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Abstract

The genetic contribution to obesity has been widely studied, yet the functional mechanisms

underlying metabolic states remain elusive. This has prompted analysis of endophenotypes

via quantitative trait locus studies, which assess how genetic variants affect intermediate gene

(eQTL) or protein (pQTL) expression phenotypes. To leverage shared regulatory patterns, we

present the first integrative multivariate pQTL analysis, performed with our scalable Bayesian

framework LOCUS on plasma mass-spectrometry and aptamer-based proteomic datasets. We

identify 136 pQTL associations in the Ottawa obesity clinical practice, of which > 80% replicate

in the DiOGenes obesity cohort and show significant functional enrichments; 16% of the

validated hits would be missed by standard univariate methods. By also exploiting extensive

clinical data, our methods and results reveal the implication of proteins under genetic control in

low-grade inflammation, insulin resistance, and dyslipidemia, thereby opening new perspectives

for diagnosing and treating metabolic disorders. All results are freely accessible online from our

searchable database.

Keywords: Metabolic Syndrome; Multivariate Bayesian modelling; Proteomic quantitative trait

locus analysis; Scalable variational algorithm; Stratified obesity cohorts; Two-stage integrative study.

Genome-wide association studies (GWAS) have identified hundreds of loci associated with obesity

susceptibility1, yet their functional impact on metabolism remains poorly understood. The analysis of

endophenotypes via molecular quantitative trait locus (QTL) studies may provide deeper insight into

the biology underlying clinical traits. While gene expression QTL (eQTL) studies are now routinely

performed, protein expression QTL (pQTL) studies have emerged only recently2–4. These studies

allow the exploration of the functional bases of obesity, as certain proteins act as proxies for metabolic

endpoints3,5,6. However two major hurdles hamper pQTL analyses. First, owing to the number of

tests that they entail, conventional univariate approaches lack statistical power for uncovering weak
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associations, such as trans and pleiotropic effects7,8, while better-suited multivariate methods fail to

scale to the dimensions of QTL studies. Second, the clinical data complementing QTL data are often

very limited, restricting subsequent investigation to external information from unrelated populations,

health status or study designs, and rendering some degree of speculation unavoidable.

Here we aim to address both concerns in an integrative study of two obesity clinical cohorts, the

Ottawa clinical practice cohort9 (n = 1, 644) and the DiOGenes cohort10 (n = 789), each with protein

plasma levels quantified by both mass-spectrometry and aptamer-based assays.

We present a multivariate genome-wide pQTL analysis, using our variational Bayesian method

LOCUS11, which simultaneously accounts for all the genetic variants and proteomic outcomes, thereby

leveraging the similarity across proteins controlled by shared regulatory mechanisms (Figure 1). We

analyze the data from each proteomic technology in a two-stage design, using LOCUS for discovery

with the Ottawa cohort and replicating our findings with the independent DiOGenes cohort. Our rich

mass-spectrometry and SomaLogic proteomic data permit both cross- and intra-platform validation.

Pertinent interpretation of pQTL effects for complex diseases hinges on a careful examination of

metabolic and clinical parameters from the same subjects or, at a minimum, from a population pre-

senting similar clinical characteristics. We demonstrate the biomedical potential of several replicated

pQTL hits, using comprehensive clinical data from the two pQTL obesity cohorts. Our results reveal

novel protein biomarkers under genetic control, in the context of obesity co-morbidities; they are

available from our online browser https://locus-pqtl.epfl.ch.

Results

Two-stage pQTL analyses. We used LOCUS for multivariate analyses of two proteomic datasets

from the Ottawa cohort, comprising 133 and 1, 096 proteins measured by mass spectrometry (MS)

and the multiplexed aptamer-based technology SomaLogic12, respectively. We analyzed about 275, 000

single nucleotide polymorphisms (SNPs) capturing information from about 5M common variants for

nearly 400 subjects, adjusting for age, gender and body mass index (BMI); see Methods and Figure 1d.

At false discovery rate (FDR) 5%, LOCUS identified 18 pQTL associations from the MS analysis,

corresponding to 14 unique proteins and 18 SNPs, and 118 pQTLs from the SomaLogic analysis,

corresponding to 99 proteins and 111 SNPs; see Online Table S1.

We undertook to replicate all uncovered pQTLs in the independent DiOGenes cohort, using MS

and SomaLogic data for n = 400 and n = 548 subjects, respectively (Figure 1d). The DiOGenes

cohort recruited overweight/obese, non-diabetic subjects, while the Ottawa study was led in a special-

ized obesity practice where subjects had severe obesity, dyslipidemia and insulin resistance disorders

(Online Table S4). We validated 15 of the 18 discovered MS pQTLs, and 98 of the 118 discovered

SomaLogic pQTLs at FDR 5% (Online Table S5), yielding a replication rate of 83% in both cases.

While the two platforms had inherent differences, 72 proteins were quantified by both, enabling cross-

platform comparison. Eight of the MS pQTLs could be assessed with SomaLogic (i.e., had protein

levels available), and 7 of them replicated at FDR 5%. Likewise, of the 20 SomaLogic associations

having MS measurements, 14 were confirmed, demonstrating appreciable cross-technology replication.

We evaluated replication rates separately for cis and trans effects. With the MS data, all 15 cis

Ottawa pQTLs replicated in DiOGenes, while the 3 trans pQTLs did not. With the SomaLogic data,

78 of 81 cis and 20 of 37 trans pQTLs could be validated. We reached overall replication rates of 97%

for cis pQTLs and 50% for trans pQTLs; the trans-pQTL rate is in line with other pQTL studies2,4,13.
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Figure 7.1 – Graphical representation of model (3.1)-(3.2)-(3.3). The shaded nodes are ob-
served, the others are inferred.

7.2 Abstract

The role of genetics on obesity susceptibility is widely studied, yet the functional mechanisms

underlying metabolic states remain elusive. This has prompted analysis of endophenotypes

via quantitative trait locus (QTL) studies, which assess how genetic variants affect interme-

diate gene or protein expression phenotypes. We present the first multivariate genome-wide

proteomic QTL analysis, performed with our scalable Bayesian framework LOCUS on mass-

spectrometry and SomaLogic proteomic datasets from two obesity clinical cohorts. By lever-

aging strength across proteins controlled by shared regulatory mechanisms, LOCUS discov-

ers 136 pQTL associations in the first cohort, of which > 80% replicate in the second indepen-

dent cohort at false discovery rate 5%. We discuss the biomedical relevance of several vali-

dated pQTL signals in the obese population, using a meta-analysis on extensive clinical data

available for both cohorts. Our methods and results reveal the implication of proteins un-

der genetic control in low-grade inflammation, insulin resistance, and dyslipidemia, thereby

highlighting novel candidate biomarkers.

7.3 Introduction

Hundreds of genome-wide association studies (GWAS) have assessed the role of thousands

of loci on obesity susceptibility, yet the action of genetic variation on metabolism remains

poorly understood. In particular, most identified risk loci lie in intergenic regions (Ward and

Kellis, 2012; Tak and Farnham, 2015), which complicates their functional interpretation. The

analysis of intermediate expression traits or endophenotypes, via molecular quantitative trait

locus (QTL) studies, may provide greater insight into the biology underlying clinical traits.
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Figure 1: LOCUS model overview and study workflow. (a) Inputs to LOCUS are an n×p design matrix X of p SNPs,

and an n× q outcome matrix y of q molecular traits, e.g., gene, protein, lipid or methylation levels, for n individuals.

