
Managing genomic variant calling workflows with Swift/T

Azza E. Ahmed1,2Y, Jacob Heldenbrand3Y, Yan Asmann4, Faisal M. Fadlelmola1,
Daniel S. Katz3, Katherine Kendig3, Matthew C. Kendzior5, Tiffany Li3, Yingxue Ren4,
Elliott Rodriguez3, Matthew R. Weber5, Justin M. Wozniak6, Jennie Zermeno3,
Liudmila S. Mainzer3,7*

1 Centre for Bioinformatics & Systems Biology, Faculty of Science, University of
Khartoum, Khartoum, Sudan
2 Department of Electrical and Electronic Engineering, Faculty of Engineering,
University of Khartoum, Khartoum, Sudan
3 National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign, IL, United States
4 Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, United States
5 Department of Crop Sciences, University of Illinois at Urbana-Champaign, IL, United
States
6 Argonne National Laboratory, Argonne, IL, United States
7 Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, United
States

YThese authors contributed equally to this work.
* lmainzer@illinois.edu

Abstract

Genomic variant discovery is frequently performed using the GATK Best Practices
variant calling pipeline, a complex workflow with multiple steps, fans/merges, and
conditionals. This complexity makes management of the workflow difficult on a
computer cluster, especially when running in parallel on large batches of data: hundreds
or thousands of samples at a time. Here we describe a wrapper for the GATK-based
variant calling workflow using the Swift/T parallel scripting language. Standard built-in
features include the flexibility to split by chromosome before variant calling, optionally
permitting the analysis to continue when faulty samples are detected, and allowing
users to analyze multiple samples in parallel within each cluster node. The use of
Swift/T conveys two key advantages: (1) Thanks to the embedded ability of Swift/T to
transparently operate in multiple cluster scheduling environments (PBS Torque,
SLURM, Cray aprun environment, etc.,) a single workflow is trivially portable across
numerous clusters; (2) The leaf functions of Swift/T permit developers to easily swap
executables in and out of the workflow, conditional on the analyst’s choice, which makes
the workflow easy to maintain. This modular design permits separation of the workflow
into multiple stages and the request of resources optimal for each stage of the pipeline.
While Swift/T’s implicit data-level parallelism eliminates the need for the developer to
code parallel analysis of multiple samples, it does make debugging of the workflow a bit
more difficult, as is the case with any implicitly parallel code. With the above features,
users have a powerful and portable way to scale up their variant calling analysis to run
in many traditional computer cluster architectures.

https://github.com/ncsa/Swift-T-Variant-Calling
http://swift-t-variant-calling.readthedocs.io/en/latest/

PLOS 1/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

Introduction 1

Advancements in sequencing technology [1, 2] have paved the way for many applications 2

of Whole Genome Sequencing (WGS) and Whole Exome Sequencing (WES) in genomic 3

research and the clinic [3, 4]. One of these applications is genomic variant calling, 4

commonly performed in accordance with the Best Practices established by the GATK 5

team (Genome Analysis Toolkit) [5–7]. This methodology involves constructing a 6

complex workflow that could be hard to manage especially for large sample sizes 7

(hundreds and beyond, [8–10]) that necessitate the use of large computer clusters. In 8

such cases, features like resiliency and auto-restart in case of node failures, tracking of 9

individual samples, efficient node utilization, and easy debugging of errors and failures 10

are very important. Without a high-quality workflow manager, these requirements can 11

be difficult to satisfy, resulting in error-prone workflow development, maintenance and 12

execution. An additional challenge is porting the workflow among different computing 13

environments, a common need in collaborative and consortium projects. 14

Monolithic solutions, where a single executable runs the entire analysis, can replace 15

the complex multi-stage workflow and obviate the need for workflow management. 16

Examples of these solutions include Isaac [11], Genalice [12] and Dragen [13]. These 17

programs offer a plethora of options, but may be too rigid for some analyses, preventing 18

users from swapping algorithms for better accuracy or making adjustments for different 19

species (reference genome, ploidy, known SNP sets etc.) [14]. These monolithic 20

solutions are also developed and maintained by private companies, which may delay or 21

preclude the incorporation of novel approaches and algorithms developed by the 22

scientific and medical community. 23

It is likely that the GATK will continue to be the standard in research and medicine 24

for those reasons, and also due to the need for HIPAA [15]/CLIA [16] approval and 25

compliance. The GATK is well trusted, validated by the community, and grandfathered 26

in. Thus, the need for a generic, modular and flexible workflow built around the toolkit 27

will persist for some time. 28

Multiple workflow management systems are now available [17] that differ in their 29

design philosophy and implementation. None so far have been found to be the “best” 30

choice for bioinformatics, although some winners are emerging, such as the Common 31

