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Abstract

In order to further our understanding of how gene expression contributes to key functional properties of 

neurons, we combined publicly accessible gene expression, electrophysiology, and morphology 

measurements to identify cross-cell type correlations between these data modalities. Building on our 

previous work using a similar approach, we distinguished between correlations which were “class-
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driven,” meaning those that could be explained by differences between excitatory and inhibitory cell 

classes, and those that reflected graded phenotypic differences within classes. Taking cell class identity 

into account increased the degree to which our results replicated in an independent dataset as well as 

their correspondence with known modes of ion channel function based on the literature. We also found a 

smaller set of genes whose relationships to electrophysiological or morphological properties appear to 

be specific to either excitatory or inhibitory cell types. Next, using data from Patch-seq experiments, 

allowing simultaneous single-cell characterization of gene expression and electrophysiology, we found 

that some of the gene-property correlations observed across cell types were further predictive of within-

cell type heterogeneity. In summary, we have identified a number of relationships between gene 

expression, electrophysiology, and morphology that provide testable hypotheses for future studies.

Author Summary

The behavior of neurons is governed by their electrical properties, for example how readily they respond 

to a stimulus or at what rate they are able to send signals. Additionally, neurons come in different shapes 

and sizes, and their shape defines how they can form connections with specific partners and thus 

function within the complete circuit. We know that these properties are governed by genes, acting 

acutely or during development, but we do not know which specific genes underlie many of these 

properties. Understanding how gene expression changes the properties of neurons will help in advancing 

our overall understanding of how neurons, and ultimately brains, function. This can in turn help to 

identify potential treatments for brain-related diseases. In this work, we aimed to identify genes whose 

expression showed a relationship with the electrical properties and shape measurements of different 

types of neurons. While our analysis does not identify causal relationships, our findings provide testable 

predictions for future research.
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Introduction

Two prominent features that distinguish neurons from other cells are their electrical activity and their 

characteristic morphology. The specific pattern of electrophysiological activity displayed by a given 

neuron is a core property of its identity as one type of neuron or another. Similarly, different cell types 

often show striking differences in their size, branching complexity, and other morphological features. 

Neuronal cell types defined according to their electrophysiological or morphological characteristics 

show substantial correspondence with one another as well as with those defined using classification 

schemes based on transcriptomic criteria (1). Electrophysiological characteristics of neurons, as well as 

their connectivity patterns, give rise to the computational properties of a given circuit (2,3). Additionally, 

modeling studies show that morphological changes in simulated neurons can critically change their 

signaling capabilities (4–6). Thus, understanding the origins of neuronal electrophysiology and 

morphology is an important step in understanding the mechanisms of brain function, both in the context 

of basic research and in the search for treatments for neuropsychiatric disorders.

A comprehensive understanding of the mechanisms that give rise to electrophysiological or 

morphological diversity must necessarily include a catalogue of the genes whose products contribute to 

these properties. Many genes have been shown experimentally to influence neuronal electrophysiology 

through a variety of mechanisms, including but not limited to ion channel activity, protein trafficking, 

and transcription factor activity (7–9). Processes such as axon guidance and the development of dendrite 

morphology are also known to be under genetic control (10). Despite this, our understanding of the 

relationship between gene expression and electrophysiological or morphological properties is quite 

limited.
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In previous work (11), we combined publicly accessible electrophysiological and gene expression 

datasets in order to examine the relationship between gene expression and electrophysiological 

properties. By matching groups of cells inferred to be similar based on multiple information sources, 

such as the transgenic reporter line and the brain region cells were isolated from, we were able to 

combine separate datasets containing gene expression and electrophysiological data to generate lists of 

genes which were correlated with one of several electrophysiological properties (as outlined in Fig 1A). 

The goal of this approach was to identify candidate genes that could be further studied using knockout 

or knockdown approaches in order to determine whether a causal relationship was present.

One caveat in our prior study is that the gene-electrophysiology correlations we identified may have 

been confounded by overall differences between broad cell classes. Across multiple datasets and cellular 

characterization methods, including gene expression (12–15), and electrophysiology and morphology (1), 

clustering cellular phenotypes in an unbiased manner reveals the major taxonomic difference between 

neurons to be between projecting and non-projecting neurons (13), or in the case of those cell types 

present in the cortex or hippocampus, excitatory and inhibitory neurons (12,14,15). Thus, the commonly 

held view that a neuron’s identity is first and foremost defined by its excitatory or inhibitory identity 

(16) is corroborated across multiple data sources and experimental modalities.

Therefore, we reasoned that the dataset we used previously was potentially susceptible to this 

confounding effect of cell class, since it contained a mixture of cells from different broad cell classes. In 

this work, we will use the term “cell type” to refer to narrowly-defined cell types, and “cell class” to 

refer to those which are broadly-defined (excitatory versus inhibitory or projecting versus non-

projecting). We refer to correlations between gene expression and electrophysiological or morphological 

properties that are explained by differences between cell classes as “class-driven,” (e.g. Fig 1B) and to 

those that exist based on graded differences within broad cell classes as “non-class-driven” (e.g. Fig 1C). 
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We reason that gene-property relationships that are non-class-driven would be more likely to be 

potential causal regulators of the associated property. Although some class-driven correlations likely do 

reflect true relationships between genes and properties which distinguish excitatory from inhibitory 

cells, separating these relationships from instances where one cell class has a higher value of a property 

and coincidentally higher or lower expression of a gene without additional sources of data is not 

possible. Effectively, such situations are analogous to attempting to draw conclusions about correlations 

with only two data points.

Due to limitations in available data, we were unable to address the effect of cell class in our previous 

work (11). Since then, the RNA-seq and electrophysiology datasets from the Allen Institute for Brain 

Science (AIBS) (which we originally used as validation data) have expanded greatly, with more cells 

and more transgenic lines represented. This increase in size, together with the fact that the AIBS data 

were collected using standardized protocols, suggests that this dataset might prove valuable for 

discovering genes correlated with electrophysiological and morphological properties. In addition, the 

growing use of the Patch-seq methodology (17), allowing transcriptomic, electrophysiological, and 

morphological characterization of the same single cell, also affords an opportunity to test gene-property 

correlations.

Leveraging the larger size of the new AIBS dataset, we were able to address limitations of our previous 

study related to excitatory versus inhibitory cell class by employing statistical methods to help mitigate 

the effects of cell class. These methods, together with the larger number of cell types represented in the 

new dataset, allowed us to identify novel electrophysiological and morphological property-related gene 

sets which are potentially more likely to represent meaningful biological relationships.
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Results

Primary Dataset

The primary dataset we used combined groups of cells from mouse visual cortex characterized by the 

Allen Institute for Brain Science (AIBS; http://celltypes.brain-map.org/), where multiple Cre-driver lines 

were used to target cells for characterization. Standard electrophysiological protocols were used to 

characterize cells in vitro, with a subset of these cells further undergoing detailed morphological 

characterization (1). In addition, a separate group of cells were subjected to deep single-cell RNA-

sequencing to characterize cellular transcriptomes (14). Because the same Cre-lines were used to 

characterize cells along multiple modalities of neuronal function, we were able to summarize these data 

to the “cell type” level (reflecting Cre-line, cortical layer, and major neurotransmitter; shown in Table 

S1) by pooling and combining cellular characterization data across different animals and data 

modalities. The definition of multiple cell types within one Cre-line based on cortical layer and major 

neurotransmitter is supported by cross-layer differences in gene expression (14) and in 

electrophysiological properties (Fig S1).

The final combined dataset is composed of 34 inhibitory GABAergic and 14 excitatory glutamatergic 

types (48 total) with electrophysiological data, and 30 inhibitory and 13 excitatory types (43 total) with 

morphological data. The increased size of this dataset is a considerable advance over our prior analysis 

(11), which employed an older version of the same dataset (only 12 cell types) (15). This was made 

possible in part because of more Cre-lines available for analysis and finer cortical layer dissections for 

the transcriptomic data. For each cell type thus defined, we computed the mean expression value for 

each gene represented in the RNA-seq dataset and the mean value of each of sixteen 

electrophysiological and six morphological properties (described in Table S2).
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Analysis Approach

Our goal was to identify, for each electrophysiological or morphological property, genes that were 

correlated with the property (Fig 1A). However, overall differences between excitatory and inhibitory 

cell classes can make the interpretation of such relationships more complicated in several ways. For 

example, Fig 1B shows an example of a gene-property correlation that appears almost entirely class-

driven, meaning that although no relationship appears within either cell class, the apparent relationship 

is entirely driven by differences between cell classes. In this case, inhibitory cell types show higher 

expression of the gene and a greater value of the property compared to excitatory cell types. In contrast, 

Fig 1C shows a non-class-driven relationship, meaning one that manifests in both cell classes, but 

which may be obscured by baseline differences when the cell classes are grouped. In this example, a 

correlation that appears within both classes independently is obscured by a higher value of the property 

in inhibitory compared to excitatory cell types. Although this obscuring effect is present in this particular  

example, it is not required for a relationship to be considered non-class-driven; we expected to see some 

relationships that were consistent both within each class as well as among all cell types.