The model is multivariate; it accounts for all the SNPs and molecular traits jointly. (b) Graphical model representation

of LOCUS. The effect size between a SNP s and a trait t is modelled by βst, and γst is a latent variable taking value

unity if they are associated, and zero otherwise. The parameter ωs controls the pleiotropic level of each SNP, i.e., the

number of traits with which it is associated. The parameter σ represents the typical size of effects, and the parameter

τt is a precision parameter that relates to the residual variability of each trait t. LOCUS enforces sparsity on the QTL

effects, so it identifies just one or few markers per relevant locus, even in regions of high linkage disequilibrium (LD).

Univariate screening approaches do not exploit association patterns common to multiple outcomes or markers; they

analyze the outcomes one by one, and do not account for LD structures, thereby highlighting redundant signals at

loci with strong LD structures (see, e.g., Figure 2). (c) Outputs of LOCUS are posterior probabilities of associations,

pr(γst = 1 | y), for each SNP and each trait (p×q panel), and posterior means for the pleiotropy propensity of each SNP,

E (ωs | y) (Manhattan plot). (d) Workflow of the pQTL study. The mass-spectrometry and SomaLogic pQTL data are

analyzed in parallel. LOCUS is applied on the Ottawa data for discovery, and 83% of the 18 and 118 pQTL associations

discovered with the mass-spectrometry (MS) and SomaLogic data replicate in the independent study DiOGenes. The

relevance of the validated pQTLs in the obese population is assessed via analyses of clinical parameters from the Ottawa

and DiOGenes cohorts. Further support is obtained by evaluating colocalization with eQTLs, epigenomic marks and

GWAS risk loci.

Finally, we found that 73 of our validated pQTLs overlap with pQTLs previously identified in the

general population (using proxy search r2 > 0.8, and reporting associations at p < 1 × 10−5; Online

Table S6). The remaining 40 pQTLs are, to our knowledge, new.
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Figure 2: Regional association plots for two loci, identified by the (a) SomaLogic and (b) MS pQTL analyses. In each

case, the top panel displays the nominal − log10 p-values obtained when re-analyzing the region with GEMMA14; the

dashed horizontal line corresponds to the Bonferroni level with α = 0.05. The top SNP identified by LOCUS is marked

with a green triangle, and its correlation in r2 with the surrounding SNPs is indicated by the yellow to red colors.

The second-row panel shows the cumulated numbers of annotation marks for each SNP. The green bars correspond to

LOCUS top SNPs, the black bars, to the SNPs found significant with GEMMA (Bonferroni adjustment α = 0.05). The

bottom panel shows the transcript and CpG island positions.

Performance of LOCUS multivariate analyses over standard approaches. The high replica-

tion rates achieved using LOCUS are largely attributable to its flexible hierarchical sparse regression

model which exploits shared association patterns across all genetic variants and proteomic levels (Fig-

ures 1a–c). Indeed, the increased statistical power of LOCUS over standard univariate approaches has

been extensively assessed11, and additional evidence using genetic variants from the Ottawa cohort

and synthetic outcomes emulating the proteomic data is available in Appendix A.

The univariate approach GEMMA14 would have missed 18 of the 113 validated hits (16%) using a

conservative yet standard genome-wide Bonferroni correction of α = 0.05 (p < α/275, 297/133 for MS

and p < α/275, 297/1, 096 for SomaLogic), and 14 hits (12%) with a permissive Bonferroni correction

α = 0.25; see Online Table S5. Moreover, the sparse selection of LOCUS highlights candidate variants

with promising functional evidence, even in regions with strong linkage disequilibrium (LD) structures;

we next provide two illustrations.

The first example concerns a locus associated with the SomaLogic levels of the HGFL (hepatocyte

growth factor-like) protein, encoded by the macrophage-stimulating MST1 gene (Figure 2a). At

FDR 5%, two variants (rs1800668 and rs56116382) were associated with the HGFL levels. GEMMA

highlighted a large LD block, with 15 SNPs significant at Bonferroni level α = 0.05. The pQTLs

selected by LOCUS corresponded to the second and third most significant hits of GEMMA. One of

these two, rs1800668, is located 326 Kb upstream of the MST1 gene, within a gene-dense region

(> 40 genes). It had the highest overlap in epigenomic annotation marks (336 out of 450 marks,
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enrichment p = 2.06 × 10−3) and is a known eQTL for many genes (25 including MST1 ) in several

tissues (Online Table S2). Interestingly, public pQTL studies reported associations of this SNP with

23 distinct proteins (Online Table S3), but not with HGFL. The top hit identified by the univariate

analysis, rs13062429, had no significant epigenomic enrichment (5 out of 450 marks); it was not picked

by LOCUS.

The second example concerns the MHC region, with evidence of cis regulation of the CO4A MS

protein levels (Figure 2b). Here, the LD structure is slightly simpler, and GEMMA identified four

SNPs after Bonferroni adjustment with α = 0.05. At FDR 5%, LOCUS selected two variants, one of

which, rs433061, was the top hit from univariate analyses (p = 3.94×10−27). This variant colocalized

with 156 epigenomic marks (enrichment p = 0.0184) and was 442 base pairs away from a transcription

start site (compared to random SNPs p = 0.0253). This SNP is a known cis eQTL for the C4A

gene in many tissues, including liver, arteries and adipose tissue, as well as for > 70 other transcripts

(Online Table S2). It has already been described as a pQTL for CO4A and 27 other proteins (Online

Table S3), suggesting a pleiotropic role.

These two examples indicate that the parsimonious selection of LOCUS can uncover SNPs that

colocalize with many epigenomic marks and eQTLs, which supports possible regulatory roles. The

next two sections generalize these observations for all validated pQTLs identified by LOCUS.

Colocalization with eQTLs and evidence for regulatory impact. We assessed the overlap

of the 113 validated pQTLs with known eQTLs. Seventy-seven of the 104 SNPs involved in our

pQTL associations had one or more eQTL associations in at least one tissue. These SNPs have

been implicated in 83 eQTL associations, representing a significant enrichment (p < 2.2 × 10−16).

Forty-nine of these 77 SNPs were eQTL variants for the gene coding for the protein with which

they were associated in our datasets. Our pQTLs were also enriched in epigenome annotation marks

(p = 9.20 × 10−4) and significantly closer to transcription start sites compared to randomly chosen

SNP sets (p = 9.99 × 10−6). These observations suggest potential functional consequences of our

pQTL hits.

Colocalization with GWAS risk loci. A total of 217 previously reported genome-wide associations

overlapped our validated pQTL loci, corresponding to 139 unique traits mapping to 68 distinct regions

(based on LD r2 > 0.8). Nineteen sentinel SNPs, i.e., SNPs specifically identified by LOCUS pQTL

analyses, were directly involved in these associations (Online Table S8) representing a significant

enrichment (p < 2.2 × 10−16). Some of these results generate useful hypotheses to be explored in

future research.

For instance, our aforementioned HGFL pQTL, rs1800668, is in strong LD (r2 > 0.95) with

rs9858542 and rs3197999, which are known to associate with Crohn’s disease15,16. While gene causality

remains to be demonstrated, our pQTL finding may be of clinical relevance given the prevalence of

Crohn’s disease in overweight and obese subjects17; the region would merit follow-up in inflammatory

bowel disease cohorts.

