21 3.24 0.004 0.027 

Temporal 0.35 0.31 29 5.70 <0.001 <0.001 
Whole Brain 0.12 0.41 97 2.97 0.004 0.027 

Eigenvector centrality       
Beta       

Occipital -0.32 0.29 17 -4.70 <0.001 0.003 
Temporal 0.20 0.28 29 3.91 <0.001 0.007 

Alpha       
Occipital -0.24 0.24 17 -4.17 <0.001 0.008 
Temporal 0.21 0.24 29 4.69 <0.001 0.001 

Theta 
Parietal 

 
0.14 

 
0.26 

 
13 

 
3.12 

 
0.008 

 
0.046 

Temporal 0.20 0.28 29 3.74 <0.001 0.008 
Whole brain 0.11 0.33 97 3.06 0.002 0.023 

Clustering coefficient       
Alpha       

Occipital 0.19 0.25 17 3.09 0.006 0.039 

Eccentricity       
Gamma       

Temporal 0.38 0.39 29 4.89 <0.001 0.001 
Whole brain 0.20 0.40 97 5.03 <0.001 <0.001 

 
P values were corrected for multiple comparisons using false discovery rate. 

Key: pun, uncorrected p value; pfdr, false discovery rate corrected p value. 

 

3.3. Longitudinal changes in network properties and connectivity  
The connectivity changes within the lobes, connectivity of each ROI with the remaining Alzheimer’s ROIs 
(i.e. 31 nodes) displayed only subtle changes in magnitude and were not significant at the corrected level. 
At the lobar level only one effect survived the FDR correction. The frontal participation coefficient in the 
gamma band showed significant increases over 6 months (t(11) = -2.86; pun = 0.009; pfdr = 0.036).  
 
ROI analyses showed significant results for eccentricity and eigenvector centrality metrics longitudinally. 
Eccentricity showed increases in 6 months period in the left posterior middle temporal gyrus in the gamma 
band (t(11) = -3.02; pun = 0.007; pfdr = 0.035), providing evidence for further decreases in long range 
efficiency of gamma synchrony. We found significant decreases in node centrality as measured by the 
eigenvector centrality in left precuneus (t(11) = 3.57; pun = 0.003; pfdr = 0.013) and posterior middle 
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temporal gyrus (t(11) = 3.18; pun = 0.006; pfdr = 0.029) and a marginal effect in the left angular gyrus (t(11) 
= 2.83; pun = 0.012; pfdr = 0.060) all in delta band. These eigenvector centrality results complement the 
negative correlations shown for eigenvector centrality-Tau in the parietal nodes.  
 

Table 2. Regional analysis results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P values were corrected for multiple comparisons using false discovery rate. 
Key: pun, uncorrected p value; pfdr, false discovery rate corrected p value; R, right; L, left; pos, posterior; ant, anterior. 

 

3.4. Tau-related rates of change in networks 
We further tested the relationship between the connectivity and graph metric changes over time and the 
baseline Tau burden. Negative and positive correlations indicate overall patterns of increases and 
decreases in measurements over a 6 months’ period in relation to the participants’ Tau levels at the 

baseline visit. The change in delta connectivity between temporal and frontal (r∆ = -0.85; pun = 0.016; pfdr = 

0.018), limbic (r = -0.85; pun = 0.015; pfdr = 0.018), occipital (r∆ = -0.84; pun = 0.017; pfdr = 0.018), and 

parietal (r∆ = -0.85; pun = 0.015; pfdr =0.018) lobes, as well as within the temporal lobe itself (r∆ = -0.84; pun 
= 0.018; pfdr = 0.018), significantly correlated with the mean Tau burden in the temporal lobe. We then 
focused on the correlations at the ROI level. The delta band connectivity changes of the right entorhinal 

cortex (r∆ = -0.94; pun = 0.002; pfdr = 0.008), posterior temporal fusiform cortex (r∆ = -0.90; pun = 0.005; pfdr 

= 0.025), and posterior inferior temporal gyrus (r∆ = -0.91; pun = 0.004; pfdr = 0.021) with the remaining 

Metric-Band-ROI r pun pfdr 

Participation coefficient    
Gamma    

L pos temporal fusiform gyrus 0.75 0.008 0.031 
Beta    

R entorhinal cortex 0.85 >0.001 0.003 
L parahippocampal cortex 0.81 0.003 0.011 

R precuneus -0.76 0.007 0.028 
Alpha    

L orbitofrontal cortex 0.76 0.007 0.027 
Delta    

R pos temporal fusiform gyrus 0.85 0.006 0.026 

Eigenvector centrality    
Gamma    

R superior frontal gyrus 0.74 0.008 0.034 
R middle frontal gyrus 0.80 0.003 0.013 

Beta    
R entorhinal cortex -0.69 0.017 0.035 

Delta    
R pos supramarginal gyrus -0.81 0.015 0.042 

Clustering coefficient    
Gamma    

L inferior temporo-occipital gyrus 0.76 0.006 0.025 
R angular gyrus -0.83 0.001 0.006 

R middle frontal gyrus 0.75 0.008 0.016 
L superior frontal gyrus 0.72 0.012 0.049 