Workflow Language (CWL [18]) and the Workflow Definition Language (WDL [19]), see 32

Discussion. Key distinguishing features are the underlying language and syntax in 33

which the workflow is expressed, and the monitoring and parallel processing capabilities 34

of workflows while executing. Swift/T [20] is one such workflow management system, 35

composed of Swift - a high-level, general-purpose dataflow scripting language [21], and 36

Turbine - a workflow execution engine [22]. The greatest purported advantages of 37

Swift/T are its high portability and ability to scale up to extreme petascale 38

computation levels [23]. Additionally, a number of features make this language an 39

attractive choice for complex bioinformatics workflows [24]: 40

• Abstraction and portability, where cluster resource management is largely hidden 41

from the user, allowing the same code to be seamlessly ported among clusters 42

with different schedulers; 43

• Modularity through the use of leaf functions to define heavyweight processing 44

tasks that are called as need arises; 45

• Extensibility through easy integration of functions written in other languages; 46

• Dataflow-based programming framework that ensures efficient use of compute 47

resources through compile-time optimization for distributed-memory computing 48

models and hybrid parallelism, resulting in high scalability; 49

PLOS 2/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

• Code readability due to its C-like syntax; and 50

• Code expressibility - inclusion of standard programming features, such as 51

conditional execution, iteration, and recursive functions [25]. 52

We explored Swift/T as a choice in the space of currently available workflow 53

management systems. This paper documents our experience implementing, debugging 54

and deploying a genomic variant calling workflow in Swift/T available at 55

https://github.com/ncsa/Swift-T-Variant-Calling and documented on 56

http://swift-t-variant-calling.readthedocs.io/en/latest/. 57

Methods and Results 58

The GATK Best Practices variant calling workflow consists of multiple steps that 59

require conditional adjustments based on the analysis use case, such as whole genome vs. 60

exome sequencing, paired- or single-end reads, species or ploidy, etc. The primary role 61

of the workflow management system, such as Swift/T, is to handle this conditional 62

branching and coordinate the launch of command-line tools in accordance with the 63

user-defined configuration and data dependencies, while efficiently managing the 64

computational resources. The underlying workflow language should make it easy to 65

develop and maintain such complex workflows. Based on our prior experience in 66

scaling-up the variant calling workflow [26–28], and that of others [29–31], we have put 67

together a list of requirements to be satisfied while redesigning the workflow in Swift/T, 68

and used them to evaluate the performance of the language for our purposes. 69

Workflow design requirements 70

Modularity 71

By definition, a workflow is a series of computational tasks, where outputs of one task 72

serve as inputs to the next. Each task can be performed by a selection of bioinformatics 73

software package options driven by the nature of the analysis (Table 1). This flexibility 74

can be enabled by constructing modular workflows, such that each executable is 75

incorporated via a generic wrapper, making it easy for the developer to swap 76

executables at the task level. For example, at the level of the Alignment task, the 77

workflow language should permit easy swapping of BWA MEM [32] for Novoalign [33], 78

conditionally on an option stated in a configuration or run file. 79

Many tools in Table 1 can take a long time to run on deeply-sequenced samples. 80

This poses a problem for analyses run on computer clusters that have a restrictive 81

maximum job walltime limit. Thus it is useful to break up the workflow into stages - 82

integrated sets of tasks that can be viewed as higher-level modules. Each module is then 83

executed as its own cluster job that fits within the maximum walltime constraint. 84

Chaining such modules together into one executable script effectively requires support 85

for “workflows of workflows”. 86

The modular architecture has additional advantages conferring economy of compute 87

resources and maintainability of code. It allows the user to run a portion of the 88

workflow on the resources optimal for that particular stage, which is useful when a 89

workflow has many fans and merges, but the fans have different node-widths among 90

them. In case of runtime failure, it also enables users to restart the workflow at a failed 91

stage without having to recompute successful upstream calculations. The latter 92

advantage, however, is obviated if the workflow management system itself provides 93

seamless workflow restart from the point of failure - a required feature for complex 94

workflows running at scale. Finally, modularity ensures that the implementation of 95