Another example concerns an association between rs3865444 and the Siglec-3 protein, whose coding

gene, CD33, has been reported as a risk factor for Alzheimer’s disease18. As subjects obese in midlife

are more at risk of developing late-life Alzheimer’s19, this pQTL may help to better understand the

genetic bases of Alzheimer’s disease and dementia; its potential as a prognosis biomarker should be

studied in Alzheimer’s cohorts, ideally using weight records.
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Figure 3: Associations of proteins under genetic control with clinical parameters, and trans-pQTLs associations. (a)

Network displaying the associations (FDR < 5%) between protein levels and clinical variables obtained by meta-analysis,

adjusting for age, gender and BMI. Nodes for clinical parameters are in dark grey with black borders (fasting glucose,

HDL, HOMA-IR, insulin resistance, LDL, total cholesterol, triglycerides, visceral adiposity index); proteins are in light

grey, and type of genetic control, cis or trans, is depicted with circular or square nodes, respectively. The edge thickness

is proportional to the significance of association, and the node size is proportional to its connectivity. (b) Circular plot

showing the trans-pQTL associations uncovered by LOCUS (FDR < 5% for discovery and validation). Each arrow

starts from the pQTL SNP with label indicating its closest gene (grey) and points to the gene (black) coding for the

controlled protein.

Proteins as endophenotypes to study the genetics of obesity. Annotation queries suggested

that most pQTLs had implications in inflammation, insulin resistance, lipid metabolism or cardio-

vascular diseases (CVD). We performed a more systematic evaluation of their clinical relevance in a

meta-analysis of the DiOGenes and Ottawa clinical and proteomic data, and found that 35 of the

88 proteins under genetic control had associations with dyslipidemia, insulin resistance or visceral

fat-related measurements at FDR 5%, with consistent directions of effects in the two cohorts (On-

line Table S9). These associations should be attributable metabolic factors independently of overall

adiposity, as we controlled for BMI as a potential confounder. Remarkably, we found that the 88

genetically-driven proteins are significantly more associated with the clinical variables than randomly

chosen protein sets (p = 0.014, see Methods); this enrichment suggests that the primary pQTL anal-

yses can help uncover potential proteomic biomarkers for the metabolic syndrome.

Figure 3a displays the associations as a network. The triglyceride measurements and visceral

adiposity index (VAI) had the highest degree of connectivity and were connected with measures of

insulin resistance and other lipid traits via proteins such as FA7, IL1AP, KYNU, PROC, RARR2 and

WFKN2. CFAB, FETUA, PA2GA had lower connectivity, yet are relevant in the context of obe-

sity20–22. Finally, several trans-regulated proteins were implicated in clinical associations: CADH5,

CD209 and LYAM2, all controlled by the pleiotropic ABO locus; HEMO (Hemopexin), a liver gly-

coprotein controlled by the CFH locus, itself coding for another liver glycoprotein; PROC controlled

by its own receptor PROCR; and TXD12 (thioredoxin domain containing 12), controlled by the

DAG1/BSN locus (see also Figure 3b).

The pQTL associations involving proteins with clinical associations at FDR 5% are listed in Table 1.

Subsequent sections discuss the possible functional and biomedical relevance of a selection of pQTL
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Protein Protein name Clin. SNP Chr Position LOCUS PPI pQTL valid. p-value

CADH5 Cadherin-5 L rs8176741 9 136131461 1.00 4.68 × 10−30

CD209 DC-SIGN L/V rs8176741 9 136131461 1.00 7.74 × 10−10

rs2519093 9 136141870 1.00 6.24 × 10−26

CFAB Factor B G/L rs150132450 6 31906334 0.85 9.61 × 10−4

rs641153 6 31914180 1.00 3.92 × 10−12

CNTN2 CNTN2 L rs11240396 1 205205081 1.00 6.82 × 10−14

CO7 C7 L rs71623870 5 40966676 0.83 4.03 × 10−4

ECM1 ECM1 L/V rs34964511 1 150298015 1.00 3.77 × 10−6

rs71578487 1 150340059 1.00 1.07 × 10−11

rs72696900 1 150425256 0.82 1.5 × 10−6

rs11802612 1 150427279 1.00 3.7 × 10−6

rs35094010 1 150449557 1.00 3.76 × 10−6

ESTD Esterase D L rs73193065 13 47383681 0.90 2.31 × 10−15

FA12 Coagulation factor XII L/V rs55785724 5 176817583 1.00 1.34 × 10−5

FA7 Coagulation Factor VII L/V rs3093233 13 113758130 1.00 3.11 × 10−88

FCN2 FCN2 L/V rs3811140 9 137772111 1.00 9.66 × 10−14

FCN3 Ficolin-3 L/V rs10902652 1 27558522 1.00 1.62 × 10−3

FETUA a2-HS-Glycoprotein G rs2593813 3 186332571 1.00 2.47 × 10−10

rs2593813 3 186332571 1.00 4.51 × 10−8

HEMO Hemopexin L rs10801560 1 196714600 1.00 2.36 × 10−26

I17RA IL-17 sR G rs738035 22 17594886 1.00 1.48 × 10−20

I17RB IL-17B R L/V rs35518479 3 53873814 0.76 9.98 × 10−6

IDUA IDUA L/V rs10017289 4 943534 1.00 1.22 × 10−11

IL18R IL-18 Ra L/V rs3836108 2 103037742 1.00 5.22 × 10−26

IL1AP IL-1 R AcP G/L/V rs724608 3 190348810 1.00 8.7 × 10−114

IL6RA IL-6 sRa G rs4845372 1 154415396 1.00 1.72 × 10−81

ITIH3 Inter-alpha-trypsin L/V rs736408 3 52835354 0.97 1.46 × 10−6

inhibitor heavy chain H3

KAIN Kallistatin L rs5511 14 95033595 1.00 9.9 × 10−24

KLKB1 Prekallikrein L rs80177406 4 187166024 0.99 3.54 × 10−6

KNG1 Kininogen HMW L rs1621816 3 186439173 1.00 1.44 × 10−13

KYNU KYNU G/L/V rs6741488 2 143793701 1.00 3.22 × 10−20

LYAM2 sE-Selectin L/V rs2519093 9 136141870 1.00 6.81 × 10−62

LYSC Lysozyme L rs71094714 12 69790495 1.00 8.41 × 10−19

MPRI IGF-II receptor L rs3777411 6 160476945 1.00 4.95 × 10−11

PA2GA NPS-PLA2 G/L/V rs6672057 1 20293791 1.00 3.86 × 10−15

PCSK7 PCSK7 L/V rs11216284 11 117003060 1.00 8.17 × 10−31

PROC Protein C L/V rs141091409 20 33739915 0.43 1.66 × 10−18

RARR2 TIG2 G/L/V rs1047586 7 150035459 0.96 2.39 × 10−11

SIGL6 Siglec-6 L rs77561179 19 52029477 1.00 3.39 × 10−14

SPRL1 SPARCL1 L/V rs7681694 4 88462729 0.99 5.70 × 10−14

TXD12 TXD12 L rs13062429 3 49559485 1.00 2.26 × 10−5

rs34519883 3 49575831 1.00 5.39 × 10−33

WFKN2 WFKN2 G/L/V rs9303566 17 48922281 1.00 3.38 × 10−11

Table 1: Proteins associated with clinical parameters (Figure 3a) and controlled by pQTL variants. All associations

were detected at FDR < 5%. Associations with glycemic traits (fasting glucose, insulin, HOMA-IR) are indicated by

G, with total lipid traits (HDL, LDL, triglycerides, total cholesterol), by L, and with visceral fat (visceral adiposity

index), by V. Trans-pQTL associations are in bold.

associations based on their connection with clinical variables, as summarized by Figure 3a. Forest

plots for this selection are given in Figure 4 to help visualize the effect directions. Unless otherwise

specified, all associations described have meta-analysis FDR corrected p-value below 5%, and we

provide their nominal p-values in parentheses.

CFAB and RARR2, mediators of adipogenesis are under genetic control. CFAB (comple-

ment factor B) and RARR2 (Retinoic acid receptor responder protein 2) levels associate with distinct

clinical parameters (Figures 3a and 4), yet both play a role in adipogenesis and hence are particularly

interesting in the context of obesity and related co-morbidities.