Beta    
R entorhinal cortex -0.69 0.017 0.035 

Alpha    
L parahippocampal cortex -0.75 0.008 0.032 

Delta    
R pos supramarginal gyrus -0.78 0.021 0.042 
R inferior temporal gyrus -0.83 0.011 0.046 

Eccentricity    
Gamma    

R pos inferior temporal gyrus 0.81 0.007 0.031 
R pos temporal fusiform gyrus 0.86 0.003 0.012 
R ant temporal fusiform gyrus 0.79 0.010 0.042 

R orbitofrontal cortex 0.79 0.011 0.045 
R entorhinal cortex 0.77 0.014 0.056 

L pos inferior temporal gyrus 0.72 0.028 0.056 
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ROIs was significantly related to their Tau burden.  Further, in the theta band the right temporo-occipital 

inferior temporal gyrus showed significant correlations (r∆ = -0.85; pun = 0.007; pfdr = 0.036). 
 
We did not find any significant correlations of the graph metrics at the lobe level, indicating that Tau 
related rate of change in metrics is not equally distributed across the functional lobes. However, we found 
significant correlations among the ROIs. The change in participation coefficient related to the Tau burden 

in the right superior frontal gyrus (r∆ = 0.91; pun = 0.004; pfdr = 0.044) in the delta band, suggesting a 
decrease in functional involvement. Eigenvector centrality showed effects in the delta and beta bands. In 

the delta band left middle frontal gyrus (r∆ = 0.93; pun = 0.002; pfdr = 0.045) and in the beta band the left 

posterior temporal fusiform cortex (r∆ = 0.89; pun = 0.001; pfdr = 0.025) showed a significant effect, 
indicating decreases in their centrality in information transfer between important nodes. Clustering 

coefficient rate of change significantly related to Tau in the right superior frontal gyrus (r∆ = -0.91; pun = 
0.004; pfdr = 0.044) in the delta band, suggesting an increase in the local efficiency of information transfer 
to the baseline Tau burden. We did not find significant relationship between rate of change in eccentricity 
and the baseline Tau.  
 

4. Discussion 
In this study, we investigated the impact of Tau burden on neurophysiological network properties as 
captured by E/MEG, and the effectiveness of these biomarkers to track short-term disease progression in 
early Alzheimer’s disease. We demonstrated that the segregation of functional brain networks and the 
functional influence of regions exerted on the remaining network were modulated as a function of Tau 
burden, leading to an increasingly fragmented network.  Secondly, we showed that Tau burden disrupts 
global more than local efficiency of information transfer. We finally report key regions that display greatest 
shifts in network properties in 6 months and in relation to the Tau burden: including middle temporal and 
angular gyri, superior frontal gyri and precuneus. Our findings provide support for neurophysiological 
biomarkers in experimental medicines studies or early phase trials in Alzheimer’s disease. 
 
In line with our predictions, the analysis showed Tau-related increases in participation coefficient in the 
frontal, limbic and temporal lobes at lower frequencies (delta and theta bands). This is in agreement with 
previous studies focusing on the mild cognitive impairment and Alzheimer’s disease patients that report 
increases in functional modules in the delta and theta bands (de Haan et al., 2012a), and increased global 
participation in fMRI (Cope et al., 2018). Increases in participation coefficient suggest an increased 
involvement in functional modules. A healthy profile of functional involvement, hinges on a fine balance 
between inter- and intra-modular communication, where the breakdown of this profile could be a result of 
either a sub-optimal increase (i.e. disruption of segregation), or decrease (i.e. isolation) of functional 
involvement. Thus, widespread increases in participation coefficient suggest disruptions in functional 
segregation and sub-optimal network processing. We found the opposite pattern in the parietal and 
occipital lobes, which indicates a disruption of their multi-module connectivity and increasing isolation as 
the pathology progressed. This interpretation is in line with the findings of a large scale MR study by Brier 
and colleagues (2014) which showed decreasing participation coefficient and inter-modular connectivity in 
the frontal, occipital and parietal regions in mild cognitive impairment and Alzheimer’s disease patients 
compared to controls. Similarly, in a hidden markov modeling analysis, the posterior default mode network 
of Alzheimer’s patients, consisting of precuneus and posterior cingulate cortex, was visited less often and 
for shorter periods (Sitnikova et al., 2018).   
 
The eigenvector centrality results complemented the participation coefficient results showing Tau-related 
decreases of the occipital nodes and increases of the temporal and frontal nodes. This fronto-occipital 
pattern has been recently reported using fMRI, related to the CSF p-Tau level as well as patients’ MMSE 
scores (Binnewijzend et al., 2014; Cope et al., 2018). Similarly, the glucose metabolism in the occipital 
areas of the ApoE4 carriers gets reduced (Ossenkoppele et al., 2013). Synchronization likelihood of the 
occipital areas decrease whereas a increase is observed among the frontal nodes (Sanz-Arigita et al., 
2010). Complementary to what we found for participation coefficient, these results suggest a shift towards 
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an increasingly fragmented network where frontal and temporal nodes become more influential and 
involved in information transfer, whereas parietal and occipital nodes get further disconnected and 
isolated.   
 