PLOS 3/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

individual stages can be altered without breaking the workflow, as long as inputs and 96

outputs remain consistent. This way, workflows can be updated with new methodologies 97

as the scientific field and respective tools evolve. 98

Data parallelism and scalability 99

A major expectation of a good workflow management system is the ability to develop a 100

single code path that will automatically run in parallel on multiple samples and not 101

force the user to manually code data-level parallelism. This implicit parallelism is not 102

just a matter of convenience, but a significant performance boost. Bioinformatics tools 103

are commonly implemented as multithreaded executables that are not MPI-enabled. 104

Thus, in Bash workflows each task on each sample has to be run as an individual cluster 105

job. If the cluster does not support job arrays, its workload manager can get 106

overwhelmed by the high number of jobs when analyzing large datasets, leading to slow 107

queues or failures. In contrast, a proper workflow management system should run a 108

workflow as a single multi-node job, handle the placement of tasks across the nodes 109

using embedded parallel mechanisms, such as MPI, and scale well with the number of 110

samples. 111

The workflow manager should also support repetitive fans and merges in the code. 112

For example, in variant calling it is common to cut the walltime of analysis by splitting 113

the input sequencing data into chunks, performing alignment in parallel on all chunks, 114

merging the aligned files per-sample for sorting and deduplication, and finally splitting 115

again for parallel realignment and recalibration per-chromosome (Fig. 1, left panel). 116

This pattern of parallelization is more complex than merely running each task on each 117

input sample - yet is a common workflow requirement. 118

Finally, in bioinformatics we only need certain tools to run on multiple samples in 119

parallel. Other tasks, such as creating folders, user notification or running QC on the 120

whole stage, can and sometimes should be run sequentially. Therefore, it is beneficial to 121

support differential use of data-level parallelism in some modules but not others. 122

Real-time logging and monitoring 123

When analyzing many samples at once, especially in a production environment where 124

the data flow continuously through the cluster, it is important to have a good system 125

Table 1. Tools commonly used in genomic variant calling workflows.

Workflow Task Bioinformatics tools

Alignment BWA MEM [32], Novoalign [33], Bowtie2 [34]†
Soringt SAM Novosort [33], Samtools [35], Sambamba [36]†
Marking duplicates Samblaster [37], Novosort [33], Picard [38]

Indel Realignment‡
GATK [39]

Base Recalibration

Variant Calling GATK HaplotypeCaller [40] or UnifiedGenotyper,
Samtools mpileup† [35], Platypus† [41], Strelka2† [42]

Joint Genotyping GATK GenotypeGVCFs

† Options absent from our implementation
‡ Indel realignment is not necessary past GATK version 3.6, but can be included to comply
with legacy analyses, and to enable the use of non-GATK variant callers that require
realignment.

PLOS 4/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

Fig 1. Swift/T variant calling code, under the hood. Left: Patterns of
parallelization implemented in our Swift/T variant calling workflow. Right: Colored
blocks represent the different stages of the workflow. Black blocks indicate methods
within the respective modules.

for logging and monitoring progress of the jobs. At any moment during the run, the 126

analyst should be able to assess (1) which stage of the workflow is running for every 127

sample batch, (2) which samples may have failed and why, (3) which nodes are being 128

used by the analysis, and their health status. Additionally, a well-structured 129

post-analysis record of all events executed on each sample is necessary to ensure 130

reproducibility of the analysis. This can be manually accomplished by developing a 131

system of runtime logs captured via stdout dumps, and handling user notification via 132

mailx, but both are quite tedious to code for complex, branched, multi-task workflows. 133

A good workflow manager should provide these capabilities implicitly. 134

Portability 135

A developer should be able to write a workflow once and then deploy it in many 136

environments: clusters with different node configuration, multiple queues and job 137

schedulers, in HPC or in the cloud. For a workflow as complex as genomic variant 138

calling, having to change and adapt for each different cluster is extremely 139

counterproductive. 140

Implementation of Design Requirements in Swift/T 141

Modularity 142

The Swift/T language natively supports modularity by defining a “worker” for each 143

executable (“leaf function” in Swift/T terminology), to be called at the appropriate 144

place in the workflow. For example, we implemented the choice to align reads either 145

using BWA MEM or Novoalign, as follows. 146

PLOS 5/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

@dispatch=WORKER
app (file output, file outLog) bwa_mem (string bwaexe, string read1,

string read2, string INDEX, string bwamemparams[], int PBSCORES,
string rgheader)

{
bwaexe "mem" "-M" bwamemparams "-t" PBSCORES "-R" rgheader

INDEX read1 read2 @stdout=output @stderr=outLog;
}

@dispatch=WORKER
app (file output, file outLog) novoalign (string novoalignexe, string read1,

string read2, string INDEX, string novoalignparams[], int PBSCORES,
string rgheader)