In order to computationally account for these possibilities, we evaluated each combination of gene and 

property using a statistical model that assesses the predictive value of the gene on the property while 

controlling for the effects of cell class. We termed this model the class-conditional model. This model 

would be expected to identify a significant result when a non-class-driven relationship is present (Fig 

1C), but would not identify relationships that are class-driven (Fig 1B). For comparison, we modeled the 

same gene-property pairs using a class-independent model, which assesses the predictive value of the 

gene on the property irrespective of cell class. This model is similar in principle to the correlational 

method used in our previous work (11) and would be expected to produce a significant result in cases 
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showing class-driven relationships (such as Fig 1B) but might miss some instances of non-class-driven 

relationships (such as Fig 1C).

Another possible gene-property relationship is one where there is an interaction between gene and class, 

meaning that the gene-property relationship is different in excitatory and inhibitory cell types. An 

interaction could indicate either that excitatory and inhibitory cell types both show a correlation between  

the gene and property, but the slopes are in opposite directions (as in the example in Fig 1D), or that the 

gene is correlated with the property only in one cell class. To detect such situations, we introduced a 

third model, the interaction model, which tested whether the relationship between gene expression and 

the property in question was significantly different between excitatory and inhibitory cell types. In 

summary, the three models are designed to answer three different questions: 

Class-independent model:  Is expression of the gene a significant predictor of the property if we assume 

that cell class is not a factor?

Class-conditional model: After accounting for cell class, is the gene’s expression a significant predictor 

of the property?

Interaction model: Is the relationship between the gene’s expression and the property statistically 

different in inhibitory and excitatory cells?
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Accounting for cell class results in the identification of a distinct but overlapping 

set of genes

We first set out to understand how accounting for cell class identity (excitatory or inhibitory) affects the 

interpretation of gene-property relationships. We modeled each relationship with or without including an 

indicator variable for cell class, using the class-conditional or class-independent models described 

above. For most properties, we found that the degree of overlap between the sets of genes identified in 

the two models (at a false discovery rate (FDR) < 0.1) was substantial but far from a complete 

intersection (Fig 2A, Venn diagrams, and Table S2). For example, for after-hyperpolarization (AHP) 

amplitude, we found ~6000 significantly-associated genes in the class-independent model and ~6500 in 

the class-conditional model; out of these, ~3700 genes were shared between models. Thus, accounting 

for cell class results in the identification of a substantially different set of candidate genes, which 

suggests that many of the genes identified in our previous work (11) might reflect class-driven gene-

property relationships.

We next asked how overall differences in morphological and electrophysiological properties between 

excitatory and inhibitory cells affect gene-property relationships. To this end, we used a linear model to 

estimate the effect of cell class on each property. For most properties, there was a significant (p < 0.05) 

effect of cell class. The features of action potential (AP) threshold, input resistance, sag, rheobase, 

branchiness, soma surface, and bifurcation angle are exceptions to this. The existence of a significant 

difference in most properties between excitatory and inhibitory cell types highlights the importance of 

taking cell class into account when attempting to relate these properties to gene expression. The 

properties without a significant difference are likely to be less susceptible to class-driven effects, but the 

class-independent model still might miss potentially interesting relationships due to differences in gene 

expression between classes, resulting in genes which are identified by the class-conditional model only.
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We compared the strength and direction of the relationship in both the class-independent and class-

conditional models by directly comparing the slopes derived from each model for each gene-property 

relationship (where slope indicates the change in the property per 2-fold change in gene expression; 

shown for AHP amplitude in Fig 2B). While there is broad agreement between the class-independent and 

class-conditional models (rSpearman = 0.52), a substantial number of gene-property relationships are 

significant in one model but not the other (FDR < 0.1). In other words, these relationships are either 

class-driven (significant in the class-independent model only) or non-class-driven and obscured by class 

(significant in the class-conditional model only). For example, the relationship between the gene 

Gprasp1 and AHP amplitude illustrates an example of a class-driven relationship where the apparent 

relationship is entirely due to broad differences in excitatory and inhibitory classes (Fig 2C). The gene 

Camk2g shows a non-class-driven relationship with the same property that is obscured in the class-

independent model by higher AHP amplitude values in inhibitory cell types (Fig 2D). However, many 

genes, such as Xxylt1, are identified using either model (Fig 2E).
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Fig 2 Different sets of genes are associated with electrophysiological and morphological properties 
after correcting for cell class.

A. Number of genes significantly associated with each property in the class-conditional model at 
various levels of significance (only properties with significant genes in this model are shown). Darkness 
of the bar represents the significance level of each group of genes. Venn diagrams to the left indicate the  
extent of overlap (pink; middle) between the gene sets identified by the class-independent (gold; left) 
and class-conditional (teal; right) models, where the area of each segment is proportional to the 
significant gene count at a threshold of FDR < 0.1. Venn diagrams for different properties are not to 
scale with one another. See Table S2 for descriptions of electrophysiological and morphological 
properties analyzed here, as well as gene counts for all properties.

B. Comparison of model-based slopes from the class-independent and class-conditional models. Each 
point represents a single gene’s relationship with the electrophysiological property AHP amplitude and 
is colored according to whether the relationship is significant in one or both models (FDR < 0.1). 
Example genes in C-E are indicated. For clarity of visualization, only a random subset of genes (2% 
total) are shown to mitigate over-plotting.. Dashed line indicates identity.

C-E. Examples of genes showing significant associations with AHP amplitude that are class-driven (C; 
significant in class-independent model only), non-class-driven (D; significant in class-conditional 
model only), or non-class-driven but significant by either model (E). Solid lines indicate linear fits 
within excitatory or inhibitory cell classes only and dashed line indicates a linear fit including all cell 
types. Gene expression is quantified as counts per million (CPM).

Divergent gene-property relationships in inhibitory versus excitatory cell classes

We next wondered whether some gene-property relationships might be potentially different within, or 

specific to, excitatory or inhibitory cell types. To test this, we incorporated an interaction term between 

gene expression and excitatory versus inhibitory cell class to assess whether the gene-property 

relationships (i.e. slopes) were different within each cell class. For nearly all properties, there were fewer 

significant genes in the interaction model compared to the class-conditional model (Fig 3A, Venn 

diagrams, and Table S3). For example, out of the ~6500 genes significantly associated with AHP 

amplitude in the class-conditional model, ~2000 also show interactions, and there are an additional ~700 

which show an interaction but are not significant in the class-conditional model. This could indicate that 

“true” interactions are comparatively rare, but this finding is also likely partly explained by differences 

in statistical power. In addition, these interactions do not appear to be merely the result of low or no 

gene expression within one cell class but not the other; we did not observe strong correlations for any 
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property between the interaction model slope and the average difference in expression levels between 

inhibitory and excitatory cell types (Fig S2).

For all properties, we found that the slopes of the gene-property relationships within excitatory cell types 

were poorly correlated with those within inhibitory cell types (example features maximum branch order 

and AHP amplitude shown in Fig 3B, C). By definition, the genes with significant interaction terms were 

those where the slopes calculated within excitatory and inhibitory classes were very different from each 

other (pink and purple points in Fig 3B, C). If the majority of gene-property relationships are shared 

between excitatory and inhibitory cell types, as suggested by the greater number of significant genes in 

the class-conditional model than in the interaction model for most properties, one might expect a 

positive correlation between slopes calculated in inhibitory and excitatory cell types. However, such a 

correlation may be lacking in this analysis because we would expect most genes to have no relationship 

to a given property and thus most slopes to be near zero.

The properties maximum branch order and sag are unusual in that they show few significant genes using 

the class-conditional model, but many (1914 and 1174, respectively) in the interaction model (Fig 3A, 

Venn diagrams, and Table S3; slopes for maximum branch order plotted in Fig 3B). We hypothesize that 

this might be because these properties are under stronger (or otherwise more readily identified) genetic 

control in excitatory compared to inhibitory cell types (see Discussion).

 Fig 3D, E show examples of genes with significant interaction terms for AHP amplitude. The class-

conditional model also shows a significant relationship in the case of Man1c1 (Fig 3E) but not Nrxn3 

(Fig 3D). In other words, the interaction model identified a potentially interesting relationship in the 

case of Nrxn3 which was missed by the class-conditional model. For Man1c1, the interaction model 

does not reveal a new relationship, but instead highlights the fact that this gene-property relationship, if 
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real, is potentially more complicated than would be assumed based on the class-conditional model alone.  

Man1c1 is an enzyme involved in the maturation of N-linked oligosaccharides (18), and is thus a 

plausible regulator of AHP amplitude, since N-linked glycosylation of voltage-gated potassium channels  

or their auxiliary subunits is known to regulate both surface trafficking and channel function (19,20). 

The apparent class-specificity of this relationship could result from class-specific co-expression of 

certain potassium channels or other enzymes involved in glycan synthesis or maturation.
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B-C. Slope values within excitatory cell types (x axis) plotted against the slope values for the same set of  
genes in inhibitory cell types (y axis). Each point represents a single gene’s relationship to the 
morphological property maximum branch order (B) or electrophysiological property AHP amplitude 
(C), and is colored according to its significance in one or both models (see inset legend). Example gene-
property relationships highlighted in D-E are marked in panel C. For clarity of visualization, only a 
random 2% subset of the total number of genes are plotted. Dashed lines indicate positive and negative 
unity lines.

D. Example of a gene with a significant interaction term which is not significant in the class-conditional  
model. For D and E, solid lines indicate linear fits including only excitatory or only inhibitory cell 
types, and dashed line indicates a linear fit including all cell types.