Eccentricity showed strong disruptions among the temporal nodes in the highest frequencies (gamma 
band), suggesting an impairment in global efficiency of feed-forward information transfer. These findings 
are consistent with previous reports showing increases in the global characteristic path length (Zhao et al., 
2012) with decreasing MMSE scores (Stam et al., 2006), and decreases in global efficiency and connectivity 
between long-distance hubs (Li et al., 2013; Liu et al., 2014). Long range gamma synchrony is thought to be 
a fundamental function of the brain serving to integrate information processed in-tandem across regions 
in a network (Başar-Eroglu et al., 1996). Synchronization of processing in the gamma band exists both 
locally and across long distances in the cortex even with zero lag delays (Rodriguez et al., 1999; Singer, 
1999). Previous studies reported widespread loss of long-range gamma synchrony in humans (Koenig et 
al., 2005; Stam et al., 2002) and tau mediated network instability in gamma band in mouse models of 
Alzheimer’s disease (Verret et al., 2012). We speculate that the effect in the gamma band results from the 
degeneration of cholinergic projections and impaired muscarinic reception function, which enhance 
gamma frequencies in the healthy brain (Rodriguez et al., 2004).  
 
The secondary aim of the study was to assess and quantify changes that occur over 6 months. Changes in 
such a short period could aid evaluation and fast turnover of experimental drugs for Alzheimer’s disease. 
Among our four network metrics, all but clustering coefficient showed significant changes in 6 months, 
where we observed largest changes for the eigenvector centrality. Eigenvector centrality showed 
decreases in the precuneus, middle temporal gyrus and marginally in the angular gyrus in the delta band, 
indicating decreases of functional influence over other nodes in the network. In line with the lobar level 
findings, we found further decreases in global efficiency, in the posterior middle temporal gyrus in gamma 
band. Finally, in contrast to the widespread effects at the lobar level, participation coefficient displayed 
modest increases in the gamma band only in the frontal lobe. Among the four metrics, only two (i.e. 
eigenvector centrality and eccentricity) showed direct relationship to the local tau burden, whilst capturing 
short-term changes in network functioning. This analysis also highlighted key regions that show faster 
rates of change in their network properties over 6 months. We found that the network properties changed 
faster in the precuneus, inferior parietal lobule, and the middle temporal gyrus compared to the rest of 
the network. This could be attributed to their faster rates of Tau accumulation (Ishiki et al., 2015) and of 
cortical thinning observed for the mild cognitive impairment patients converting to Alzheimer’s disease 
and Alzheimer’s patients (Li et al., 2012).   
 
The rate of change of connectivity related to Tau burden at baseline. The temporal Tau levels at baseline 
were linked to increased delta connectivity of the temporal lobe with the remaining network as well as 
within itself. Similarly, at the ROI level, we found increases in delta and theta connectivity of the 
entorhinal, inferior temporal and fusiform areas with the remaining network. These results are 
complementary to reported increases in delta and theta synchrony (Babiloni et al., 2004; Poza et al., 
2008), where the slowing of frequencies was related to the white matter atrophy (Babiloni et al., 2006) 
and progression from mild cognitive impairment to Alzheimer’s disease (Babiloni et al., 2010; Huang et al., 
2000; Jelic et al., 2000).  Compared to Alzheimer’s patients who are either ɛ2 or ɛ3 carriers, ɛ4 carriers 
display longitudinal increases in delta and theta power (Lehtovirta et al., 1996). This slowing could be 
linked to the impairments in cholinergic-muscarinic transmission which causes decreases in gamma, and 
increases in resting delta and theta power (Bosboom et al., 2009). 
 
We predicted that two measures of efficiency, clustering coefficient and eccentricity would display 
widespread disruptions in relation to Tau accumulation. In contrast to our predictions, we found focal 
effects for the clustering coefficient. The reports on local efficiency changes in Alzheimer’s disease 
measured by the clustering coefficient are mixed. Some reported decreases pronounced in the 
hippocampi (Supekar et al., 2008), and in the alpha and beta bands (de Haan et al., 2009), which relate to 
the positive biomarker status of the patients (Brier et al., 2014). Others showed increases in the delta and 
alpha bands (Buldú et al., 2011; Vecchio et al., 2014; Zhao et al., 2012), or reported that the clustering 
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remains relatively spared in disease progression (Cope et al., 2018; Stam et al., 2006). Our regional 
analyses showed a Tau related negative pattern in medial temporal and inferior parietal areas, and a 
positive pattern in the middle frontal and temporo-occipital areas. The areas showing a reduction in 
clustering were entorhinal, parahippocampal cortex and angular and supramarginal gyri which accumulate 
Tau earlier in disease. We attribute this pattern to a non-linear impact of tau on local clustering; i.e. as Tau 
builds up, the clustering initially increases followed by a decrease, which could additionally explain the 
abundant contradicting findings in the literature.  
 
E/MEG has been widely utilized in network research. Its use historically originates from the field of 
epilepsy, however now it is used for in-depth understanding of neurophysiological underpinnings of the 
fundamental brain processes and their dysfunction. Despite its lower spatial resolution compared to MR 
and PET, E/MEG remains the only scanner that can directly measure activity produced by neuronal 
populations, and it does so at the brain’s inherent speed, i.e. the millisecond time resolution. This fast 
capture allows us to see transient patterns of brain activity invisible to slower scanners such as MR. 
Moreover, it allows investigations of brain activity patterns, spread across different frequency bands. The 
current analysis similarly demonstrates this multi-faceted nature of neurophysiology, i.e. how connectivity 
patterns and network metrics behave differently to low versus high frequency bands. The information 
embedded in different frequencies could be valuable in detecting disorders, where neuronal populations 
show impaired functions such as in neurodegenerative disorders.  
 