{
novoalignexe "-c" PBSCORES "-d" INDEX "-f" read1 read2 "-o" "SAM"

rgheader @stdout=output @stderr=outLog;
}

147

148

Here each executable is wrapped using the generic “worker” syntax, and workers are 149

conditionally invoked in a compact fashion to perform the Alignment task of the 150

workflow. 151

import bioapps.align_dedup;

if (vars["ALIGNERTOOL"] == "BWAMEM")
{

exec_check(vars["BWAEXE"], "BWAEXE");

// Directly return the .sam file created from bwa_mem
outputSam, alignedLog, tmpalignedLog = bwa_mem_logged(vars["BWAEXE"],

reads[0], reads[1], vars["BWAINDEX"], [vars["BWAMEMPARAMS"]], threads,
rgheader, sampleName) ;

}
else
{ // Novoalign is the default aligner

exec_check(vars["NOVOALIGNEXE"], "NOVOALIGNEXE");

// Directly return the .sam file created from novoalign
outputSam, alignedLog, tmpalignedLog = novoalign_logged(vars["NOVOALIGNEXE"],

reads[0], reads[1], vars["NOVOALIGNINDEX"], [vars["NOVOALIGNPARAMS"]],
threads, rgheader, sampleName) ;

}

152

153

Subworkflows, or “stages”, are implemented as individual Swift/T app functions that 154

are chained together by the primary workflow script (Fig 1, right panel). At each stage, 155

the user can direct the workflow to generate the output files necessary for the next 156

stage, or pass on the output generated from a previous run. At the end of each stage, 157

there is an implicit wait instruction that ensures all tasks have finished before the next 158

stage can run (also see next section). 159

Data parallelism and scalability 160

The “data flow” programming model of Swift/T implicitly supports parallel execution 161

of tasks. Statements are evaluated in parallel unless prohibited by a data dependency or 162

resource constraints, without the developer needing to explicitly code parallelism or 163

synchronization. Swift/T will automatically wait on a process to finish if the next step 164

depends on its output. For example, after read alignment, the step to mark duplicates 165

in an aligned BAM (picard logged) depends on the previous step 166

(novosort logged), which produces a sorted BAM (alignedsortedbam) to serve 167

PLOS 6/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

as input to the deduplication step. The essense of implicit parallelization is that 168

picard logged will wait until novosort logged is finished due to this data 169

dependency. 170

// Sort
alignedsortedbam, sortLog, tmpnovosortLog = novosort_logged(

vars["NOVOSORTEXE"], alignedBam, vars["TMPDIR"], threads, [],
string2int(vars["NOVOSORT_MEMLIMIT"]), sampleName) ;

// Mark Duplicates
dedupSortedBam, picardLog, metricsfile, tmppicardLog = picard_logged(

vars["JAVAEXE"], vars["JAVA_MAX_HEAP_SIZE"], vars["PICARDJAR"],
vars["TMPDIR"], alignedsortedbam, sampleName) ;

171

172

There are some places in the workflow where a stage must wait on another, yet a 173

direct data dependency does not exist. For example, log information begins to be 174

produced right away as the Alignment module begins execution. The output log folder 175

must first exist for this purpose, but the asynchronous parallel execution function of 176

Swift/T may start the Alignment module before it runs the statement to create the log 177

folder. This can be addressed by explicitly forcing the wait either via the “=>” symbol, 178

via wait() statement, or via a dummy variable that “fakes” a data dependency. 179

mkdir(LogDir) =>
mkdir(AlignDir) =>
void mkdirSignal = mkdir(tmpLogDir);

wait (mkdirSignal) {
alignedsam = alignReads(vars, sampleName, reads, rgheader);

}

180

181

The above example illustrates the use of a wait() statement, and also the 182

drawbacks of enforcing implicit parallelism across the entire workflow. In bioinformatics, 183

patterns of execution are usually mixed: individual commands running in parallel on 184

many samples are intermixed with serial blocks of code that perform quality control, 185

data management, user notification, or other tasks. It would be useful to have these 186

blocks fenced-off to prevent Swift/T from attempting to run them all asynchronously 187

and in parallel. Parsl, the next step in evolution of Swift language, has that 188

capability [43,44]. 189

Nonetheless, Swift/T does take care of parallelism in a smart and transparent way 190

that makes efficient use of resources. The user should still take care to request a 191

reasonable number of nodes: too few - and many samples will be processed in series; too 192

many - and resources will be reserved unnecessarily. Beyond that there is no need to 193

worry about task placement, as Turbine will take care of it. This is extremely useful, 194

because bioinformatics programs do not always scale well to the full number of cores 195

available on the compute nodes, and therefore running multiple instances of a task 196

simultaneously on the same node may improve the overall efficiency. For example, BWA 197