The CFAB protein controls the maturation of adipocytes20. Both the MS and SomaLogic mea-

surements were positively associated with BMI (MS: p = 2.08× 10−8, SomaLogic: p = 2.23× 10−13)

and with fasting insulin (adjusting for BMI; MS: p = 4.45 × 10−5, SomaLogic: p = 3.44 × 10−4).
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Figure 4: Forest plots for associations between a selection of proteins under genetic control and clinical parameters, ad-

justing for age, gender and BMI (Methods). All endpoints are measured in both the Ottawa and DiOGenes cohorts; they

correspond to total lipid levels (first row: total cholesterol, HDL, LDL, triglycerides), glucose/insulin resistance (second

row: fasting glucose, fasting insulin, HOMA-IR) and VAI. In each case, regression coefficients with 95% confidence

intervals are shown for the Ottawa and DiOGenes analyses, and for the meta-analysis. The stars indicate associations

with meta-analysis FDR < 5% (correction applied across all proteins under genetic control, not only those displayed;

see Figure 3a). The order of appearance of the proteins follows that in the text. For proteins with measurements in the

MS and SomaLogic platforms, association results are displayed for both; trans-regulated proteins are in bold.

The CFAB SomaLogic levels were negatively associated with cholesterol (p = 1.43 × 10−3), LDL

(p = 1.30× 10−5), and with HDL at higher FDR (nominal p = 1.47× 10−2, corrected p = 0.11). This

is consistent with previous gene expression findings23.

The MS and SomaLogic analyses independently highlighted the same cis-acting locus as putative

regulator of the CFAB protein. In particular, the sentinel pQTL SNP detected in the SomaLogic

analysis, rs641153, is a missense variant located in the MHC region, 180 base pairs away from a tran-

scription binding site (significantly closer than other SNPs, p = 1.16 × 10−2). Further investigation

using JASPAR and SNP2TFBS indicated that rs641153 may affect the binding sites of four transcrip-

tion factors (EBF1, TFAP2A, TFAP2C and HNFA). In GTEx24, rs641153 is described as an eQTL

for the NELFE and SKIV2L genes in multiple tissues, but not for the CFB gene.

RARR2 (Chemerin protein) is encoded by an essential adipogenesis gene, RARRES2, and regulates

glucose and lipid metabolism by altering the expression of adipocyte genes25. We found significant

associations with triglycerides, fasting insulin and HDL (Figure 4, Online Table S9), which is consistent

with previously described pleiotropic associations of RARRES2 variants with circulating RARR2,

triglyceride levels and diverse measurements related to inflammation26. The MS and SomaLogic

RARR2 levels were strongly associated with BMI and visceral fat, even when controlling for BMI

(Figure 4; Online Table S9); this clarifies the as-yet unclear relation between RARRES2 and visceral

fat mass in obese subjects25.

Our pQTL analyses indicated a cis association between a missense variant, rs1047586, and RARR2.
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This variant was described as an eQTL for multiple genes and as associated with epigenomic marks

(DNA methylation and histone modifications, including H3K27ac and H3K4me1 enhancers)27.

Our analyses illustrate the relevance of CFAB and RARR2 for better understanding metabolic

complications in obese subjects, and provide evidence in favour of their genetic control; both pQTLs

colocalize with several epigenomic marks.

The importance of IL1AP for metabolic syndrome. The IL-1 pathway plays a critical role

in the immune-response associated with obesity and type 2 diabetes28; other IL-1 related cytokines,

such as IL-1ra, are also well documented in the context of type 1 and type 2 diabetes29. The IL1AP

(IL-1 receptor accessory) protein is a co-receptor of the IL-1 receptor, and its soluble levels were

found reduced in obese subjects30. Our analyses found an association between rs724608 and IL1AP,

corroborating previously identified associations with SNPs in LD (r2 = 0.93)30.

We found associations between IL1AP expression and measures of fasting insulin levels (p = 3.88×
10−5), HOMA-IR (p = 3.89× 10−4), triglycerides (p = 1.61× 10−3) and visceral fat (p = 2.1× 10−4)

(Figures 3a and 4). Moreover, worsened metabolic syndrome scores31 were associated with lower

protein levels (p = 1.20× 10−3 in Ottawa and p = 2.50× 10−4 in DiOGenes).

WFKN2, a TGFβ-activity protein with protective effect against metabolic disorders.

The role of the WFKN2 protein and of its coding gene, WFIKKN2, in regulating TGFβ activity has

been extensively studied in muscle and skeletal muscle32, but, to our knowledge, not in other tissues.

We describe it for the first time in the context of obesity and metabolic disorders. We found that

higher protein levels were associated with lower levels of fasting insulin, triglycerides, HOMA-IR and

visceral fat (Figure 4), suggesting a protective role against metabolic dysregulation.

Our analyses suggested that the WFKN2 levels are controlled by rs9303566, which is consistent

with other p- and eQTL studies (Online Tables S6–S7). This SNP was found to be associated with

DNA methylation and histone marks27,33, and is located within 100 base pairs of a transcription

factor binding site, with numerous factors such as MYBL2, NFIC, EP300 and MXI1. It is in strong

LD with other SNPs with potential regulatory impact; for instance, it is located 9Kb upstream to

rs8072476 (r2 = 0.97), which overlaps another cluster of transcription factor binding sites (FOXA1,

ESR1, USF1 & 2, TFAP2A & 2C).

Inflammation mediated proteins and their role in insulin resistance. We found a cis effect of

rs6741488 on KYNU (Kynureninase) plasmatic levels. KYNU is an enzyme involved in the biosynthesis

of nicotinamide adenine dinucleotide (NAD) cofactors from tryptophan. This protein and its pathway

have been found to be particularly relevant for obesity and associated metabolic disorders. KYNU

was up-regulated by pro-inflammatory cytokines in human primary adipocytes, and more so in the

omental adipose tissue of obese compared to lean control subjects34. Other studies indicated that

the kynurenine pathway (KP) may act as an inflammatory sensor, and that increased levels of its

catabolites may be linked with several cardiometabolic defects, including CVD, diabetes and obesity35.

In our cohorts, higher KYNU levels were associated with decreased HDL levels (p = 6.66×10−4), and

increased triglycerides levels (p = 3.43 × 10−8), visceral fat (p = 2.51 × 10−8) and insulin resistance

(marginally, nominal p = 2.53 × 10−2, corrected p = 0.17), see Figure 4; as expected, higher protein

levels were associated with a worsened metabolic syndrome score (Ottawa p = 8.23×10−5; DiOGenes

p = 3.62× 10−6).
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Recent work suggested a causal link between obesity and cancer, mediated by KP activation

through inflammatory mechanisms36. Interestingly, our analyses highlighted two soluble interleukin

receptor antagonist proteins, namely IL6RA and I17RA, that were both under genetic control and

associated with insulin resistance (Figure 3a). We did not find significant correlation between the

I17RA and KYNU protein levels, but we did observe a significant negative correlation between IL6RA

and KYNU (Ottawa p = 0.01 and DiOGenes p = 4×10−3). We found a link between the plasma levels

of KYNU and pro-inflammatory molecules, namely, IL6, IFNG and TNFα. In the Ottawa cohort,

where subjects displayed high low-grade inflammation status, KYNU was positively associated with

IL6 and IFNG at FDR 5%, while in DiOGenes, we found a positive association with IFNG only

(Appendix C). Finally, metabolic dysfunctions mediated via KP may relate to another inflammatory

pathology, namely, psoriasis37, a skin disease aggravated by obesity and improved by weight loss38,39.

Our results thus highlighted pQTLs with probable roles in inflammation and subsequent metabolic

dysfunctions, reinforcing previous discussion35,40 of the potential of KP therapeutic inhibitors against

CVD and metabolic disorders.