When EEG and MEG are combined, they could capture the brain activity originating from both radial and 
tangential orientations brain tissue. Since the sensors are outside the head, the signal to noise ratio 
decreases as the distance between the sensors and the electrical source in the brain increases. This makes 
the signals estimated from subcortical nuclei and ventral areas weaker compared to more lateral and 
superficial sources. However, the current results indicate that despite having lower signal to noise and 
weaker amplitudes, we are able to capture patterns of brain activity in deeper sources even with a small 
sample of participants.  
 
Due to the small sample size of the pilot study and the absence of data from healthy controls, we have 
adopted an exploratory correlational approach between the Tau burden and neurophysiological metrics. 
However, future confirmatory studies could increase the number of patients and include data from 
matched healthy participants. Similarly, acquiring Tau PET at two time points, and relating changes in 
longitudinal Tau PET to the changes in longitudinal graph metrics, would strengthen the findings.  
 

5. Conclusions 
Our findings provide the first evidence that Tau pathology disrupts human brain network connectivity. This 
may be due to synaptic dysfunction as shown in animal models, or additionally from somatic and axonal 
deficits. In early Alzheimer’s disease with increasing Tau burden, the brain shifts towards a fragmented 
network where fronto-temporal areas became crucial for information transfer, and parietal and occipital 
areas get further disconnected from the remaining network. Whilst we observe modest local disruptions in 
efficiency, Alzheimer’s disease displays a greater impact on long-range global efficiency of the temporal 
areas. Since neurophysiological network biomarkers directly relate to Tau pathology, they could be utilized 
as a non-invasive tool to track short term disease progression and the impact of disease modifying 
therapies. 
 

Acknowledgments 
The Deep and Frequent Phenotyping Study is funded by the Medical Research Council and National 
Institute for Health Research as part of the Dementias Platform UK (MR/N029941/1). JBR is supported 
by the Wellcome Trust (103838) and Medical Research Council (SUAG/004 RG91365). RH is supported 
by the Medical Research Council (SUAG/010 RG91365). MWW’s research is supported by the NIHR 
Oxford Health Biomedical Research Centre, the Wellcome Trust (106183/Z/14/Z and 203139/Z/16/Z) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524355doi: bioRxiv preprint 

https://doi.org/10.1101/524355
http://creativecommons.org/licenses/by-nc-nd/4.0/


TAU BURDEN AND SYNAPTIC HEALTH 

Page 15 of 19 
 

and the MRC UK MEG Partnership Grant (MR/K005464/1). EK is funded by the Dementias Platform UK 
and Alzheimer’s Research UK (RG94383/RG89702). We thank all participants and their families, the 
PET technicians, radiochemists, the MRI radiographers, and the clinical research nurses for their 
cooperation and support of this study. We thank Avid radiopharmaceuticals for the provision of 
[18F]AV1451 doses, and Wellcome Centre for Human Neuroimaging at University College London for 
their support with MEG scans. We thank Dr Rezvan Farahibozorg for useful discussions about the 
analyses and methods. 
 

Disclosure statement 
The authors declare that they have no competing interests. 

 

References 
Ahmed, Z., Cooper, J., Murray, T.K., Garn, K., McNaughton, E., Clarke, H., Parhizkar, S., Ward, M.A., 
Cavallini, A., Jackson, S., Bose, S., Clavaguera, F., Tolnay, M., Lavenir, I., Goedert, M., Hutton, M.L., O'Neill, 
M.J., 2014. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle 
pathology: the pattern of spread is determined by connectivity, not proximity. Acta neuropathologica 
127(5), 667-683. 
Babiloni, C., Binetti, G., Cassetta, E., Cerboneschi, D., Dal Forno, G., Del Percio, C., Ferreri, F., Ferri, R., 
Lanuzza, B., Miniussi, C., Moretti, D.V., Nobili, F., Pascual-Marqui, R.D., Rodriguez, G., Romani, G.L., Salinari, 
S., Tecchio, F., Vitali, P., Zanetti, O., Zappasodi, F., Rossini, P.M., 2004. Mapping distributed sources of 
cortical rhythms in mild Alzheimer's disease. A multicentric EEG study. Neuroimage 22(1), 57-67. 
Babiloni, C., Frisoni, G., Steriade, M., Bresciani, L., Binetti, G., Del Percio, C., Geroldi, C., Miniussi, C., Nobili, 
F., Rodriguez, G., Zappasodi, F., Carfagna, T., Rossini, P.M., 2006. Frontal white matter volume and delta 
EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer's 
disease. Clin Neurophysiol 117(5), 1113-1129. 
Babiloni, C., Frisoni, G.B., Vecchio, F., Pievani, M., Geroldi, C., De Carli, C., Ferri, R., Vernieri, F., Lizio, R., 
Rossini, P.M., 2010. Global functional coupling of resting EEG rhythms is related to white-matter lesions 
along the cholinergic tracts in subjects with amnesic mild cognitive impairment. J Alzheimers Dis 19(3), 
859-871. 
Başar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., Başar, E., 1996. Gamma-band responses in the 
brain: a short review of psychophysiological correlates and functional significance. Int J Psychophysiol 
24(1-2), 101-112. 
Binnewijzend, M.A., Adriaanse, S.M., Van der Flier, W.M., Teunissen, C.E., de Munck, J.C., Stam, C.J., 
Scheltens, P., van Berckel, B.N., Barkhof, F., Wink, A.M., 2014. Brain network alterations in Alzheimer's 
disease measured by eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum 
Brain Mapp 35(5), 2383-2393. 
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of communities in large 
networks. Journal of Statistical Mechanics: Theory and Experiment P10008, 1-12. 
Bonacich, P., 1972. Factoring and weighting approaches to clique identification. J Math Soc 2, 113-120. 
Bosboom, J.L., Stoffers, D., Stam, C.J., Berendse, H.W., Wolters, E.C.h., 2009. Cholinergic modulation of 
MEG resting-state oscillatory activity in Parkinson's disease related dementia. Clin Neurophysiol 120(5), 
910-915. 
Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., Del Tredici, K., 2006. Staging of Alzheimer disease-
associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 
112(4), 389-404. 
Braun, U., Plichta, M.M., Esslinger, C., Sauer, C., Haddad, L., Grimm, O., Mier, D., Mohnke, S., Heinz, A., Erk, 
S., Walter, H., Seiferth, N., Kirsch, P., Meyer-Lindenberg, A., 2012. Test-retest reliability of resting-state 
connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59(2), 1404-
1412. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524355doi: bioRxiv preprint 