MEM normally scales well up to eight threads, so running two eight-thread processes in 198

parallel on a 16-core node is more efficient than running two sixteen-thread processes in 199

series. We implemented this as user-level options that specify the number of cores per 200

node and the number of programs to run on each node simultaneously. From there the 201

workflow determines the number of threads to use for each bioinformatics program, and 202

Swift/T uses Asynchronous Dynamic Load Balancing (ADLB) [45] to distribute those 203

programs across nodes as they become available at run time. Without ADLB one would 204

have to code this explicitly for each job scheduler, which becomes very complicated on 205

clusters that do not support node sharing, i.e. only one job is allowed to run per node. 206

PLOS 7/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

In the latter case a vanilla Bash workflow [46] would need to incorporate an MPI 207

wrapper (e.g. [47]) to take care of program placement across nodes. The MPI backend 208

of ADLB fulfills that function in Swift/T. 209

We verified correctness of the task dependency chains and parallel execution by 210

tracking start and end times of each task for multiple samples in some of our tests (see 211

next section and Fig. 2). 212

Real-time Logging and Monitoring 213

The underlying MPI-based implementation of Swift/T logic makes it possible to 214

leverage standard MPI logging libraries to collect run-time details about the status of 215

every sample. We used the Message Passing Environment (MPE) library [45] to log the 216

usage of the MPI library itself and ADLB calls [48], and implemented visualization in 217

Jumpshot viewer. To enable such logging requires installation of the MPE library in 218

addition to the standard Swift/T components (C-utils, ADLB library, Turbine and 219

STC). This turned out to be a bit cumbersome because it requires creation of new 220

functions: tcl wrappers around MPE to log when each executable starts and stops. 221

Another approach to tracking the workflow run time execution is to manually 222

implement Swift/T leaf functions such that the start and end timing of each function 223

are logged. A timing graph can be generated using R script based on this information, 224

showing the analysis steps across samples, chromosomes and specific applications (Fig 2). 225

Interactivity is added via Shiny R package [49]. This is a fairly manual approach, little 226

better than the Bash echo date statements. Nonetheless, it permits one to view the 227

patterns of pipeline execution even if it fails, and partial logs can similarly be viewed as 228

the pipeline is running. To obtain the up-to-date trace, one can type in the R terminal: 229

230

if (!require(shiny)) { 231

install.packages(’shiny’) 232

library(shiny) 233

} 234

runGitHub(repo = "ncsa/Swift-T-Variant-Calling", ref = "master", \ 235

subdir = "src/plotting_app") 236
237

In conclusion, logging and monitoring can be usefully implemented in a Swift/T 238

workflow, but are not adequately supported at the time of this writing and require quite 239

a bit of work. 240

Portability 241

Swift/T runs as an MPI program that uses the Turbine [22] and ADLB [45] libraries to 242

manage and distribute the workflow execution on local compute resources 243

(desktop/laptop), parallel computers (clusters/HPCs), and distributed systems 244

(grid/cloud). Its built-in wrappers can launch jobs on many common resource 245

schedulers, such as PBS Torque, Cobalt, Cray aprun, and SLURM [51], using the -m 246

flag passed to the Swift/T executable, i.e. swift-t -m slurm. Through these 247

unified wrappers, the user is only left with the trivial task of specifying the required 248

computational resources: queue, memory, wall time, etc.: 249

PLOS 8/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

Fig 2. Timing provenance tracking of a 3-sample pipeline run (synthetic
whole exome sequencing dataset at 30X, 50X and 70X) on Biocluster [50].
This plot view is interactive, allowing full pan and zoom and was generated using plotly
library in R.

export PPN=<PROGRAMS_PER_NODE>
export NODES=<NUMBER_OF_NODES_TO_RESERVE>
export PROCS=$(($PPN * $NODES))
export WALLTIME=<HH:MM:SS>
export QUEUE=<Queue>
export SWIFT_TMP=/path/to/directory/temp

swift-t -m slurm -O3 -n $PROCS
-o /path/to/where/compiled/should/be/saved/compiled.tic
-I /path/to/Swift-T-Variant-Calling/src/
-r /path/to/Swift-T-Variant-Calling/src/bioapps
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift
-runfile=/path/to/your.runfile