E. Example of a gene which is significant in both the class-conditional and interaction models.

Results from the class-conditional model are more likely to validate using 

independent methods

We next asked how the gene-property relationships from the class-independent and class-conditional 

models, based on our analysis of the AIBS cortical cell types dataset, might generalize to other datasets. 

We first compared the results reported here to those from our earlier NeuroElectro/NeuroExpresso (NE) 

literature-based dataset (11), after subsetting these data to include only non-projecting cell types 

(reflecting 19 cell types in total sampled throughout the brain, described in detail in the Methods). We 

chose to use non-projecting cell types in the NE dataset, as these were recently described by a mouse 

brain-wide transcriptomic survey as corresponding to a single broad cell class (13). To this end, we 

calculated Spearman correlations between genes and electrophysiological properties in the NE dataset. 

Next, for gene-property relationships from both the class-independent and class-conditional models, we 

assessed their aggregate consistency with those from the NE dataset. Here, we defined “consistency” for 

a given model (i.e. class-independent or class-conditional) and property as the correlation between gene-

property slopes calculated from the AIBS dataset with the Spearman correlations for the same set of 

gene-property relationships in the NE dataset (illustrated in Fig 4B).
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In Fig 4A we show a comparison of the gene/electrophysiology correlations from the AIBS dataset with 

the model slopes (beta) from the NE dataset (11). We found that for seven out of the eleven 

electrophysiological properties shared between the datasets, both AIBS dataset-based statistical models 

were consistent with analogous gene-property relationships based on the NE dataset (rSpearman as high as 

0.305 and 0.35 for class-independent and class-conditional, respectively). For six out of the eleven 

features, we found that the class-conditional model was considerably more consistent than the class-

independent model with relationships in the NE dataset. For only two features, capacitance and 

membrane time constant (tau), was the class-independent model more consistent than the class-

conditional with the NE dataset. Fig 4B shows an example of how consistency was measured for AP 

half-width. The relationship between Atp2a2 expression and AP half-width is shown in Fig 4C, D as an 

example of a gene-property relationship which is consistent between the NE (r = -0.742) and AIBS 

datasets for the class-conditional (beta = -0.099 ± 0.024; FDR = 0.002) but not the class-independent 

(beta = -0.024 ± 0.034; FDR = 0.62) model.
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in the NE dataset on the y axis. For clarity of visualization only 10% of the total number of genes are 
plotted. Lines indicate a linear fit for each set of points. The correlation within each set of points is used  
as a measure of cross-dataset consistency (plotted for all properties in panel A).

C-D. Example of a gene showing consistent results between the NE dataset and the AIBS dataset using 
the class-conditional model, but not the class-independent model. C shows the relationship within the 
AIBS dataset, and D shows the same gene and property in the NE dataset. Solid lines indicate a linear 
fit including only types belonging to one cell class, and dashed line indicates a linear fit including all 
cell types.

Assessing within-cell type correlations using Patch-seq datasets

We next wondered whether these between-cell type gene-property relationships might be predictive of 

cell-to-cell heterogeneity within a given cell type. We reasoned that the recently developed Patch-seq 

methodology, allowing morphological, electrophysiological, and transcriptomic characterization from 

the same single cell, presents a unique opportunity to test this possibility (17). While these data at 

present are limited by relatively modest sample sizes and technical factors such as inefficient mRNA 

capture and potential off-target cellular mRNA contamination (21), we nonetheless sought to use these 

data to assess the nature of within-cell type gene-property relationships.

To this end, we performed an integrated analysis of 5 Patch-seq datasets, with each dataset 

characterizing transcriptomic and electrophysiological diversity of mouse forebrain inhibitory cells from 

the neocortex, hippocampus, and striatum (Table 1). Our analysis includes one novel dataset of 19 

Pvalb-Cre positive interneurons recorded in region CA1 of the mouse hippocampus, reported here for 

the first time. Cells in this dataset (referred to as the Bengtsson Gonzales dataset), were characterized as 

described in (22).

To jointly analyze these Patch-seq datasets, we first mapped Patch-seq sampled cells to the cell type 

level, using a transcriptome-based classifier that assigns cells to cell types as defined by cellular 

dissociation-based single-cell RNAseq reference atlases from the cortex and striatum (14,22). 

Specifically, we resolved individual cells to the level of major cell types; for example, Pvalb, Sst, Vip, 
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Lamp5, etc. (referred to in Tasic et al., 2018 as “subclasses”). Next, for each cell type, we identified 

genes that are highly variable in their expression levels within cells of the same type. We reasoned that 

these highly-variable genes might be those most likely to drive or appear correlated with 

electrophysiological heterogeneity within each cell type. Lastly, we performed a joint analysis across 

Patch-seq datasets to assess the strength of gene-property relationships within cell types where the gene 

was highly variable. Here, we used a mixed-effects regression model, with gene expression as a fixed 

effect and dataset and cell type as random effects and with cells weighted by their estimated 

transcriptome quality (see Methods).

Despite the limitations of the Patch-seq data, we found a small number of genes whose expression levels 

were significantly associated with cell-to-cell electrophysiological heterogeneity within cell types (FDR 

< 0.1; Fig 5A). For example, we found that expression of Kcna1, which encodes the potassium channel 

Kv1.1, was inversely correlated with AP half-width (Fig 5B; BetaPatch-seq = -0.0484 ± 0.0106, FDRPatch-seq = 

0.0683)  within hippocampal Pvalb and striatum Pthlh cells (the only cell types in which the variability 

in Kcna1 expression met our threshold for analysis). Importantly, there was also a significant 

relationship with the same directionality for Kcna1 and AP half-width in the AIBS dataset (Betaclass-

conditional = -0.048 ± 0.011, FDRclass-conditional = 0.001). Moreover, the relationship between Kcna1/Kv1.1 

expression and action potential width has been experimentally reported previously (23) (Brew et al., 

2003).

 As another example, we saw an inverse correlation between Fxyd6 expression and AHP amplitude, 

based on cortical Lamp5- and striatum Th- cells (Fig 5C, BetaPatch-seq = -0.695 ± 0.118, FDRPatch-seq = 

0.00841). We also saw a similar relationship in the AIBS dataset (Betaclass-conditional = -0.021 ± 0.003, 

FDRclass-conditional = 0.00001). Intriguingly, Fxyd6 encodes phosphohippolin, a regulator of Na+/K+ ATPase 

activity (24) and is thus plausibly involved in the AHP and action potential repolarization. Intriguingly, 
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in a separate single-cell RNA-seq study of CA1 interneurons, Fxyd6 was found to be more highly 

expressed cells known to spike more slowly (25).

In general, we found that when a gene-property relationship was statistically significant in both the 

Patch-seq and AIBS class-conditional analyses (FDR < 0.1), this relationship was usually in the same 

direction in both analyses (Fig 5A; 10 out of 13 gene-property relationships total). Results were similar 

in the class-independent model, except with a smaller set of gene/ephys relationships matching between 

both (7 out of 9 relationships were in a consistent direction). All of the genes which were consistent 

between the class-independent and Patch-seq analyses were also consistent in the class-conditional 

model. While our analyses of these Patch-seq datasets should be considered preliminary (pending the 

availability of larger and higher-quality datasets), we find the correspondence with our earlier analysis 

encouraging. Namely, this analysis suggests that some of the same genes that appear to drive large 

differences across cortical cell types might also be defining more subtle within-cell type heterogeneity.
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lines indicate linear fits within cell classes (AIBS) or fits within each Patch-seq dataset and cell type, 
after weighting cells by transcriptome-quality (see Methods). Based on differences in mRNA 
quantification, x-axis units for AIBS, Cadwell, and Földy datasets are log2 (CPM+1), and for Bengtsson  
Gonzales, Muñoz, and Fuzik datasets are log2 normalized molecule counts (normalized to 2000 unique 
molecules per cell). 

Dataset Description RNA amplification
Number of 
cells

Accession

Cadwell
(17)

Cortical layer 1 interneurons Smart-seq2 57
E-MTAB-
4092

Fuzik
(26)

Cortical layer 1/2 
interneurons and pyramidal 
cells

STRT-C1 (with unique 
molecule identifiers)

80 GSE70844

Földy
(27)

Hippocampal CA1 and 
subiculum pyramidal cells 
and regular- and fast-spiking 
interneurons

SMARTer 93 GSE75386

Muñoz-Manchado
(22) Striatum interneurons

STRT-C1 (with unique 
molecule identifiers)

99 GSE119248

Bengtsson 
Gonzales 

Hippocampal CA1 Pvalb-Cre 
interneurons

STRT-C1 (with unique 
molecule identifiers)

19
N/A

Table 1 Description of Patch-seq datasets re-analyzed in this study. Depending on the dataset, RNA 
amplification was performed using variations on single-cell-tagged reverse transcription (STRT) (28) or 
Switching Mechanism At the end of the 5’-end of the RNA Transcript (SMART) (29). The Bengtsson 
Gonzales dataset reflects a novel dataset reported here for the first time.