https://doi.org/10.1101/524355
http://creativecommons.org/licenses/by-nc-nd/4.0/


TAU BURDEN AND SYNAPTIC HEALTH 

Page 16 of 19 
 

Brier, M.R., Gordon, B., Friedrichsen, K., McCarthy, J., Stern, A., Christensen, J., Owen, C., Aldea, P., Su, Y., 
Hassenstab, J., Cairns, N.J., Holtzman, D.M., Fagan, A.M., Morris, J.C., Benzinger, T.L., Ances, B.M., 2016. 
Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med 8(338), 338ra366. 
Brier, M.R., Thomas, J.B., Fagan, A.M., Hassenstab, J., Holtzman, D.M., Benzinger, T.L., Morris, J.C., Ances, 
B.M., 2014. Functional connectivity and graph theory in preclinical Alzheimer's disease. Neurobiol Aging 
35(4), 757-768. 
Buldú, J.M., Bajo, R., Maestú, F., Castellanos, N., Leyva, I., Gil, P., Sendiña-Nadal, I., Almendral, J.A., Nevado, 
A., del-Pozo, F., Boccaletti, S., 2011. Reorganization of functional networks in mild cognitive impairment. 
PLoS One 6(5), e19584. 
Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of structural and 
functional systems. Nat Rev Neurosci 10(3), 186-198. 
Colclough, G.L., Brookes, M.J., Smith, S.M., Woolrich, M.W., 2015. A symmetric multivariate leakage 
correction for MEG connectomes. Neuroimage 117, 439-448. 
Colclough, G.L., Woolrich, M.W., Tewarie, P.K., Brookes, M.J., Quinn, A.J., Smith, S.M., 2016. How reliable 
are MEG resting-state connectivity metrics? NeuroImage 138, 284-293. 
Cope, T.E., Rittman, T., Borchert, R.J., Jones, P.S., Vatansever, D., Allinson, K., Passamonti, L., Vazquez 
Rodriguez, P., Bevan-Jones, W.R., O'Brien, J.T., Rowe, J.B., 2018. Tau burden and the functional 
connectome in Alzheimer's disease and progressive supranuclear palsy. Brain 141(2), 550-567. 
Dauwels, J., Vialatte, F., Musha, T., Cichocki, A., 2010. A comparative study of synchrony measures for the 
early diagnosis of Alzheimer's disease based on EEG. Neuroimage 49(1), 668-693. 
de Haan, W., Pijnenburg, Y.A., Strijers, R.L., van der Made, Y., van der Flier, W.M., Scheltens, P., Stam, C.J., 
2009. Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG 
and graph theory. BMC Neurosci 10, 101. 
de Haan, W., van der Flier, W.M., Koene, T., Smits, L.L., Scheltens, P., Stam, C.J., 2012a. Disrupted modular 
brain dynamics reflect cognitive dysfunction in Alzheimer's disease. Neuroimage 59(4), 3085-3093. 
de Haan, W., van der Flier, W.M., Wang, H., Van Mieghem, P.F., Scheltens, P., Stam, C.J., 2012b. Disruption 
of functional brain networks in Alzheimer's disease: what can we learn from graph spectral analysis of 
resting-state magnetoencephalography? Brain Connect 2(2), 45-55. 
Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics 
including independent component analysis. J Neurosci Methods 134(1), 9-21. 
Dennis, E.L., Jahanshad, N., Toga, A.W., McMahon, K.L., De Zubicaray, G.I., Martin, N.G., Wright, M.J., 
Thompson, P.M., 2012. Test-retest reliability of graph theory measures of structural brain connectivity., 
International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 
305-312. 
Firouzian, A., Whittington, A., Searle, G.E., Koychev, I., Zamboni, G., Lovestone, S., 2018. Imaging Aβ and 
tau in early stage Alzheimer's disease with [18F]AV45 and [18F]AV1451. EJNMMI Research 8:19. 
Gonzalez-Escamilla, G., Lange, C., Teipel, S., Buchert, R., Grothe, M.J., Initiative, A.s.D.N., 2017. PETPVE12: 
an SPM toolbox for Partial Volume Effects correction in brain PET - Application to amyloid imaging with 
AV45-PET. Neuroimage 147, 669-677. 
Henson, R.N., Mouchlianitis, E., Friston, K.J., 2009. MEG and EEG data fusion: simultaneous localisation of 
face-evoked responses. Neuroimage 47(2), 581-589. 
Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., Malinow, R., 2006. AMPAR removal 
underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52(5), 831-843. 
Huang, C., Wahlund, L., Dierks, T., Julin, P., Winblad, B., Jelic, V., 2000. Discrimination of Alzheimer's 
disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. 
Clin Neurophysiol 111(11), 1961-1967. 
Ishiki, A., Okamura, N., Furukawa, K., Furumoto, S., Harada, R., Tomita, N., Hiraoka, K., Watanuki, S., 
Ishikawa, Y., Tago, T., Funaki, Y., Iwata, R., Tashiro, M., Yanai, K., Kudo, Y., Arai, H., 2015. Longitudinal 
Assessment of Tau Pathology in Patients with Alzheimer's Disease Using [18F]THK-5117 Positron Emission 
Tomography. PLoS One 10(10), e0140311. 
Ittner, L.M., Ke, Y.D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wolfing, H., Chieng, B.C., Christie, M.J., 
Napier, I.A., Eckert, A., Staufenbiel, M., Hardeman, E., Gotz, J., 2010. Dendritic function of tau mediates 
amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142(3), 387-397. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524355doi: bioRxiv preprint 