250

251

We verified both portability and scalability conferred by Swift/T by testing on a 252

variety of HPC systems with a range of cluster setups, job schedulers and patterns of 253

execution (Table 2). Portability across resource schedulers works as expected, although 254

unique setups may require tweaks, such as setting of environmental variables [52], with 255

configuration of 1 sample/node and 2 samples/node. 256

All other functionality of our workflow was also fully validated on soybean and 257

human Illumina sequencing data, as well as synthetic datasets. The complete list of 258

tested options and features can be found on our GitHub repository [53]. 259

Robustness against failure 260

Swift/T has native support for restarting a task after failure. The user controls the 261

maximum number of allowed retries, and a randomized exponential backoff delay is 262

applied between them, attempting to rerun the task until success or the pipeline 263

terminates, whichever is sooner. Retries do not correct for bugs in the pipeline code, 264

but only for Swift/T leaf function failures that are not related to compilation errors or 265

PLOS 9/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

Table 2. Swift/T delivers on its promise of portability and scalability. Synthetic data were generated using the
NEAT synthetic read simulator [54]. Node sharing column indicates whether the cluster permits jobs to share the same node.

System
Resource
manager

Node type
nodes
per run

Node
sharing

Test data

iForge [55] PBS Torque
IvyBridge,
20 cores,
256 GB RAM

1-8 No
Soy NAM [56] using 2, 6, 12,

or 16 sample batches †

XSEDE
Stampede2

[57]
Slurm

KNL,
68 cores,
4 hardware threads/core,
96 GB DDR4,
16 GB MCDRAM

1 Yes
GIAB NA12878 Illumina

HiSeq Exome (NIST7035) [58];
Synthetic chr1 exome seq 50X

Biocluster
[50]

Slurm
Dell PowerEdge R620,
24 Cores,
384 GB RAM

1; 3 Yes
Synthetic WES 30X;
Synthetic WES 50X;
Synthetic WES 70X

Single server
at CBSB,

H3ABioNet
node

N/A
HP Proliant dl380p gen. 8
24 cores
125 G RAM

1 Yes Synthetic chr1 exome seq 50X

† This Swift/T variant calling workflow was also used on iForge for a variety of analyses on WES and WGS data in different species.

“assert” failures. 266

This is useful when applications fail for nondeterministic reasons, such as a 267

filesystem under load slowing down I/O and making the application wait for data, thus 268

causing it to time out. However, when running wide jobs on large clusters, it is also 269

necessary to have robustness against node failure. In collaboration with the Swift/T 270

team, we introduced the support for moving the retries of the failed task to another, 271

randomly chosen, MPI rank. For reproducibility purposes, random number generation 272

in Swift/T defaults to start from the same seed, which is dependent on the MPI rank 273

where the process is to be evaluated, unless the seed is specified by the turbine variable 274

“TURBINE SRAND”. 275

Discussion 276

Complexity of problems in biology means that nearly every kind of analytics is a 277

multi-step process, a pipeline of individual analyses that feed their outputs to each 278

other (e.g. [59–61]). The algorithms and methods used for those processing steps are in 279

continual development by scientists, as computational biology and specifically 280

bioinformatics are still rapidly developing. Few studies can be accomplished via a single 281

integrated executable. Instead we deal with a heterogeneous medley of software of 282

varied robustness and accuracy, frequently with multiple packages available to perform 283

seemingly the same kind of analysis - yet subtly differing in applicability depending on 284

the species or input data type. Thus bioinformatics today requires advanced, flexible 285

automation via modular data-driven workflows. This is a tall order, considering the 286

added requirements of scalability, portability and robustness. Genomics is a big data 287

field: we no longer talk about sequencing individual organisms, but every baby being 288

born (∼500 per day per state in the US) and every patient who comes in for a checkup 289

(a million per year in a major hospital), not to mention the massive contemporary crop 290

and livestock genotyping efforts. The workflows managing data analysis at that scale 291

PLOS 10/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

must take full advantage of parallelism on modern hardware, be portable among 292

multiple HPC systems and the cloud, be robust against data corruption and hardware 293

failure, and provide full logging and reporting to the analyst for monitoring and 294

reproducibility. 295

Recently there has been an incredible upsurge in developing scientific workflow 296

management systems, enough to have resulted in calls for standardization and quality 297

assurance [62]. In this manuscript we reviewed our experience with one such system, 298