The expected relationship between voltage-gated potassium channels and AHP 

amplitude is apparent only after accounting for cell class

We next asked whether we see a relationship between an electrophysiological feature and a category of 

genes which are known regulators of that feature. Voltage-gated potassium channels are known to be 

involved in producing the after-hyperpolarization following an action potential (30,31) (AHP amplitude; 

illustrated by the dashed arrow in Fig 6A). We thus hypothesized that for many of these genes, higher 

expression levels would be associated with larger AHP amplitudes (although not all voltage-gated 

potassium channels necessarily contribute directly to AHP amplitude). We further hypothesized that this 
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relationship would be more apparent after accounting for cell class, in part because AHP amplitudes 

differ considerably between excitatory and inhibitory cell classes (Fig 6B-D). Indeed, our previous work 

found a spurious negative correlation between expression of the Kcnb1 gene and AHP amplitude which 

resulted from higher expression of Kcnb1 in excitatory cell types compared to others (11).

We evaluated model slopes between each of 29 voltage-gated potassium channel genes (32) and AHP 

amplitude in the AIBS dataset for each of the class-independent and class-conditional statistical models 

(examples shown in Fig 6B-D and summary in Fig 6E).

 Examples of voltage-gated potassium channel genes associated with AHP amplitude include Kcnh3 (Fig 

6B) in a class-driven and Kcnh7 and Kcnc2 in a non-class-driven manner (Fig 6C, D). In total, the class-

independent model identified 17 significant genes (at a stringent threshold of FDR < 0.01), with 8 of 

these genes having positive slopes and 9 negative. In contrast, there were 12 genes that were 

significantly associated with AHP amplitude in the class-conditional model at the same statistical 

threshold, and 11 of these genes had slopes in the positive direction. Thus the results obtained using the 

class-conditional model are consistent with our a priori hypothesis that expression levels of voltage-

gated potassium channel genes are more likely to show positive than negative relationships with AHP 

amplitude, whereas the results obtained using the class-independent approach do not appear to support 

this conclusion.
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relationship between Kcna1 expression and maximum firing frequency is consistent with a published 

study on the same gene. Kopp-Scheinpflug et al. (2003) examined mice with a knockout of the Kcna1 

gene and found that firing rates in auditory neurons were reduced in the knockouts only at high 

intensities of an auditory stimulus, and that this difference was more robust in the inhibitory neurons of 

the medial nucleus of the trapezoid body (MNTB)  compared to excitatory ventral cochlear nucleus 

(VCN) bushy cells (7).

Expression of Scn1b, a voltage-gated sodium channel subunit, shows a negative relationship with action 

potential half-width in the class-conditional model (FDR = 0.0008; Fig 7B), as well as a number of other 

properties. This relationship is obscured in the class-independent model due to overall longer half-

widths in excitatory cell types. Consistent with the idea that Scn1b might function to shorten AP half-

widths, layer 5 cortical pyramidal neurons from mice lacking the Scn1b gene show longer half-widths 

than controls, due to changes in protein stability of voltage-gated potassium channels (33).

Interestingly, the Lrrk2 gene, mutations in which contribute to Parkinson’s disease (34), is positively 

correlated with neurite branchiness (number of branch points per μm) in the class-conditional model, but 

not the class-independent model (FDR = 0.046; Fig 7C). Lrrk2 has been shown by several studies to 

regulate neurite outgrowth and branching in cultures (35–38).

Not only do the genes discussed here provide important validation for our method, but the existence of a 

smooth correlation between these genes and their associated properties is potentially interesting. The 

previous studies cited above provide causal evidence for gene-property relationships via gain- and loss-

of-function approaches, which are likely more reminiscent of pathological states than of natural 

variability between cell types. Our results suggest that these genes could additionally play an instructive 

role in setting the precise levels of electrophysiological or morphological properties between cell types 
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under normal physiological conditions. In addition, since morphological features are in part established 

due to developmental gene expression patterns (39), such features may show poor correlations with 

mRNA sampled from adult cells.

Novel gene-property relationships

In addition to those discussed above, we identified many genes whose function in regulating neuronal 

electrophysiology or morphology is less well characterized. These present testable hypotheses for future 

study. In Table 2, we list some of the top significant genes from the class-conditional model for each 

property, chosen based on significance levels and/or previous studies into their cellular function (also 

shown in Fig 7D).

One notable feature from this analysis is that many of these genes, like Kcna1 and Scn1b discussed 

above, are significantly associated with several or many different properties. For example, maximum 

firing frequency, input-output curve slope, and average interspike interval show a similar pattern in the 

strength of their association with this set of genes. These features all measure similar aspects of neuronal 

function (broadly speaking, whether a neuron tends to fire rapidly or not), so it would be surprising if 

they did not show correlations with the same genes. Two more properties that closely share associated 

genes are AP half-width and AHP amplitude, which measure distinct aspects of the action potential 

waveform, but might share genetic underpinnings related to rapid channel opening and closing (40). The 

genes most strongly associated with various electrophysiological properties tend not to show significant 

associations with the morphological properties of branchiness and max branch order. However, some of 

the genes associated with these morphological properties do show some (generally weak) associations 

with some electrophysiological properties (for example Mgat5 and Ifitm10).
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Several of the genes for which we were unable to find conclusive loss-of-function studies in the current 

literature (Fig 7E-H) seem particularly intriguing, given what is known about their cellular function. In 

the discussion, we briefly speculate about how these genes might function as regulators of the properties 

with which they are associated in our analysis. However, further study will be needed to determine what 

role, if any, these genes play in regulating electrophysiological or morphological properties.
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D. Heatmap showing a subset of the most significant genes for each property in the class-conditional 
model, sorted along both axes by similarity. Dendrogram represents cross-property similarity between 
the significance levels for the genes shown here; properties appearing closely linked in the dendrogram 
are those which are strongly associated with the same genes in our analysis. For each property, up to 3 
top genes were chosen that were significant (FDR < 0.1) in the class-conditional model, and also non-
significant (FDR > 0.2) in both the class-independent and interaction models for the same property. In 
addition, genes marked by asterisks are shown here based on their known function based on the 
literature in addition to at least one significant result in the class-conditional model, shown as 
scatterplots in A-C and E-H. Light grey indicates a non-significant result in the class-conditional model 
(FDR > 0.1).

E-H. Examples of under-studied but plausibly causal genes showing significant results in the class-
conditional model (see text).

Property Gene Gene Name FDR Direction

Rheobase Slc6a1
solute carrier family 6 
(neurotransmitter transporter, 
GABA), member 1

0.001 +

Rheobase Rbms3
RNA binding motif, single stranded 
interacting protein

0.001 +

Rheobase Dlx2 distal-less homeobox 2 0.002 -

AP Threshold Arid5a
AT rich interactive domain 5A 
(MRF1-like)

0.008 +

AP Threshold Kcnf1
potassium voltage-gated channel, 
subfamily F, member 1

0.008 -

AP Threshold Tuba8 tubulin, alpha 8 0.023 +

AP Half-width Krt1 keratin 1 4.3E-07 +

AP Half-width Necab2
N-terminal EF-hand calcium binding 
protein 2

1.8E-06 +

AP Half-width Lrrc20 leucine rich repeat containing 20 2.5E-06 -

AP Amplitude Itpr1 inositol 1,4,5-trisphosphate receptor 1 4.0E-06 -

AP Amplitude Rac3
RAS-related C3 botulinum substrate 
3

5.0E-05 +

AP Amplitude Acap2
ArfGAP with coiled-coil, ankyrin 
repeat and PH domains 2

6.0E-05 -

AHP Amplitude Igf1 insulin-like growth factor 1 5.1E-09 -

AHP Amplitude Sema3c
sema domain, immunoglobulin 
domain (Ig), short basic domain, 
secreted, (semaphorin) 3C

1.0E-06 -

AHP Amplitude Dusp14 dual specificity phosphatase 14 1.1E-06 +

Capacitance Lrrc4c leucine rich repeat containing 4C 7.1E-07 -

Capacitance AW551984 expressed sequence AW551984 2.3E-06 +

Capacitance Oxtr oxytocin receptor 2.9E-06 +

Time Constant Tau Celf6 CUGBP, Elav-like family member 6 1.6E-06 +
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Time Constant Tau Fam81a
family with sequence similarity 81, 
member A

5.4E-06 -

Time Constant Tau Arap2
ArfGAP with RhoGAP domain, 
ankyrin repeat and PH domain 2

6.6E-05 -

Input Resistance Ctxn1 cortexin 1 8.0E-06 +

Input Resistance Enc1 ectodermal-neural cortex 1 8.0E-05 +

Input Resistance Slc6a1
solute carrier family 6 
(neurotransmitter transporter, 
GABA), member 1

3.2E-04 -

Resting Membrane 
Potential

Ehbp1l1 EH domain binding protein 1-like 1 0.012 +

Resting Membrane 
Potential

Egfl7 EGF-like domain 7 0.012 +

Resting Membrane 
Potential

Tagln3 transgelin 3 0.014 +

Sag Kcnf1
potassium voltage-gated channel, 
subfamily F, member 1

0.064 +

Sag Tuba8 tubulin, alpha 8 0.064 -

Average Interspike 
Interval

Igf1 insulin-like growth factor 1 4.2E-07 +

Average Interspike 
Interval

Arhgef2
rho/rac guanine nucleotide exchange 
factor (GEF) 2

4.9E-06 -

Average Interspike 
Interval

Krt1 keratin 1 8.0E-06 +

Max Firing Frequency Igf1 insulin-like growth factor 1 5.9E-12 -

Max Firing Frequency Itpr1 inositol 1,4,5-trisphosphate receptor 1 1.9E-09 +

Max Firing Frequency Arhgef2
rho/rac guanine nucleotide exchange 
factor (GEF) 2

2.5E-08 +

Input-Output Curve Slope Igf1 insulin-like growth factor 1 3.8E-13 -

Input-Output Curve Slope Itpr1 inositol 1,4,5-trisphosphate receptor 1 6.6E-10 +

Input-Output Curve Slope Sytl2 synaptotagmin-like 2 4.4E-08 +

Adaptation Ratio Igf1 insulin-like growth factor 1 3.2E-04 -

Adaptation Ratio Sox2ot
SOX2 overlapping transcript (non-
protein coding)