https://doi.org/10.1101/524355
http://creativecommons.org/licenses/by-nc-nd/4.0/


TAU BURDEN AND SYNAPTIC HEALTH 

Page 17 of 19 
 

Jack, C.R., Wiste, H.J., Schwarz, C.G., Lowe, V.J., Senjem, M.L., Vemuri, P., Weigand, S.D., Therneau, T.M., 
Knopman, D.S., Gunter, J.L., Jones, D.T., Graff-Radford, J., Kantarci, K., Roberts, R.O., Mielke, M.M., 
Machulda, M.M., Petersen, R.C., 2018. Longitudinal tau PET in ageing and Alzheimer's disease. Brain 
141(5), 1517-1528. 
Jelic, V., Johansson, S.E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., Winblad, B., Wahlund, L.O., 2000. 
Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible 
prediction of Alzheimer's disease. Neurobiol Aging 21(4), 533-540. 
Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. FSL. Neuroimage 62(2), 
782-790. 
Johnson, K.A., Schultz, A., Betensky, R.A., Becker, J.A., Sepulcre, J., Rentz, D., Mormino, E., Chhatwal, J., 
Amariglio, R., Papp, K., Marshall, G., Albers, M., Mauro, S., Pepin, L., Alverio, J., Judge, K., Philiossaint, M., 
Shoup, T., Yokell, D., Dickerson, B., Gomez-Isla, T., Hyman, B., Vasdev, N., Sperling, R., 2016. Tau positron 
emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1), 110-119. 
Kimura, T., Whitcomb, D.J., Jo, J., Regan, P., Piers, T., Heo, S., Brown, C., Hashikawa, T., Murayama, M., 
Seok, H., Sotiropoulos, I., Kim, E., Collingridge, G.L., Takashima, A., Cho, K., 2014. Microtubule-associated 
protein tau is essential for long-term depression in the hippocampus. Philosophical transactions of the 
Royal Society of London. Series B, Biological sciences 369(1633), 20130144. 
Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., John, E.R., Jelic, V., 2005. Decreased EEG 
synchronization in Alzheimer's disease and mild cognitive impairment. Neurobiol Aging 26(2), 165-171. 
Koss, D.J., Robinson, L., Drever, B.D., Plucińska, K., Stoppelkamp, S., Veselcic, P., Riedel, G., Platt, B., 2016. 
Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. 
Neurobiol Dis 91, 105-123. 
Koychev, I., Gunn, R.N., Firouzian, A., Lawson, J., Zamboni, G., Ridha, B., Sahakian, B.J., Rowe, J.B., Thomas, 
A., Rochester, L., Ffytche, D., Howard, R., Zetterberg, H., MacKay, C., Lovestone, S., (, D.a.F.P.s.t., 2017. PET 
Tau and Amyloid-β Burden in Mild Alzheimer's Disease: Divergent Relationship with Age, Cognition, and 
Cerebrospinal Fluid Biomarkers. J Alzheimers Dis 60(1), 283-293. 
Kurudenkandy, F.R., Zilberter, M., Biverstål, H., Presto, J., Honcharenko, D., Strömberg, R., Johansson, J., 
Winblad, B., Fisahn, A., 2014. Amyloid-β-induced action potential desynchronization and degradation of 
hippocampal gamma oscillations is prevented by interference with peptide conformation change and 
aggregation. J Neurosci 34(34), 11416-11425. 
LaFerla, F.M., Oddo, S., 2005. Alzheimer's disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 
11(4), 170-176. 
Lehtovirta, M., Partanen, J., Könönen, M., Soininen, H., Helisalmi, S., Mannermaa, A., Ryynänen, M., 
Hartikainen, P., Riekkinen, P., 1996. Spectral analysis of EEG in Alzheimer's disease: relation to 
apolipoprotein E polymorphism. Neurobiol Aging 17(4), 523-526. 
Li, G., Bien-Ly, N., Andrews-Zwilling, Y., Xu, Q., Bernardo, A., Ring, K., Halabisky, B., Deng, C., Mahley, R.W., 
Huang, Y., 2009. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult 
apolipoprotein E4 knockin mice. Cell Stem Cell 5(6), 634-645. 
Li, S., Hong, S., Shepardson, N.E., Walsh, D.M., Shankar, G.M., Selkoe, D., 2009. Soluble oligomers of 
amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate 
uptake. Neuron 62(6), 788-801. 
Li, Y., Qin, Y., Chen, X., Li, W., 2013. Exploring the functional brain network of Alzheimer's disease: based 
on the computational experiment. PLoS One 8(9), e73186. 
Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., Shen, D., Initiative, A.s.D.N., 2012. Discriminant analysis of 
longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. 
Neurobiol Aging 33(2), 427.e415-430. 
Liu, L., Wong, T.P., Pozza, M.F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y.P., Wang, Y.T., 2004. 
Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 
304(5673), 1021-1024. 
Liu, Y., Yu, C., Zhang, X., Liu, J., Duan, Y., Alexander-Bloch, A.F., Liu, B., Jiang, T., Bullmore, E., 2014. 
Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease. 
Cereb Cortex 24(6), 1422-1435. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524355doi: bioRxiv preprint 