Swift/T, touching on workflow management, performance and scalability issues; security 299

was deemed out of scope. 300

Pros and cons of Swift/T for bioinformatics workflows 301

Swift/T is a powerful and versatile language that offers many advantages for production 302

large-scale bioinformatics workflows. It allowed us to fulfill most of the requirements 303

outlined in the Requirements section, for variant calling workflow as a use case. Below is 304

our summary of pros and cons based on that experience. 305

Portability may well be the greatest strength of Swift/T: a workflow written in 306

Swift/T can be executed on a wide variety of compute infrastructures without changing 307

the code, and the user does not need to know about the underlying scheduling 308

environment on the cluster. The language abstracts away the low level concerns such as 309

load balancing, inter-process communication and synchronization of tasks automatically 310

through its compiler (stc) and runtime engine (Turbine), allowing the programmer to 311

focus on the workflow design [63]. 312

Modularity is another excellent advantage of Swift/T. The language glues together 313

command line tools: either directly by wrapping them in Swift/T app functions if they 314

solely operate on files; or indirectly as tcl packages with corresponding Swift/T app 315

function declarations if they produce numerical or string outputs. Under the hood, 316

Swift/T code is actually compiled into Tcl syntax before Turbine gets to manage the 317

distribution and execution of tasks to compute resources. This further means that 318

wrapping any C, C++ or Fortran application is also easy due to Tcl. This leaf-function 319

modularization, and the ease of integrating code written in other languages into Swift/T 320

environment, is the reason why we preferred this to its predecessor Swift/K [21], which 321

had superior provenance and checkpointing capabilities [64]. 322

Implicit data parallelism and scalability of Swift/T is a powerful way of enabling big 323

data analyses by increasing the amount of simultaneous computation. The language 324

particularly lends itself to use cases that require asynchronous rapid-fire of small, quick 325

parallel jobs [65]. That is one of the many kinds of bioinformatics workloads, but not 326

the most typical one for primary analysis of genomic data. In this field we frequently 327

require a simple wrapper to run a single, time-consuming step on a large number of 328

samples or other units of data level parallelization: i.e. conversion of several thousand 329

BAMs back to FASTQs for reanalysis with the most recent reference genome. However, 330

the data flow task parallelism framework has a substantial learning curve, despite 331

offering familiar control flow statements and expressions in C-like syntax [66]. Coding 332

and debugging can require a more substantial effort than say, Nextflow [67], and that 333

can be a barrier for biologists. An additional inconvenience is that Swift/T does not 334

support piping between applications, which is extensively used in bioinformatics 335

analyses, as they are still overwhelmingly file-based pipelines. 336

Robustness against failures in Swift/T is supported via leaf function retries, 337

attempting to rerun the task on one of the available ranks. This confers resilience 338

against nondeterministic failures, such as filesystem or cluster interconnect hiccups as 339

well as hardware failures - an important advantage for big data genomics. 340

Real time logging is provided via runtime Turbine logs, with user-controlled 341

verbosity. These can be quite detailed but challenging to use for debugging when the 342

PLOS 11/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

analyst must understand whether a failure occurred due to data, a bioinformatics 343

application or the Swift/T code bug. The greatest difficulty stems from asynchronous 344

log records, caused by asynchronous execution of tasks. Thus an error printout rarely 345

corresponds to the execution message that immediately precedes it in the log, and 346

finding the failed tasks from the log alone is nearly impossible. We had to manually 347

implement the per-task and per-executable logs in our code, to counteract this 348

inconvenience. 349

In summary, Swift/T language lends itself to creating highly portable, modular and 350

implicitly parallel workflows. It is very powerful, especially when a workflow consists of 351

raw code pieces written in C, C++, Fortran, etc. However, it may be overkill for those 352

bioinformatics workflows that consist of pre-compiled executables glued together. The 353

lack of support for piping between applications is a major drawback for big-data 354

bioinformatics, resulting in proliferation of intermediary files. Portability, the main 355

advantage of Swift/T, could perhaps be accomplished in simpler ways. In the following 356

sections we review other workflow management systems, to put Swift/T into the 357

broader context of life sciences. 358

Challenges in building the “right” workflow manager for 359

computational biology 360

The implementation of workflow management systems (WMS) for computational 361

biology, bioinformatics and genomics is strongly influenced by culture and prevailing 362

expertise in the multidisciplinary fields. One has to contend with two populations of 363

scientists: those with strong biology background, driven to solve research problems, to 364

whom programming is an unavoidable yet joyless burden; and those able to produce 365

complex and capable code that is not perhaps very user-friendly. This creates a real 366

problem with adoption of any software, including a WMS: the harder it is for a scientist 367

to use a software package compared to an ad-hoc hack, the lower its widespread 368

acceptance in the community [62]. Perhaps that’s why simple glue solutions via Bash, 369