3.4E-04 -

Adaptation Ratio Fstl5 follistatin-like 5 0.001 -

Branchiness Efcab6 EF-hand calcium binding domain 6 0.007 +

Branchiness Mthfd2l methylenetetrahydrofolate 
dehydrogenase (NADP+ dependent) 
2-like

0.016 -

Branchiness Ifitm10
interferon induced transmembrane 
protein 10

0.019 -
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Max Branch Order Mgat5
mannoside 
acetylglucosaminyltransferase 5

0.017 -

Max Firing Frequency Kcna1*
potassium voltage-gated channel, 
shaker-related subfamily, member 1

1.9E-04 +

AP Half-width Scn1b*
sodium channel, voltage-gated, type 
I, beta

0.001 -

Branchiness Lrrk2* leucine-rich repeat kinase 2 0.046 +

AHP Amplitude Rab33a*
RAB33A, member RAS oncogene 
family

0.004 +

AHP Amplitude Med23* mediator complex subunit 23 0.057 +

AP Half-width Nphp4*
nephronophthisis 4 (juvenile) 
homolog (human)

0.037 -

AP Half-width Daam1*
dishevelled associated activator of 
morphogenesis 1

0.097 -

Table 2 Top correlated genes for each electrophysiological property. Genes marked with asterisks are 
significantly associated (FDR < 0.1) with the indicated property in the class-conditional model, and 
selected based on their reported function in the literature. All other genes are significant (FDR < 0.1) in  
the class-conditional model and non-significant (FDR > 0.2) in both the class-independent and 
interaction models for the indicated property. “Direction” indicates the direction of the model slope; for  
example, high expression of Daam1 in a cell type predicts a low value of AP half-width and vice versa.

Discussion

In this work we presented a series of correlations between gene expression and electrophysiological or 

morphological properties, each representing a testable hypothesis for future studies. Our key insight here 

is to introduce cell class (i.e., excitatory and inhibitory cell type identity) as an indicator variable when 

modeling the relationship between genes and properties. This has the advantage of 1) avoiding the 

identification of class-driven correlations, 2) helping identify a subset of non-class-driven correlations 

that might have been obscured by overall differences between excitatory and inhibitory cell types, and 3) 

revealing instances where gene-property relationships might be different for excitatory versus inhibitory 

cell types.

Although the idea that non-class-driven correlations would have a higher chance of being biologically 

relevant compared to class-driven ones seems straightforward, we evaluated this prediction through a 
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number of specific empirical tests. First, we found better correspondence between gene-property 

relationships from the class-conditional model with those derived from the non-projecting cell type 

subset of our prior NeuroExpresso/NeuroElectro dataset. Second, we observed consistency between the 

class-conditional model and gene-property relationships derived from five independently-collected 

Patch-seq datasets, suggesting that the relationships described here might be predictive of gene-property 

relationships within narrowly-defined cell types. Third, our analysis of the relationship between action 

potential after-hyperpolarization (AHP) amplitude and voltage-gated potassium channel genes suggests 

that genes and electrophysiological features showing a significant result in the class-conditional model 

are more likely to reflect known functions of those genes.

The Patch-seq and voltage-gated potassium channel analyses highlighted distinct advantages of the 

class-conditional model. The class-conditional model revealed higher overlap between the Patch-seq and 

AIBS datasets, compared to the class-independent model, where most shared relationships (for both 

models) were in a consistent direction. This indicates that the class-conditional model might be more 

sensitive to certain relationships, which have some evidence for their biological relevance. In contrast, 

the main advantage of the class-conditional model in the voltage-gated potassium channel analysis was 

primarily to avoid class-driven correlations. In other words, the class-conditional model exhibits 

increased specificity, an important factor when considering that these results might be used to help 

prioritize genes for experimental study.

In this work, we have operationalized the concepts of class-driven and non-class-driven correlations as 

those which produce a significant result in the class-independent model only or in the class-conditional 

model, respectively. This is a simplification, since both effects can exist simultaneously to differing 

degrees (for example, Daam1 and AP half-width, Fig 7H) and our ability to distinguish them with 

confidence is limited by the number and composition of cell types in the dataset. It should be 
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emphasized that, since these categories are defined based on significance thresholds, the distinction 

between, for example, a non-class-driven relationship which is obscured by class and one which is 

significant in either model is not meaningful in a statistical sense and should not be interpreted as being 

directly informative about the underlying biology. Bearing this in mind, the distinction may be useful in 

practice for prioritizing genes for further examination. Thus, we have shown that thresholding the set of 

all genes based on one model or the other results in the identification of a distinct but overlapping set of 

genes, meaning that the choice of model is consequential.

A novel feature of our analysis is the investigation of gene-property relationships that are divergent 

within excitatory and inhibitory cell types. Using the interaction model, we found a small subset of 

genes showing significant associations in the class-conditional model that also have a significant 

interaction term, indicating that their relationship with the property in question is dependent on cell 

class. We also found another small set of gene-property relationships that have a significant term in the 

interaction but not the class-conditional model. In contrast to all other properties analyzed, for the 

properties sag and maximum branch order, the interaction model identified many more genes compared 

to the class-conditional model. One possible explanation is that for both of these features, the absolute 

slopes in excitatory cells tend to be higher than those in inhibitory cells (shown in Fig 3B for maximum 

branch order), suggesting either that these features might be under stronger genetic control in excitatory 

types compared to inhibitory, or that the genes associated with them in excitatory cell types are more 

readily identified by our analysis. Since this dataset contains more inhibitory than excitatory types, an 

inhibitory-specific relationship may be identified in the class-conditional model by virtue of the number 

of cell types, but an excitatory-specific relationship would likely be “diluted” by the larger number of 

inhibitory cell types not showing the relationship. It is also possible that, in the case of maximum branch 
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order, this effect is partially explained by methodological differences in the dataset, since inhibitory but 

not excitatory morphological reconstructions contain axons in addition to dendrites (1).

Novel putative gene/electrophysiology relationships

Our primary motivation for comparing gene expression to neuronal properties is to identify candidate 

genes that might influence those properties. While directly testing the functional relevance of specific 

gene-property predictions is beyond the scope of this work, we have highlighted below some of our 

potentially novel findings that might be of greatest interest for further follow up.

Rab33a expression is positively correlated in the AIBS dataset with AHP amplitude with a significant 

interaction (Fig 7C), and also shows significant positive correlations with input-output curve slope, 

maximum firing frequency, and rheobase, and significant negative correlations with AP half-width and 

average interstimulus interval (ISI). Rab33a is a small GTPase thought to be involved in regulation of 

vesicle trafficking, likely at stages prior to plasma membrane docking (41,42). One hypothesis for how 

Rab33a could regulate AHP amplitude and/or AP half-width is that Rab33a might facilitate the transport 

and/or insertion of vesicles containing voltage-gated potassium channels, or regulators thereof, into the 

axonal membrane, leading to narrower action potentials and larger AHPs. Our analysis of the AIBS data 

suggests that any effects of Rab33a expression on AHP amplitude would be present only in inhibitory 

cell types.

Med23 (also known as Crsp3), a subunit of the mediator complex which acts as a transcriptional co-

activator for RNA polymerase II (43,44), shows a positive correlation with AHP amplitude (Fig 7D). 

Although the complete set of roles played by Med23 are incompletely understood, it has been shown to 

modulate signaling by the BMP, Ras/ELK1, and RhoA/MAL pathways (45,46). Thus it has the potential 

to regulate a variety of genes, including potentially voltage-gated potassium channels or interacting 
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proteins thereof. Given Med23’s role in regulating transcription through a variety of signaling pathways, 

it is notable that our analysis showed only one feature with which it was convincingly associated. It is 

also interesting to note that mutations in Med23 have previously been associated with intellectual 

disability, in some cases with a predisposition to seizures (47,48).

Expression of Nphp4 encoding the cytoskeletal-associated protein nephrocystin-4 was negatively 

correlated with AP half-width (Fig 7E) as well as with resting membrane potential and maximum firing 

frequency. Although Nphp4 is primarily understood for its function in the kidney, Nphp4 mutations often 

cause co-morbid deficits in the nervous system (49). Furthermore, Nphp4 has been shown to regulate 

actin networks via its interaction with the polarity protein Inturned and with the formin Daam1 (50). 

Daam1 is also negatively correlated with AP half-width (Fig 7F), and not significantly correlated with 

any other features. The actin network in the axon forms a highly regular lattice structure which includes 

regularly interspersed voltage-gated sodium channels (51). A similar relationship between the actin 

network and other voltage-gated ion channels has not been tested, but seems plausible. A potential 

mechanism through which Nphp4 and Daam1 could regulate the shape of the action potential might 

involve the organization of the axonal actin network structure, which might change the local levels or 

relative positioning of voltage-gated ion channels, especially potassium channels, or their regulators.