https://doi.org/10.1101/524355
http://creativecommons.org/licenses/by-nc-nd/4.0/


TAU BURDEN AND SYNAPTIC HEALTH 

Page 18 of 19 
 

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M., 1984. Clinical diagnosis of 
Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of 
Health and Human Services Task Force on Alzheimer's Disease. Neurology 34(7), 939-944. 
Murray, M.E., Lowe, V.J., Graff-Radford, N.R., Liesinger, A.M., Cannon, A., Przybelski, S.A., Rawal, B., Parisi, 
J.E., Petersen, R.C., Kantarci, K., Ross, O.A., Duara, R., Knopman, D.S., Jack, C.R., Jr., Dickson, D.W., 2015. 
Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the 
Alzheimer's disease spectrum. Brain : a journal of neurology 138(Pt 5), 1370-1381. 
Ochoa, J.F., Alonso, J.F., Duque, J.E., Tobón, C.A., Mañanas, M.A., Lopera, F., Hernández, A.M., 2017. 
Successful Object Encoding Induces Increased Directed Connectivity in Presymptomatic Early-Onset 
Alzheimer's Disease. J Alzheimers Dis 55(3), 1195-1205. 
Ossenkoppele, R., Schonhaut, D.R., Schöll, M., Lockhart, S.N., Ayakta, N., Baker, S.L., O'Neil, J.P., Janabi, M., 
Lazaris, A., Cantwell, A., Vogel, J., Santos, M., Miller, Z.A., Bettcher, B.M., Vossel, K.A., Kramer, J.H., Gorno-
Tempini, M.L., Miller, B.L., Jagust, W.J., Rabinovici, G.D., 2016. Tau PET patterns mirror clinical and 
neuroanatomical variability in Alzheimer's disease. Brain 139(Pt 5), 1551-1567. 
Ossenkoppele, R., van der Flier, W.M., Zwan, M.D., Adriaanse, S.F., Boellaard, R., Windhorst, A.D., Barkhof, 
F., Lammertsma, A.A., Scheltens, P., van Berckel, B.N., 2013. Differential effect of APOE genotype on 
amyloid load and glucose metabolism in AD dementia. Neurology 80(4), 359-365. 
Passamonti, L., Vázquez Rodríguez, P., Hong, Y.T., Allinson, K.S., Williamson, D., Borchert, R.J., Sami, S., 
Cope, T.E., Bevan-Jones, W.R., Jones, P.S., Arnold, R., Surendranathan, A., Mak, E., Su, L., Fryer, T.D., 
Aigbirhio, F.I., O'Brien, J.T., Rowe, J.B., 2017. 18F-AV-1451 positron emission tomography in Alzheimer's 
disease and progressive supranuclear palsy. Brain 140(3), 781-791. 
Poza, J., Hornero, R., Abásolo, D., Fernández, A., Mayo, A., 2008. Evaluation of spectral ratio measures 
from spontaneous MEG recordings in patients with Alzheimer's disease. Comput Methods Programs 
Biomed 90(2), 137-147. 
Rittman, T., Rubinov, M., Vértes, P.E., Patel, A.X., Ginestet, C.E., Ghosh, B.C.P., Barker, R.A., Spillantini, 
M.G., Bullmore, E.T., Rowe, J.B., 2016. Regional expression of the MAPT gene is associated with loss of 
hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy. 
Neurobiol Aging 48, 153-160. 
Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.J., 1999. Perception's shadow: 
long-distance synchronization of human brain activity. Nature 397(6718), 430-433. 
Rodriguez, R., Kallenbach, U., Singer, W., Munk, M.H., 2004. Short- and long-term effects of cholinergic 
modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci 24(46), 
10369-10378. 
Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and interpretations. 
Neuroimage 52(3), 1059-1069. 
Sami, S., Williams, N., Hughes, L.E., Cope, T.E., Rittman, T., Coyle-Gilchrist, I.T.S., Henson, R.N., Rowe, J.B., 
2018. Neurophysiological signatures of Alzheimer's disease and frontotemporal lobar degeneration: 
pathology versus phenotype. Brain 141(8), 2500-2510. 
Sanz-Arigita, E.J., Schoonheim, M.M., Damoiseaux, J.S., Rombouts, S.A., Maris, E., Barkhof, F., Scheltens, P., 
Stam, C.J., 2010. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state 
functional connectivity. PLoS One 5(11), e13788. 
Schöll, M., Lockhart, S.N., Schonhaut, D.R., O'Neil, J.P., Janabi, M., Ossenkoppele, R., Baker, S.L., Vogel, 
J.W., Faria, J., Schwimmer, H.D., Rabinovici, G.D., Jagust, W.J., 2016. PET Imaging of Tau Deposition in the 
Aging Human Brain. Neuron 89(5), 971-982. 
Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., Sabatini, B.L., 2007. Natural 
oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-
type glutamate receptor-dependent signaling pathway. J Neurosci 27(11), 2866-2875. 
Singer, W., 1999. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1), 49-65, 
111-125. 
Sitnikova, T.A., Hughes, J.W., Ahlfors, S.P., Woolrich, M.W., Salat, D.H., 2018. Short timescale abnormalities 
in the states of spontaneous synchrony in the functional neural networks in Alzheimer's disease. 
Neuroimage Clin 20, 128-152. 
Smith, S.M., 2002. Fast robust automated brain extraction. Hum Brain Mapp 17(3), 143-155. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524355doi: bioRxiv preprint 