Below, we focus on trans-regulatory mechanisms that may be relevant to metabolic disorders in the

obese population. Indeed, owing to its potential for the detection of weak effects, LOCUS identified

several trans and pleiotropic effects that suggest novel metabolic pathways (Figure 3b).

Pleiotropic effects from the ABO locus onto CADH5, CD209, INSR, LYAM2 and TIE1.

ABO is a well-known pleiotropic locus associated with coronary artery diseases, type 2 diabetes, liver

enzyme levels (alkaline phosphatase) and lipid levels2–4. Our analyses highlighted two independent

sentinel SNPs in the ABO region: rs2519093 and rs8176741 (r2 = 0.03). The former SNP is trans-

acting on E-selectin (protein LYAM2 encoded by SELE), the Insulin Receptor and the CD209 antigen.

The latter SNP is trans-acting on the Tyrosine-protein kinase receptor (Tie-1), Cadherin-5 and CD209.

Both SNPs were reported as cis-acting eQTL variants for ABO, OBP2B and SURF1, and further

queries in public databases indicated that rs8176741 may affect the binding sites for three transcription

factors (Myc, MYC-MAX and Arnt), suggesting a complex gene regulation circuitry.

Our clinical analyses indicated associations of CD209 and LYAM2 with triglycerides and visceral

fat, and CADH5 with triglycerides only (Figure 4). All were associated with triglyceride levels, and

LYAM2 and CD209 were associated with visceral fat (Figures 3a and 4). Moreover, CD209 may have

an important role in controlling lipid levels as it was associated with HDL (p = 7.58× 10−6): higher

CD209 levels had higher HDL, lower triglyceride levels, and, consistently with these effects, lower

visceral fat index. Dyslipidemia is a risk factor for Non-Alcoholic Fatty Liver Disease (NAFLD)41, and

the CD209 gene levels have been reported as differentially expressed in patients with Non-Alcoholic

Steatohepatitis (NASH) compared to healthy subjects42. The role of circulating protein levels of

CD209 could be further studied in NASH/NAFLD cohorts.

Finally, the LYAM2 levels were associated with all the glycemic variables in the Ottawa cohort

(fasting glucose: p = 6.43 × 10−6, fasting insulin: p = 3.54 × 10−4, HOMA-IR: p = 1.8 × 10−4),

but only with fasting glucose in the DiOGenes cohort (p = 8.91 × 10−4), although we observed a

suggestive association with HOMA-IR (nominal p = 0.02, corrected p = 0.15). Since the Ottawa

subjects are more insulin-resistant than the DiOGenes subjects (average HOMA-IR with standard

deviation: 4.97(3.88) versus 3.00(1.71), p = 2.52× 10−18; Online Table S4), LYAM2 might represent

a marker of insulin-resistance severity. Consistent with this hypothesis, the plasma levels of LYAM2

are employed as a biomarkers of endothelial dysfunction and risk of type 2 diabetes43.

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524405doi: bioRxiv preprint 

https://doi.org/10.1101/524405


Complement/coagulation: a trans-acting insertion linking PROC and its receptor. PROC

(Protein C, coding gene PROC on chromosome 2) and its paralog protein FA7 (Coagulation Factor

7, coding gene F7 on chromosome 13) regulate the complement and the coagulation systems. Both

systems promote inflammation44 and contribute to metabolic dysfunction in the adipose tissue and

liver45. Our analyses suggested novel pQTLs for these proteins (Online Table S5): FA7 was associ-

ated with rs3093233, which is a known eQTL of F7 and F10 in several tissues (Online Table S7).

PROC may be controlled by trans-regulatory mechanisms, initiated in its receptor gene, PROCR, on

chromosome 20; it was indeed associated with an insertion, rs141091409, located 20Kb upstream of

PROCR, an association observed with both our proteomic platforms. Previous studies found associ-

ations between CVD and variants located in the PROC or PROCR genes46,47. Interestingly, our hit,

rs141091409, was in strong LD (r2 > 0.95) with the missense variant rs867186, previously identified

as associated with coronary heart disease47.

Our clinical analyses support the relation of PROC and FA7 levels with lipid traits: both were

positively associated with cholesterol, triglycerides and visceral fat (Figures 3a and 4). PROC levels

were quantified by both platforms, and displayed consistent results. The SomaLogic measurements of

PROC were positively associated with LDL (p = 5.39 × 10−5). The role of these proteins for CVD

and NAFLD diseases in the overweight/obese population would merit further investigation.

XRCC6, a DNA repair protein as putative biomarker for metabolic disorders. We iden-

tified a novel trans pQTL for XRCC6 (X-Ray Repair Complementing Defective Repair In Chinese

Hamster Cells; also known as Ku70). The XRCC6 gene activates DNA-dependent protein kinases

(DNA-PK) to repair double-stranded DNA breaks by nonhomologous end joining. DNA-PKs have

been linked to lipogenesis in response to feeding and insulin signaling48. DNA-PK inhibitors may re-

duce the risk of obesity and type 2 diabetes by activating multiple AMPK targets49. A recent review

discussed the role of DNA-PK in energy metabolism, and in particular, the conversion of carbohydrates

into fatty acids in the liver, in response to insulin50. It described increased DNA-PK activity with

age, and links with mitochondrial loss in skeletal muscle and weight gain. Finally, XRCC6 functions

have been reported as associated with regulation of beta-cell proliferation, islet expansion, increased

insulin levels and decreased glucose levels49,51.

We observed significant associations between the XRCC6 protein levels and several clinical vari-

ables in the Ottawa cohort (FDR < 5%). Higher expression was associated with decreased HDL

(p = 5.83×10−4), as well as with higher triglycerides (p = 4.39×10−4), insulin levels (p = 4.50×10−4)

and visceral adiposity (p = 5.94 × 10−5; Figure 4). We only found marginal associations using the

DiOGenes data for insulin levels (nominal p = 0.02, corrected p = 0.14) and HOMA-IR (nominal

p = 0.02, corrected p = 0.16). The directionality of these effects was consistent in both cohorts. As

the Ottawa subjects were more severely obese, the effects might be larger for subjects with pronounced

metabolic syndrome, but this would require confirmation.

Our pQTL sentinel SNP, rs4756623, is intronic and located within the LRRC4C gene, a binding

partner for Netrin G1 and member of the axon guidance52. To our knowledge, LRRC4C has not

been previously described in the context of obesity, insulin resistance or type 2 diabetes. However,

its partner Netrin G1 is known to promote adipose tissue macrophage retention, inflammation and

insulin resistance in obese mice53. The underlying regulatory mechanisms between rs4756623 and

the XRCC6 locus should be clarified, and functional studies will be required to understand their

physiological impact.
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Discussion

Despite important technological advances, large-scale pQTL studies remain infrequent, owing to their

high costs2–4,13,54. To date, all but our recent study3 have focused on the general population and

have assessed links with diseases by relying on information from different studies.

Here, we described the first integrative pQTL study that relates the associations discovered to

metabolic disorders, such as insulin resistance and dyslipidemia, in the obese population considered.

Our Bayesian method LOCUS confirmed many pQTLs highlighted in previous studies, despite our

sample sizes 2.5 to 18 times smaller, and revealed a number of novel pQTLs, with sound evidence for

functional relevance and implications for the development of the metabolic syndrome. Our two-stage

approach achieved very high replication rates (> 80%), and validated new findings, which standard

univariate approaches would have missed (e.g., the aforementioned cis and trans associations with

CO7, INSR and XRCC6). This corroborates numerical experiments demonstrating the increased

statistical power of LOCUS over existing approaches11. Owing to its joint modelling of all proteins and

genetic variants, LOCUS both accounts for linkage disequilibrium and exploits the shared regulatory

architecture across molecular entities; this drastically reduces the multiplicity burden and enhances

the detection of weak effects. Finally, our analyses indicated that proteins under genetic control are

enriched in associations with clinical parameters pertaining to obesity co-morbidities, which further

supports a genetic basis of these parameters and emphasizes the advantages of pQTL studies for

elucidating the underlying functional mechanisms. Our complete pQTL and clinical association results

offer opportunities to generate further hypotheses about therapeutic options; they are accessible from

the searchable online database https://locus-pqtl.epfl.ch.