Limitations and Caveats

We note that the gene-property relationships reported here are by definition correlational. Demonstrating 

that any specific gene is involved in regulation of any electrophysiological or morphological property is 

beyond the scope of this work. Our goal in this study was to generate testable hypotheses which, 

together with the current body of published literature, will help guide future experiments. We expect that 

this list of putative relationships contains some proportion of causal genes, and based on our analyses 
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expect that this proportion may be higher than that in our previous work (11), However, causality can 

only be determined for a given gene and property using direct experimental methods.

Additionally, as in our prior work (11), we have limited our analyses to models in which expression 

levels of a single gene predict downstream properties in an approximately linear fashion, and in which 

that gene is regulated primarily at the transcriptional level. Some instances of mechanisms involving 

interactions between multiple genes, or those involving a non-linear relationship between log-gene 

expression and an electrophysiological or morphological property, are likely to have been missed here. 

In addition, for mechanisms through which electrophysiological or morphological properties are 

controlled at the translational or post-translational level, our analysis is unlikely to provide insight into 

the gene whose product directly controls the property. However, this analysis has the power to identify 

transcripts whose products are involved in the translation, modification, or trafficking of proteins which 

in turn regulate electrophysiology or morphology.

Furthermore, the generalizability of the gene-property relationships reported here might be limited by 

the fact that the AIBS dataset only reflects cells sampled from the adult mouse primary visual cortex. 

Therefore, the relevance of our results to other brain regions depends on the assumption that many of the 

same genes regulate electrophysiological or morphological properties in different cell types. This 

assumption of generalizability across brain areas appears to be appropriate in the case of Kcna1 and 

maximum firing frequency (Fig 7A and (7)). Additionally, this assumption is supported by our 

comparisons with the NeuroExpresso/NeuroElectro dataset and Patch-seq datasets, both of which 

contain cells sampled from other brain regions. However, some relationships may not generalize across 

brain regions due to differences in expression of other genes or the presence of post-translational 

modifications which modify the consequences of expressing a given gene. 
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Another potential confounding factor in our reliance on the AIBS datasets is the uneven balance in the 

count of inhibitory versus excitatory cell types. The practical consequence of this is that the results from 

the class-conditional model are likely biased towards explaining gene-property relationships within 

inhibitory cell types, and might be missing relationships that are specific to excitatory cell types. Even in  

the absence of a significant interaction term, gene-property relationships may have stronger evidence in 

one cell class than the other. An example of this is Lrrk2 and branchiness (Fig 7C), where despite very 

similar slopes between classes and no statistical evidence of an interaction, the correlation among 

excitatory cells is much tighter than that among inhibitory cells. For this reason, when prioritizing genes 

for future study, we strongly recommend making a plot of gene, property, and cell class before 

concluding that the overall result is likely to apply to both classes.

Future Directions

The primary goal of this project was to produce a list of genes which we can recommend for future 

study based on their correlations with electrophysiological and morphological properties in the AIBS 

dataset. We believe that some of the genes we identified are promising candidates for future study. 

In order to facilitate the use of our results by others in prioritizing genes for investigation, we are 

providing a Jupyter Notebook file to facilitate exploration of the data (available at 

https://github.com/PavlidisLab/transcriptomic_correlates). We have endeavored to make this easy to use 

for researchers with little or no coding experience. We encourage those who are interested in a particular 

electrophysiological or morphological property, gene, or set of genes, to explore the data and to make 

their own judgements as to which genes are worth following through on experimentally and which 

measures should be prioritized for recording. Our recommendation is to use the gene list in conjunction 
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with other sources of information about gene function, such as Gene Ontology annotations (52,53) and 

previously published literature, in prioritizing genes for future study.

Materials and Methods

AIBS Dataset

The RNA-seq dataset from (14) was accessed via the Allen Institute for Brain Science’s Cell Types 

database (http://celltypes.brain-map.org/) on June 19, 2018, and contains 15,413 cells isolated by 

microdissection and fluorescence-activated cell sorting from primary visual cortex of mice expressing 

tdTomato under the control of various Cre driver lines. Electrophysiological and morphological data 

were also accessed via the Allen Institute for Brain Science Cell Types database on June 21, 2018. The 

dataset includes electrophysiological recordings from 1920 cells, of which 1815 are reporter-positive, 

from the visual cortex of mice also expressing tdTomato driven by Cre, many of which are from the 

same lines represented in the RNA-seq dataset. A subset of these cells (509, of which 471 are reporter-

positive) have morphological reconstruction data available. Cells in both the 

electrophysiology/morphology and RNA-seq datasets are annotated according to the cortical layer they 

reside in (for electrophysiology/morphology this is always a single layer, and for RNA-seq may be a 

single layer, subset of layers, or all layers), their Cre-line, and whether they express the reporter.

Filtering and matching datasets

Single-cell RNA-sequencing data, summarized as counts per million reads sequenced (CPM), were 

log2-transformed prior to combining with electrophysiological and morphological data. Cells from the 

RNA-seq dataset were excluded if they were annotated as having failed quality control checks, if they 

were negative for expression of tdTomato, or if they were labeled as non-neuronal or unclassified. Cells 
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in the electrophysiology/morphology dataset were excluded if they were negative for expression of 

tdTomato. 

Electrophysiological and morphological measures

Electrophysiological data were downloaded from http://celltypes.brain-map.org/ and summarized as 

described previously (11) except for the features response frequency versus stimulus intensity (input-

output) curve slope, average interstimulus interval (ISI), and sag, which we did not use previously as 

they were not represented in the NE dataset. All three of these new features were pre-computed in the 

downloaded dataset. In order to include only sag values which could be meaningfully compared, any 

cells having a value of “vm-for-sag” (the membrane voltage at which sag values were measured) not 

between -90 and -110 mV, or having a resting membrane potential lower than -80 mV, were excluded 

from analyses of sag, but were used for analyses of other electrophysiological features. The 

morphological features “average_bifurcation_angle_local”, “max_branch_order”, “soma_surface”, 

“total_length”, and “total_volume” were pre-computed in the dataset. We defined “branchiness” 

according to the pre-computed feature “number_branches” divided by “total_length” as a measure of 

how often a given cell produces branches per unit of neurite length. For the features input resistance, tau, 

capacitance, rheobase, maximum firing frequency, AHP amplitude, adaptation ratio, input-output curve 

slope, latency, branchiness, max branch order, total length, and total volume, values were log10-

transformed prior to use in order to mitigate underlying skew or non-normality in these data values.

Defining cell types

Cell types in the AIBS dataset were defined according to the Cre-line they were isolated from,  whether 

they were excitatory or inhibitory, and in most cases either a single cortical layer or a range of layers. 

Where multiple layer dissections containing a sufficient number of cells were present for a Cre-line in 
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the RNAseq data, we decided on whether and how to combine layers based on the following criteria: 1) 

producing the maximum number of cell types, 2) producing the most homogenous cell types possible, 

and 3) producing cell types containing sufficiently large numbers of cells in both the RNA-seq and 

electrophysiology or morphology datasets. The first two criteria favored splitting layers more finely, 

whereas the last favored combining layers. Only cell types where both datasets contained at least 6 cells 

(for the electrophysiology analysis) or at least 3 cells (for the morphology analysis) were included in the 

final analysis. Cell type definitions, along with the numbers of cells meeting the criteria for each type, 

are shown in table S1.

Splitting cells from certain Cre-lines into multiple types based on their layer location and their identity 

as excitatory or inhibitory allowed us to increase the number of types in our analysis. Splitting cell types 

in this way makes biological sense in that cells isolated from the same Cre-line but different layers often 

belong to different transcriptomically-defined cell types. For example, cells isolated from from the upper  

cortical layers of Sst-Cre mice primarily belong to the Sst Cbln4 type, whereas the majority of cells from 

lower layers belong to either the Sst Myh8 or Sst Th types (15). We have further justified this decision 

based on the fact that there are frequently electrophysiological differences between cells from the same 

Cre-line but from different layers (examples of three electrophysiological properties are shown in Fig 

S1).

After the two datasets were matched, the combined dataset contained 1359 cells belonging to 48 types 

with electrophysiological data, 369 cells belonging to 43 types with morphological data, and 4403 cells 

belonging to 50 types with RNA-seq data (Table S1). The remaining cells in the original datasets were 

those whose types could not be matched, either because the Cre-line or layer they were isolated from 

was not sampled in the other datasets, or because the number of cells belonging to that type was below 

our threshold for the number of cells per type required.
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Modeling the relationship between gene expression and 

electrophysiology/morphology

Mean expression values for each gene and mean values for each electrophysiological or morphological 

property were calculated for each cell type as defined above. If more than two cell types showed zero 

expression of any given gene, those cell types were removed from analyses for that gene. We found this 

step to be necessary in initial analyses because differences in electrophysiology/morphology among 

these cell types could not be assessed in relation to differences in gene expression, potentially producing 

spurious correlations. Any genes for which this left fewer than eight samples were excluded. Out of all 

genes represented in the RNA-seq dataset, ~26% passed this thresholding step. For the remaining genes, 

and for each electrophysiological or morphological property, we fit one or more linear models relating 

the property (P) to expression of the gene (G) and/or cell class (C).  Model 1 (P~G;  “class-independent 

model”) attempted to explain the property based on only expression of the gene. For genes which were 

expressed in both excitatory and inhibitory types, we fit three additional models. Model 2 (P~C) related 

property to cell class, model 3 related the electrophysiological parameter to the gene and cell class 

(P~G+C), and model 4 related the electrophysiological parameter to gene, cell class, and an interaction 

term between gene and cell class (P~G+C+G*C). Models 2 and 3, as well as models 3 and 4, were 

compared to one another using an ANOVA, resulting in the “class-conditional model” (P~G|C) and 

“interaction model” (P~G*C|G+C), respectively. Beta coefficients from models 1, 3, and 4 (separately 

for each cell type) were recorded, as well as p-values from model 1 and from both ANOVAs.  Prior to 

filtering for significantly-correlated genes, false discovery rate (FDR) correction was performed using 

the Python package statsmodels.sandbox.stats.multicomp.fdrcorrection0 with an alpha level of 0.05. 