https://doi.org/10.1101/524355
http://creativecommons.org/licenses/by-nc-nd/4.0/


TAU BURDEN AND SYNAPTIC HEALTH 

Page 19 of 19 
 

Stam, C.J., de Haan, W., Daffertshofer, A., Jones, B.F., Manshanden, I., van Cappellen van Walsum, A.M., 
Montez, T., Verbunt, J.P., de Munck, J.C., van Dijk, B.W., Berendse, H.W., Scheltens, P., 2009. Graph 
theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 
132(Pt 1), 213-224. 
Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M., Scheltens, P., 2006. Small-world networks and functional 
connectivity in Alzheimer's disease. Cereb Cortex 17(1), 92-99. 
Stam, C.J., van Cappellen van Walsum, A.M., Pijnenburg, Y.A., Berendse, H.W., de Munck, J.C., Scheltens, 
P., van Dijk, B.W., 2002. Generalized synchronization of MEG recordings in Alzheimer's Disease: evidence 
for involvement of the gamma band. J Clin Neurophysiol 19(6), 562-574. 
Suarez-Revelo, J.X., Ochoa-Gomex, J.F., Duque-Grajales, J.E., Tobon-Quintero, C.A., 2016. Biomarkers 
identification in Alzheimer's disease using effective connectivity analysis from electroencephalography 
recordings. Ingeniera e Investigacion 36, 50-57. 
Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D., 2008. Network analysis of intrinsic functional 
brain connectivity in Alzheimer's disease. PLoS Comput Biol 4(6), e1000100. 
Vecchio, F., Miraglia, F., Marra, C., Quaranta, D., Vita, M.G., Bramanti, P., Rossini, P.M., 2014. Human brain 
networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. J 
Alzheimers Dis 41(1), 113-127. 
Vecchio, F., Miraglia, F., Quaranta, D., Granata, G., Romanello, R., Marra, C., Bramanti, P., Rossini, P.M., 
2016. Cortical connectivity and memory performance in cognitive decline: A study via graph theory from 
EEG data. Neuroscience 316, 143-150. 
Verret, L., Mann, E.O., Hang, G.B., Barth, A.M., Cobos, I., Ho, K., Devidze, N., Masliah, E., Kreitzer, A.C., 
Mody, I., Mucke, L., Palop, J.J., 2012. Inhibitory interneuron deficit links altered network activity and 
cognitive dysfunction in Alzheimer model. Cell 149(3), 708-721. 
Wang, J.H., Zuo, X.N., Gohel, S., Milham, M.P., Biswal, B.B., He, Y., 2011. Graph theoretical analysis of 
functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI 
data. PLoS One 6(7), e21976. 
Zhao, X., Liu, Y., Wang, X., Liu, B., Xi, Q., Guo, Q., Jiang, H., Jiang, T., Wang, P., 2012. Disrupted small-world 
brain networks in moderate Alzheimer's disease: a resting-state FMRI study. PLoS One 7(3), e33540. 
 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524355doi: bioRxiv preprint 

https://doi.org/10.1101/524355
http://creativecommons.org/licenses/by-nc-nd/4.0/