The applicability of LOCUS goes beyond pQTL studies, as it is tailored to any genomic, proteomic,

lipidomic or methylation QTL analyses and can be used for genome-wide association with several

clinical endpoints. Its multivariate framework is made efficient at a genome-wide scale thanks to

a scalable batch-wise variational algorithm and an effective C++/R implementation. Our MS and

SomaLogic analyses completed in a few hours for 275K tag SNPs representing information from

about 5M common markers. Moreover, our method scales linearly in terms of memory and CPU

usage; for instance, analyses of 2M SNPs and 1000 proteins run in less than 40 hours and with a

memory footprint smaller than 256Gb (see profiling in Appendix B). To our knowledge, no other

fully multivariate method is applicable to large molecular QTL studies without drastic preliminary

dimension reduction; LOCUS therefore opens new perspectives for uncovering weak and complex

effects.

Methods

Ethics. The study was approved by the local human research ethic committees. Participants provided

informed written consent, and all procedures were conducted in accordance with the Declaration of

Helsinki.

Study samples. The Ottawa study was a medically supervised program set up by the Weight Man-

agement Clinic of Ottawa9. Subjects under medication known to affect weight, glucose homeostasis

or thyroid indices were excluded from all analyses, and subjects who were not under fasting conditions

at plasma sample collection were excluded from the proteomic analyses.
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The DiOGenes study was a multi-center pan-European program10. Eight partner states par-

ticipated to the study: Bulgaria, the Czech Republic, Denmark, Germany, Greece, the Netherlands,

Spain and the United Kingdom. Participants were overweight/obese (BMI between 27 and 45 kg/m2),

non-diabetic and otherwise healthy.

The main clinical characteristics of both cohorts are given in Online Table S4.

Proteomic data. Plasma protein expression data were obtained using two types of technologies:

mass-spectrometry (MS) and a multiplexed aptamer-based assay developed by SomaLogic12. Samples

were randomized, ensuring that the plate numbers were not associated with age, gender, ethnicity,

weight-related measures, glycemic indices, measures of chemical biochemistry, and, for the DiOGenes

samples, collection centers.

The MS proteomic quantification used plasma samples spiked with protein standard lactoglobulin

(LACB). Samples were immuno-depleted, reduced, digested, isobarically 6-plex labeled and purified.

They were analyzed in duplicates on two separate but identical systems using linear ion trap with

Orbitrap Elite analyzer and Ultimate 3000 RSLCnano System (Thermo Scientific). Protein identifi-

cation was done with the UniProtKB/Swiss-Prot database, using Mascot 2.4.0 (Matrix Sciences) and

Scaffold 4.2.1 (Proteome Software). Both peptide and protein false discovery rates (FDR) were set to

1%, with a criterion of two unique peptides. The relative quantitative protein values corresponded to

the log2-transformation of the protein ratio fold changes with respect to their measurements in the

biological plasma reference sample. The sample preparation and all other manipulations relative to

the MS measurements are detailed further in previous work55–57.

The SomaLogic protein measurements were characterized using the SOMAscan assay12, which

relies on fluorescent labelling of poly-nucleotide aptamers targeting specific protein epitopes. Protein

measurements were obtained in relative fluorescence unit and were then log2-transformed.

We discarded MS-based proteins if their measurements were missing for more than 5% of the

samples, leaving 210 proteins in the Ottawa cohort and 136 in the DiOGenes cohort; we restricted all

downstream analyses to the 133 proteins available for both cohorts. The SomaLogic measurements

had no missing values. Totals of 1, 100 and 1, 129 proteins were assayed in the Ottawa and DiOGenes

cohorts. All our analyses focused on the 1, 096 proteins quantified for both cohorts. The overlap

between the MS and SomaLogic panels was of 72 proteins only.

We excluded samples with extreme expression values in more than 5% of the proteins, i.e., values

beyond the outer fences of the empirical distribution (q0.25 − 3 × IQR, q0.75 + 3 × IQR, where q0.25,

q0.75 are the lower and upper quartiles, and IQR is the interquartile range). After this quality control

procedure, approximately 10 to 20 samples were removed from each of the four datasets; 577 and 428

Ottawa samples remained in the MS and SomaLogic datasets, respectively, and 481 and 563 DiOGenes

samples remained in the MS and SomaLogic datasets, respectively.

Genotyping. Genotypes were generated using HumanCoreExome-12 v1.1 Illumina SNP arrays (Il-

lumina, Inc., San Diego, CA), according to their manufacturer’s instructions and were called with the

GenomeStudio Software provided by Illumina. Preprocessing steps, including imputation and quality

control, have been previously documented58. We discarded SNPs with call rate < 95%, violating

Hardy–Weinberg equilibrium (FDR < 20%), and we discarded subjects with low call rate (< 95%),

abnormally high autosomal heterozygosity (FDR < 1%), an XXY karyotype, or gender inconsistencies

between genotype data and clinical records. For subjects with identity-by-state IBS> 95%, we kept
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only the one with the highest call rate. The subjects from both cohorts were of European ancestry

and the two cohorts had similar genetic structure. We used principal component analyses separately

on each cohort to exclude subjects that were extremely heterogeneous genetically. We performed

genotype imputation using SHAPEIT and IMPUTE2, based on the European reference panel from

the 1, 000 Genome project (March 2012 release, phase 1 version 3). We then discarded SNPs with

INFO score < 0.8, which left 4.9M imputed SNPs in both datasets. In order to avoid near-collinearity,

which may render multivariate analyses unstable, we applied a light linkage disequilibrium (LD) prun-

ing with PLINK using pairwise r2 threshold 0.95. We applied a minor allele frequency threshold of

5%, after having restricted the genotype data to the subjects with available proteomic data.

The above steps were performed separately for the Ottawa and the DiOGenes cohorts, so in order

to define a common set of SNPs for discovery and replication, we restricted each dataset to the SNPs

available for both cohorts. After all genetic quality controls, and in both cohorts, p = 275, 485 SNPs

remained for the SomaLogic analysis and p = 275, 297 remained for the MS analysis. In the Ottawa

cohort n = 376 subjects had both genotype and MS proteomic data, and n = 394 subjects had both

genotype and MS proteomic data. In the DiOGenes cohort, these numbers were n = 400 and 548.

Clinical data. Both cohorts had records on age, gender, anthropometric traits (weight and BMI),

glycemic variables (fasting glucose, fasting insulin, HOMA-IR), and total lipid levels obtained from

blood biochemistry (total cholesterol, triglycerides, HDL). We derived LDL values using the Friedewald

formula59, and obtained gender-specific visceral adiposity index (VAI) values using the formula of

Amato et al.60. In each cohort and for each clinical variable, we removed a few samples with extreme

measurements, similarly as for the proteomic data quality control.