Model 2 was also used directly to test for significant differences between cell classes in the value of 

each property. 
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Non-projecting class-specific correlations in the NeuroElectro/NeuroExpresso 

dataset

The NeuroElectro and NeuroExpresso datasets were described previously (11). In order to limit the 

dataset to only non-projecting cell types (13), we chose cells whose major type was annotated as 

anything other than “Pyramidal,” “Glutamatergic,” or “MSN”. Cells of the types “Ctx Htr3a”  and “Ctx 

Oxtr” were excluded due to their lower transcriptomic quality compared to others in the dataset (54). 

After subsetting, 19 cell types remained. Average values were calculated for gene expression and 

electrophysiological properties across cells within a type, and Spearman correlations were calculated for 

each combination of gene and electrophysiological property.

In order to assess cross-dataset consistency, we calculated a Spearman correlation between the beta 

coefficients (slopes) resulting from the class-independent or class-conditional model in the AIBS dataset 

and the correlation values calculated in the NE dataset. If there was a significant positive correlation 

between the AIBS slope and the NE correlation value, we concluded that the results of the two analyses 

were consistent (although this does not imply that they were highly consistent). For those comparisons 

which were consistent, we considered one method to be “more consistent” than the other if the AIBS/NE 

correlation value was higher (with non-overlapping 95% confidence intervals) than that derived using 

the second method.

Data Analysis and Visualization

All statistical analyses and data visualization were performed using Jupyter Notebook (55) and Python 

2.7, and the following packages: scipy.stats, numpy, pandas, matplotlib, mpl_toolkits, matplotlib_venn, 

seaborn, statsmodels.sandbox.stats.multicomp.fdrcorrection0, mygene.
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Bootstrapped confidence intervals and significance between models for correlations between the NE and 

AIBS datasets were calculated as follows: Starting with the list of paired correlation values and beta 

coefficients for a given electrophysiological feature and model (class-independent or class-conditional), 

in which each pair represented a single gene and each value in that pair was calculated using one of the 

two datasets, a new list of paired correlation values of the same length was calculated by resampling 

with replacement. A new Spearman correlation was then calculated based on the resampled list. The 

resampling procedure was repeated 100 times, and the upper and lower ends of the confidence intervals 

were calculated by finding the values at the 2.5th and 97.5th percentiles. Significance was determined by 

finding the difference between each pair of resampled correlations from the two models, and then again 

finding the values at the 2.5th and 97.5th percentiles. If this interval did not contain zero, the two 

consistency metrics were said to be significant at p < 0.05.

Hierarchical clustering in Fig 7D was performed using the seaborn.clustermap tool using the “average” 

(UPGMA) method and the euclidean metric (56,57).

Data Availability

Analysis code and processed data will be available at 

https://github.com/PavlidisLab/transcriptomic_correlates. Included there is a Jupyter notebook file with 

some recommended steps for filtering and visualizing results, which can be run directly from the user’s 

web browser without any need for installation of software. We have made an effort to make this resource 

approachable for researchers with little or no coding experience. The Bengtsson Gonzales Patch-seq 

dataset will be made publicly available.
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Analysis of Patch-seq datasets

Overview of datasets used. Our analysis of the Patch-seq datasets builds on our analysis described 

previously (21). Here, we made use of four previously published Patch-seq datasets that have 

characterized interneurons of the mouse forebrain, described in detail in Table 1. (“Cadwell,” “Földy,” 

“Fuzik,” “Muñoz”;  (17,22,26,27)). Our analysis also includes one novel dataset of 19 Pvalb-Cre 

positive interneurons recorded in region CA1 of the mouse hippocampus, reported here for the first time. 

Cells in this dataset (referred to as the Bengtsson Gonzales dataset), were treated, processed, and 

analyzed using the same methodology as described in (22).

Datasets were processed and normalized as described in (21) with a small number of exceptions. First, 

datasets employing unique molecule identifiers (UMIs), including the Fuzik, Muñoz and Bengtsson 

Gonzales datasets, were normalized to a total library size of two thousand UMIs per cell. Similarly, the 

Cadwell and Földy datasets were normalized to counts per million (CPM), to be more directly 

comparable with how we have normalized the AIBS datasets here. Second, because Patch-seq sampled 

cells varied considerably in amount of mitochondrial and other non-coding mRNAs, when normalizing 

cells to the total count of reads detected in each cell, we only quantified reads mapping to protein coding 

genes, as defined by biomaRt (58). Furthermore, we used biomaRt to help reconcile gene names 

between Patch-seq datasets.

Assigning Patch-seq single cells to transcriptomically-defined cell types. We implemented a nearest-

centroid classifier to map Patch-seq transcriptomes to transcriptomically defined clusters, as defined in 

the Tasic 2018 cortical and Muñoz-Manchado 2018 striatum reference atlases. Specifically, for each 

transcriptomically-defined cluster in these reference datasets, we first calculated the mean expression 

level across all cells assigned to the cluster. Next, using the two thousand most variable genes amongst 
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inhibitory cell types in the Tasic dataset (described in the section below), we calculated the Spearman 

correlation of each Patch-seq cell to every cluster in the dissociated cell dataset and assigned cells to the 

cluster that they were most correlated with (we compared all Patch-seq datasets except the striatum 

Muñoz dataset to the Tasic cortical dataset). For cortical and hippocampal cell types, to increase the 

number of cells defined per transcriptomic type, we made use of the ‘subclass’ mappings provided in the 

Tasic 2018 dataset, mapping neurons to the Pvalb, Sst, Vip, Lamp5, and Sncg major interneuron cell 

types. To estimate transcriptome quality we used the “quality score” metric from our prior analysis, 

using the full set of “on” and “off” marker genes.

Identifying highly variable genes per cell type. We used the ‘decomposeVar’ function from the ‘scran’ R 

package (59) to identify highly variable genes in each subclass in the Tasic 2018 dataset and each cell 

type in the Muñoz-Manchado reference datasets.

Mixed effects statistical model to identify gene-property relationships in Patch-seq cell types. We used a 

mixed effects model of the following form with gene expression as a fixed effect and dataset and cell 

type as random effects: 

m1 = ephys_prop ~ Beta*log2(norm_gene_expr) + (1|dataset*cell_type)

where we used an anova to test for the significance of the beta associated with the gene expression term 

by comparison to an equivalent statistical model without the gene expression term. We used the quality 

score as a weight in the regression analysis, and normalized these across datasets. We used the ‘lmer’ 

function within the ‘lme4’ R package for fitting mixed-effects models. We performed this analysis on the 

top 250-most variable genes per cell type and for genes that were highly variable in at least one cell type 

across at least 2 (of the 5 total) Patch-seq datasets used here. In addition, we did not use Patch-seq cell 
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types where gene expression was detected in fewer than 33% of cells and with fewer than 5 cells 

expressing the gene.
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RNA-seq Electrophysiology Morphology

Chat-IRES-Cre-neo L2/3 inh 36 45 15

Chat-IRES-Cre-neo L4 inh 8 18 6

Chrna2-Cre_OE25 L5 inh 57 29 9

Chrna2-Cre_OE25 L6 inh 40 10

Chrna2-Cre_OE25|Pvalb-T2A-Dre L5-L6 inh 59 8

Ctgf-T2A-dgCre L6 exc 150 43 16

Esr2-IRES2-Cre L5-L6 exc 37 20 3

Gad2-IRES-Cre L1 inh 298 7 3

Gad2-IRES-Cre L5 inh 327 7 3

Htr3a-Cre_NO152 L2/3 inh 32 70 16

Htr3a-Cre_NO152 L4 inh 31 21 4

Htr3a-Cre_NO152 L5 inh 30 39 12

Htr3a-Cre_NO152 L5-L6 exc 9 7

Htr3a-Cre_NO152 L6 inh 23 8 3

Htr3a-Cre_NO152|Pvalb-T2A-Dre L5-L6 inh 7 10 3

Ndnf-IRES2-dgCre L1 inh 52 39 9

Nkx2-1-CreERT2 L1-L4 inh 32 22 6

Nkx2-1-CreERT2 L5-L6 inh 13 26

Nos1-CreERT2 L1-L4 inh 92 8 4

Nos1-CreERT2 L5-L6 inh 34 10 3

Nos1-CreERT2|Sst-IRES-FlpO L1-L4 inh 3 3

Nos1-CreERT2|Sst-IRES-FlpO L5-L6 inh 20 35 13

Nr5a1-Cre L4 exc 243 55 15

Ntsr1-Cre_GN220 L6 exc 97 51 16

Oxtr-T2A-Cre L1-L4 exc 22 4

Oxtr-T2A-Cre L1-L4 inh 117 21 8

Oxtr-T2A-Cre L5-L6 exc 71 14 4

Oxtr-T2A-Cre L5-L6 inh 62 6

Penk-IRES2-Cre-neo L5-L6 exc 44 8 3

Pvalb-IRES-Cre L2/3 inh 213 42 13

Pvalb-IRES-Cre L4 inh 53 69 9

Pvalb-IRES-Cre L5 inh 218 83 28

Pvalb-IRES-Cre L6 inh 47 22 10

Rbp4-Cre_KL100 L4 exc 16 21 4

Rbp4-Cre_KL100 L5 exc 695 55 20

Scnn1a-Tg2-Cre L4 exc 22 32 8

Scnn1a-Tg3-Cre L2/3-L4 exc 107 58 13

Sim1-Cre_KJ18 L4-L6 exc 74 32 6
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Slc32a1-T2A-FlpO|Vipr2-IRES2-
Cre

L1-L4 inh 17 25 10

Sst-IRES-Cre L1-L2/3 inh 80 15 8

Sst-IRES-Cre L4 inh 11 23 3

Sst-IRES-Cre L5 inh 140 66 21

Sst-IRES-Cre L6 inh 125 17 6

Tlx3-Cre_PL56 L4-L6 exc 115 41 11

Vip-IRES-Cre L1-L2/3 inh 149 32 6

Vip-IRES-Cre L4 inh 67 16 4

Vip-IRES-Cre L5 inh 91 17

Vip-IRES-Cre L6 inh 38 29 3

Vipr2-IRES2-Cre L1-L6 exc 43 16

Vipr2-IRES2-Cre L1-L6 inh 36 11 5

Number of Types 50 48 43

Table S1. Criteria used for defining cell types from the AIBS dataset according to the cre line and layer 
they were isolated from as well as excitatory/inhibitory identity.

For each cell type, the number of cells meeting the criteria which were profiled for each of the three 
data modalities are indicated. For electrophysiology and morphology, blank cells indicate that not 
enough cells meeting the criteria were present in that dataset, so that cell type was not included in the 
analysis.
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Class-
independent 
model

Class-
conditional 
model

Significant 
in both 
models

Definition Units Transform

Soma Surface 0 0 0 Surface area of the cell body μm2 linear

Total Volume 1019 0 0
Volume of the cell, including 
cell body as well as processes

μm3 log10

Total Length 3398 0 0 Total length of all processes μm log10

Max Branch 
Order

4308 4 3
Maximum number of times that 
a process bifurcates between the 
soma and branch tip

log10

Branchiness 35 132 35
Number of bifurcations 
encountered per process length

log10

Bifurcation Angle 0 0 0
Mean angle across all 
bifurcation points

degrees linear

Adaptation Ratio 4164 3220 2220
Ratio of durations between early 
and late AP inter-spike intervals 
in an AP train

ratio log10

Input-Output 
Curve Slope

6424 7022 4583

Slope of the relationship 
between current injection and 
resulting firing frequency, based 
on multiple long current steps

Hz/pA log10

Max Firing 
Frequency

6113 6320 3977
Maximum observed AP 
discharge rate

Hz log10

Latency 566 0 0
Latency to fire the first action 
potential during a long current 
step

s log10

Interspike 
Interval 
Coefficient of 
Variation (ISI 
CoV)

30 0 0

Variability between interspike 
intervals within one sweep, 
measured as standard 
deviation/mean

ratio log10

Average 
Interspike 
Interval

5405 4447 2699
Average time elapsed between 
spikes during a sweep

ms log10

Sag 0 2 0

Measure of the extent to which 
the membrane potential recovers 
toward resting potential when 
the neuron is strongly 
hyperpolarized (between -90 
and -110 mV)

ratio log10

Resting 
Membrane 
Potential

1546 443 280
Membrane potential at the onset 
of whole-cell recording

mV linear

Input Resistance 2615 3373 2404 Input resistance measured at MΩ log10
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steady-state voltage response to 
current injection

Time Constant 
Tau

3204 1441 1078

Time constant for the membrane 
to repolarize after a small 
current injection of fixed 
amplitude and duration

ms log10

Capacitance 5508 1736 1144

Neuron capacitance, typically 
measured by dividing 
membrane time constant by 
membrane resistance

pF log10

After-
hyperpolarization 
(AHP) Amplitude

6056 6568 3681

Calculated as the voltage 
difference between AP threshold 
and AP trough. Commonly 
defined using first AP in train at 
rheobase current.

mV log10

Action Potential 
(AP) Amplitude

4969 3438 1997

Voltage indicating height of 
action potential. Usually 
calculated as the difference 
between AP peak and AP 
threshold voltages. Commonly 
measured using first AP in train 
at rheobase current.

mV linear

AP Half-width 5384 4522 2489

Calculated as the AP duration at 
the membrane voltage halfway 
between AP threshold and AP 
peak. Most commonly 
calculated using first AP in train 
at rheobase current.

ms linear

AP Threshold 31 24 11
Voltage at which AP is initiated 
(as assessed by measuring rising 
slope of membrane voltage)

mV linear

Rheobase 3238 4108 3237
Minimum current injected 
somatically required to fire AP

pA log10

Table S2. Overlap between class-independent and class-conditional models

Comparison of the number of genes showing a significant result (FDR < 0.1) for each 
electrophysiological or morphological property in the class-independent or class-conditional model, 
and extent of overlap between these two sets of genes. Definitions of electrophysiological properties are 
reproduced from (11), except for input-output curve slope, latency, ISI CoV, average ISI, and sag, which 
are described based on the Allen Cell Types database (http://celltypes.brain-map.org/). Morphological 
features are described based on (1).

64

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524561doi: bioRxiv preprint 

http://celltypes.brain-map.org/
https://doi.org/10.1101/524561
http://creativecommons.org/licenses/by-nc-nd/4.0/


Class-conditional 
model

Interaction 
model

Significant in both 
models

Soma Surface 0 0 0

Total Volume 0 0 0

Total Length 0 0 0

Max Branch Order 4 1914 0

Branchiness 132 5 0

Bifurcation Angle 0 0 0

Adaptation Ratio 3220 325 253

Input-Output Curve Slope 7022 408 388

Max Firing Frequency 6320 335 312

Latency 0 0 0

ISI CoV 0 0 0

Average Interspike 
Interval

4447 54 47

Sag 2 1174 0

Resting Membrane 
Potential

443 10 1

Input Resistance 3373 99 89

Time Constant Tau 1441 123 103

Capacitance 1736 156 101

AHP Amplitude 6568 2962 2222

AP Amplitude 3438 658 457

AP Half-width 4522 96 73

AP Threshold 24 4 0

Rheobase 4108 91 77

Table S3. Overlap between class-conditional and interaction models

Comparison of the number of genes showing a significant result (FDR < 0.1) for each 
electrophysiological or morphological property in the class-conditional or interaction model, and extent  
of overlap between these two sets of genes.
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The following are in separate files:

Table S4. Table of all significant results

Correlation and significance values for all combinations of gene and electrophysiological and 
morphological features which were significant at FDR <0.1 in either the class-conditional, the 
interaction model, or both. Each entry is annotated with the total number of features for which the same 
gene was significant at padj <0.1 as a measure of the extent to which that gene is either unique to that 
feature or shared between features.

Table S5. Table of all results, regardless of significance

Correlation and significance values for all combinations of gene and electrophysiological or 
morphological feature

Table S6. Cell type averages used for analysis of electrophysiological properties

Each row represents either an electrophysiological property or a gene. Each column represents one of 
the 48 cell types defined for the purposes of this analysis, named as “Cre line__layer___cell class.” 
Each cell contains the mean value of the electrophysiological property, or mean expression level of the 
gene, within the indicated cell type.

Table S7. Cell type averages used for analysis of morphological properties

Each row represents either a morphological property or a gene. Each column represents one of the 43 
cell types defined for the purposes of this analysis, named as “Cre line__layer___cell class.” Each cell 
contains the mean value of the morphological property, or mean expression level of the gene, within the 
indicated cell type.

66

923

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524561doi: bioRxiv preprint 

https://doi.org/10.1101/524561
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Author Summary
	Introduction
	Results
	Primary Dataset
	Analysis Approach
	Accounting for cell class results in the identification of a distinct but overlapping set of genes
	Divergent gene-property relationships in inhibitory versus excitatory cell classes
	Results from the class-conditional model are more likely to validate using independent methods
	Assessing within-cell type correlations using Patch-seq datasets
	The expected relationship between voltage-gated potassium channels and AHP amplitude is apparent only after accounting for cell class
	Evidence of causal support for specific gene-property relationships
	Novel gene-property relationships

	Discussion
	Novel putative gene/electrophysiology relationships
	Limitations and Caveats
	Future Directions

	Materials and Methods
	AIBS Dataset
	Filtering and matching datasets
	Electrophysiological and morphological measures
	Defining cell types
	Modeling the relationship between gene expression and electrophysiology/morphology
	Non-projecting class-specific correlations in the NeuroElectro/NeuroExpresso dataset
	Data Analysis and Visualization
	Data Availability
	Analysis of Patch-seq datasets

	Acknowledgements
	Author Contributions
	Competing Interests
	Supporting Information