Overview of LOCUS. LOCUS is an efficient Bayesian approach for estimating QTL associations

jointly from p = 105 − 106 genetic variants, typically SNPs, and q = 102 − 104 expression outcomes,

for n = 102− 104 individuals; see Figure 1a. It is based on a hierarchical sparse regression model that

involves a collection of high-dimensional regressions, one per outcome yt (centered),

yt = Xβt + εt, εt ∼ Nn

(
0, τ−1

t In
)
, t = 1, . . . , q. (1)

Each outcome, yt, is related linearly to all p candidate predictor SNPs (centered), X = (X1, . . . ,Xp),

and has a specific residual precision, τt, to which we assign a Gamma prior, τt ∼ Gamma(ηt, κt). As

p, q � n, we enforce sparsity of the p × 1 regression parameters βt by placing a spike-and-slab prior

on each of their components, namely, for s = 1, . . . , p,

βst | γst, σ2, τt ∼ γstN
(
0, σ2 τ−1

t

)
+ (1− γst) δ0, γst | ωs ∼ Bernoulli (ωs) , (2)

where δ0 is the Dirac distribution. Hence, to each regression parameter βst corresponds a binary

latent parameter γst, which acts as a “predictor-response association indicator”: the predictor Xs

is associated with the response yt if and only if γst = 1. The model thus enforces sparsity on the

regression coefficients, and LOCUS identifies just one or a few markers per relevant locus, even in

regions of high LD. The parameter σ represents the typical size of nonzero effects and is modulated

by the residual scale, τ
−1/2
t , of the response concerned by the effect; we infer σ from the data using a

Gamma prior specification, σ−2 ∼ Gamma (λ, ν). Finally, we let the probability parameter ωs have

a Beta distribution,

ωs ∼ Beta (as, bs) , as, bs > 0. (3)
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As it is involved in the Bernoulli prior specification of all γs1, . . . , γsq, the parameter ωs controls the

proportion of responses associated with the predictor Xs, and hence directly represents the propensity

of predictors to be pleiotropic “hotspots”. Both ωs and σ2 allow the leveraging of shared association

patterns across all molecular variables, and enhances the estimation of weak trans and pleiotropic

QTL effects. A graphical representation of the model is provided in Figure 1b; see Ruffieux et al.11

for details. LOCUS estimates interpretable posterior probabilities of association for all SNP-outcome

pairs (Figure 1c), from which Bayesian false discovery rates are easily calculated.

Inference on high-dimensional Bayesian models is both computationally and statistically difficult.

Previous joint QTL approaches61,62 are based on sampling procedures, such as Markov Chain Monte

Carlo (MCMC) algorithms, and require prohibitive computational times on data with more than few

hundreds of SNPs or outcomes. LOCUS uses a fast deterministic variational inference algorithm, which

scales to the typical sizes of QTL problems. Previous work11 compared LOCUS with existing QTL

methods, whether sampling-based or deterministic, univariate or multivariate. We recently augmented

our algorithm with a simulated annealing procedure63 to enhance exploration of multimodal parameter

spaces, as induced by strong LD structures. LOCUS is tailored to genomic, proteomic, lipidomic and

methylation QTL analyses; it can also be used for genome-wide association with several clinical

endpoints. Details and extensive performance studies are available11; see also Appendices A and B

for simulations based on the Ottawa pQTL data and for a runtime profiling.

The applicability of a fully multivariate method to large molecular QTL data also hinges on the

effective computational implementation of its algorithmic procedure. The annealed variational updates

of LOCUS are analytical and performed by batches of variables. The software is written in R with

C++ subroutines; it is publicly available at https://github.com/hruffieux/locus.

Proteomic quantitative trait locus analyses. We performed pQTL analyses separately for each

platform, i.e., one analysis for the MS proteomic dataset, and another for the SomaLogic proteomic

dataset. Each analysis comprised two stages: a discovery stage using the Ottawa cohort and a

replication stage based on the DiOGenes cohort.

For discovery, we used the multivariate Bayesian method LOCUS on both the MS and the Soma-

Logic datasets, with an annealing schedule of 50 geometrically-spaced temperatures, and set the initial

temperature to 20; pilot experiments indicated that estimation was not sensitive to these choices. We

used a convergence tolerance of 10−3 on the absolute changes in the objective function as the stop-

ping criterion. The algorithm can handle missing data in the response matrix, so no imputation was

necessary for the MS proteomic data.

We adjusted all analyses for age, gender, and BMI at baseline. No important stratification was

observed in the genotype data; the first ten principal components together explained little of the

total variance (< 4%), so we did not include them as covariates. We derived FDR values from the

posterior probabilities of association obtained between each SNP and each protein, and reported pQTL

associations using an FDR threshold of 5%. Both LOCUS runs completed within hours; convergence

was reached after 2 hours (79 iterations) for the MS dataset, and after 10 hours and 20 minutes (72

iterations) for the SomaLogic dataset, on an Intel Xeon CPU, 2.60 GHz. The method can handle

larger datasets, e.g., it takes less than a day to run the MS data with 3 million SNPs and on the

SomaLogic data with 1 million SNPs.

We performed a validation study of the pQTLs discovered using the DiOGenes cohort with

GEMMA64, with centered relatedness matrix (default) and p-values from (two-sided) Wald tests.
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We then obtained adjusted p-values using Benjamini–Hochberg false discovery rates, and validated

our hits using again an FDR threshold of 5%.

pQTL annotation. We used the Ensembl database (GRCh37, release 94) to retrieve the list of

genes within 2Mb of each sentinel SNP (i.e., involved in the pQTL associations identified by LOCUS),

and retrieved the SNPs in LD (r2 > 0.8), limiting the search to 500Kb upstream and downstream of

the sentinel SNP position. We called cis pQTLs, all sentinel SNPs located within ±1Mb of the gene

encoding for the controlled protein, and trans pQTLs, all other pQTLs.

We evaluated the overlap between our pQTL associations and previously reported pQTL signals

with the PhenoScanner database65, using the default p-value threshold p < 1×10−5 and an LD proxy

search (r2 > 0.8).

Epigenomic annotation. We retrieved epigenomic annotations of 1, 000 Genomes Project (release

20110521) from Pickrell66. The data covered 450 annotation features, each binary-coded according to

the presence or absence of overlap with the SNPs. The features corresponded to DNase-I hypersen-

sitivity, chromatin state, SNP consequences (coding, non-coding, 5’UTR, 3’UTR, etc), synonymous

and nonsynonymous status and histone modification marks. We obtained distances to the closest

transcription start site from the UCSC genome browser. Ninety-seven of our 104 validated sentinel

SNPs had annotation data; to evaluate their functional enrichment, we resampled SNP sets of size

97 from our initial SNP panel, and, for each set, we computed the cumulated number of annotations.

We did the same for the distances to transcription start sites. We repeated this 105 times to derive

empirical p-values.

Colocalization with known eQTLs and with GWAS risk loci. We evaluated the overlap of

our pQTLs with the eQTL variants reported by GTEx Consortium24 (release 7) at q-value < 0.05.

We considered all 49 tissues listed by GTEx but eQTL SNPs for several tissues were counted only

once. We made both general queries and queries asking whether a pQTL uncovered by LOCUS was

an eQTL for the gene coding for the controlled protein.

We retrieved known associations between the validated sentinel pQTLs and diseases or clinical

traits, based on the GWAS catalog67 (v1.0 release e92), and also using an LD proxy search (r2 > 0.8).

We evaluated enrichment for eQTL and risk loci using one-sided Fisher exact tests based on the

104 validated sentinel pQTLs.

Associations with clinical variables. We tested associations between the proteins under genetic

control and clinical parameters separately in each cohort. For the DiOGenes data, we used lin-

ear mixed-effect models, adjusting for age, gender as fixed effects, and center as a random effect.

For the Ottawa data, we used linear models, adjusting for age and gender. Except when testing

associations with anthropomorphic traits, all analyses were also adjusted for BMI. For the clinical

variables available in the two cohorts (total cholesterol, HDL, LDL, fasting glucose, fasting insulin,

HOMA-IR, triglycerides and VAI), we performed meta-analyses using the R package metafor. We

used random-effects models to account for inter-study variability, which may in part result from ge-

ographical differences, and employed two-sided Wald tests for fixed effects, and Cochran Q-tests for

measuring residual heterogeneity; we did not interpret the results if between-study heterogeneity esti-

mates were high (I2 > 80%), and evaluated the directional consistency of the effects between Ottawa
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and DiOGenes. We adjusted for multiplicity using Benjamini–Hochberg correction across all tests,

i.e., involving the 88 tested proteins and the two proteomic technologies, and reported associations

using a 5% FDR threshold.

We assessed whether the proteins under genetic control were enriched in associations with the

clinical variables. We randomly selected 105 sets of 88 proteins from the panel used for the pQTL

analyses and derived an empirical p-value by counting, for each set, the number of proteins with at

least one clinical association at FDR 5%.

Data availability. The MS proteomic data have been deposited on the ProteomeXchange

Consortium via the PRIDE partner repository http://www.proteomexchange.org with the

dataset identifiers PXD005216 for DiOGenes and PXD009350 for Ottawa. The Soma-

Logic proteomic data are available from the Open Science Framework, at https://osf.

io/v8mes/?view_only=13e4ccd127024ee7b4c819385325925c and https://osf.io/s4v8t/?view_

only=90637f2941e14ec986e5888491fbdbbb, respectively for Ottawa and DiOGenes. All pQTL and

clinical association results can be browsed from our online database: https://locus-pqtl.epfl.ch.

Other data that support the findings of this study are available from the corresponding author upon

reasonable request.

Code availability. All statistical analyses were performed using the R environment (version 3.3.2).

LOCUS and ECHOSEQ are freely available from Github.

URLs. ECHOSEQ: https://github.com/hruffieux/echoseq

Ensembl: http://grch37.ensembl.org/index.html

GEMMA: http://www.xzlab.org/software.html

GTEx: https://gtexportal.org/home

GWAS Catalog: https://www.ebi.ac.uk/gwas

IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

JASPAR: http://jaspar.genereg.net

LOCUS: https://github.com/hruffieux/locus

Metafor: https://cran.r-project.org/web/packages/metafor/index.html

PhenoScanner: http://www.phenoscanner.medschl.cam.ac.uk

PLINK: http://zzz.bwh.harvard.edu/plink

ProteomeXchange: http://www.proteomexchange.org

R: https://www.r-project.org

SHAPEIT: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html

SNP2TFBS: https://ccg.vital-it.ch/cgi-bin/snp2tfbs/snpviewer_form_parser.cgi

UCSC: https://genome.ucsc.edu

UniProt: https://www.uniprot.org
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simulated annealing procedure.
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A Statistical performance of LOCUS

We evaluated the expected performance of LOCUS on our data by conducting two simulation studies.

We compared its statistical power to detect pQTL associations with that of GEMMA14, a univariate

linear mixed model approach. We used the R package echoseq (https://github.com/hruffieux/

echoseq) to generate synthetic data that emulate real data.
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Figure A.1: Selection performance of LOCUS and GEMMA. (a) Truncated average ROC curves with 95% confi-

dence intervals, obtained from 50 replications, for identification of SNP-trait associations. (b) Difference of average

standardized pAUC of LOCUS and GEMMA for a grid of effect sizes (x-axis) and signal sparsity (y-axis), using 20

replications for each scenario. (c) Simulated pattern, and patterns recovered by LOCUS and GEMMA, averaged over

the 50 replications. The plots display a window of 350 SNPs (x-axis) containing the first three SNPs having simulated

associations (blue labels), along with their linkage disequilibrium (LD) pattern. The top panels of the middle and right

plots display the average number of false positives when selecting SNPs at FDR 25%. GEMMA indicates many false

positive associations in regions of high LD, while LOCUS better pinpoints the relevant SNPs.

We ran LOCUS and GEMMA on the SNPs of all n = 376 Ottawa subjects, and on simulated

expression outcomes with residual dependence replicating that of the q = 133 mass-spectrometry pro-
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teomic expression levels. We first used the SNPs from chromosome one (p = 20, 900), and generated

associations between 20 SNPs and 25 proteins chosen randomly, leaving the remaining variables unas-

sociated. Some proteins were under pleiotropic control; we drew the degree of pleiotropy of the 20

SNPs from a positively-skewed Beta distribution, so only a few SNPs were hotspots, i.e., were associ-

ated with many proteins. We generated associations under an additive dose-effect scheme and drew

the proportions of outcome variance explained by a given SNP from a Beta(2, 5) distribution to give

more weight to smaller effect sizes. We then rescaled these proportions so that the variance of each

protein attributable to genetic variation was below 35%. These choices led to an inverse relationship

between minor allele frequencies and effect sizes, which is to be expected under natural selection. We

generated 50 replicates, re-drawing the protein expression levels and effect sizes for each.

The ROC curves of Figure A.1a show a net gain in power for selections with LOCUS compared

to GEMMA. The average standardized partial areas under the curve (pAUC) with 95% confidence

intervals are 0.926± 0.005 for LOCUS and 0.840± 0.005 for GEMMA, using a false positive threshold

of 25%.

In the second simulation, we re-assessed the performance of LOCUS for a grid of data generation

scenarios. We considered a wide range of sparsity levels (numbers of proteins under genetic control)

and effect sizes (proportions of outcome variance explained by the genetic variants). Given the large

number of configurations (247), and in order to limit the computational burden, we used the first

p = 2, 000 SNPs, and ran LOCUS and GEMMA on 20 replicates for each configuration. Figure A.1b

indicates that the superiority of LOCUS over GEMMA generalizes to all data generation scenarios,

as the average standardized pAUC is everywhere greater for LOCUS than for GEMMA.

The performance of LOCUS is largely attributable to its multivariate modelling of all the SNPs

and proteomic outcomes, which allows sharing of information across and within loci, as well as across

different proteins under common genetic regulation. By design, univariate screening approaches do

not exploit association patterns common to multiple outcomes or markers; they analyze the outcomes

individually, and do not account for LD, which increases false discoveries at loci with strong LD (Fig.

A.1c). At a given FDR, such spurious associations hamper the detection of weak but genuine signals.

Owing to its simulated annealing procedure that improves exploration at loci with strong LD, LOCUS

better discriminates truly associated SNPs from their correlated neighbours (Fig. A.1c).

B Computational performance of LOCUS

The runtime of LOCUS for the simulations of Section A was similar to that of GEMMA. On average,

for one replicate, LOCUS took 5 minutes and 26 seconds to complete, while GEMMA took 7 minutes

and 4 seconds, running in parallel on four cores of an Intel Xeon CPU, 2.60 GHz.

Figure B.1 presents runtime profiling for LOCUS run on different numbers of SNPs and molecular

traits on Intel Xeon CPU, 2.40 GHz machines, with 256 Gb RAM. All runs completed within hours.
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Figure B.1: Runtime profiling in CPU hours, for 2.5× 105 to 2× 106 SNPs and 100 to 1000 traits, on an Intel Xeon

CPU at 2.40 GHz with 256 Gb RAM. In each case, the average runtime of five replications is displayed. The same

annealing settings as in the MS and SomaLogic analyses were used (50 geometrically-spaced temperatures and initial

temperature T = 20).

C Correlation between expression levels of KYNU and other inflammation

mediated proteins

Figure C.1 shows the correlation between the expression levels of inflammation mediated proteins, in

Ottawa and DiOGenes.
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Figure C.1: Correlation of KYNU, IFNG, IL6, THFA, IL6RA, i17RA and IL1B in Ottawa (left) and in DiOGenes

(right).
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