Perl, Python, Make, CMake and similar, have persisted for so long. Their shallow 370

learning curve permits quick production of short-term analytic solutions, which get used 371

over and over despite poor scaling with growing dataset size, and despite requiring a lot 372

of work to port among compute systems. 373

Scientific Workflow Systems are the next step up from scripting. Those that provide 374

a graphical user interface, such as Taverna [68], Galaxy [69] and Kepler [70] (Table 3), 375

have good accessibility for scientists with less programming experience but require quite 376

a bit of effort to be set up and maintained, and have limited set of features. In contrast, 377

lower level systems with a command-line interface (CLI), such as Snakemake [71], 378

Luigi [72], BcBio [73], Bpipe [74], are easier to maintain and share, provide good 379

documentation and reproducibility, fault tolerance, and task automation; however, they 380

require a lot more programming expertise. 381

PLOS 12/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

Table 3. Popular workflow management systems.

Comparison
aspect

Swift/T [20] NextFlow [67] Galaxy [69] Kepler [70]

Nature
WL† and

execution engine
WL and

execution engine
Web interface

WL and
execution engine

Support community
standard WL?

No No CWL No

User interface CLI
CLI,

REPL [75],
IDE [76]

GUI
GUI,
CLI,

Jupyter notebooks

Programming
paradigm [77]

Dataflow Dataflow Sequential [78]

Sequential,
dataflow,

process network or
continuous time [79]

Containerization
support

None
Docker,

Singularity
Docker,

Singularity
Docker

Scalability [80] Extreme scale [81] Yes Complicated ‡ Yes

Checkpointing and
caching

No Yes Yes Yes

Portability ¶ Cray aprun, LSF

LSF, NQSII,
HTCondor,
Kubernetes,

Ignite,
DNAnexus

LSF, HTCondor,
Galaxy Pulsar [82]

XSEDE Jetstream [83]

Open stack,
Google cloud,
Apache Mesos

Distributed
execution

MPI-based Apache Ignite/ MPI Spark [84], Hadoop [85] Spark, Hadoop

Supported compute
architecture

Homogeneous
Homogeneous or
heterogeneous

Not clear
Homogeneous or
heterogeneous

Compute resource
allocation

Reserved a priori Reserved a priori
Multiple deployment

strategies [86]
Allocated dynamically

† WL = workflow language; REPL = Read-Eval-Print-Loop console; CLI = Command Line Interface; GUI = graphical user interface.
‡ Recent optimizations of Galaxy for User interface scalability and Server scalability enable analysis of large datasets for many users [69].
¶ All these workflow management systems can run on a single server, on clusters managed by PBS, Grid Engine, Slurm, and on AWS.

382

P
L
O
S

13/23

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under

T
he copyright holder for this preprint (w

hich w
as not

this version posted January 18, 2019.
;

https://doi.org/10.1101/524645
doi:

bioR
xiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

The cultural gap in capabilities between developers and end users can be closed via 383

implementation of visual programming (GUI-like interface with CLI-like capabilities), 384

thus allowing for customization of analytic tools and technologies with little to no 385

programming background. But, ultimately the right approach to providing scalability 386

and interoperability is probably via implementation of generic low level bioinformatics 387

specific libraries to be used universally across different sets of tools [87]. 388

In the meantime, great strides are being made by the community in trying out 389

different approaches to scientific workflow management and automation, aiming to 390

satisfy the complex requirements [17]: 391

• seamlessly managing both serial and parallel steps without creating data waits 392

and computational bottlenecks; 393

• managing complex task dependencies via explicit configuration (e.g. a 394

user-produced XML file in Pegasus [88]), language-specific syntax 395

(BigDataScript [89]), automatic construction of workflow graphs (Swift [21], 396

WDL [19], Nextflow [67]), rule-based approaches (Ruffus [90] and bpipe [74]) or 397

implicit conventions, while abstracting away from HPC cluster management 398

concerns (Job Management System [91]); 399

• flexibility to work with varied software being run by the workflow (i.e. via 400

containerization), and widely variegated parameter values and configurations (i.e. 401

through workflow autogeneration [92]); 402

• ability to handle both fixed and user-defined parameters. 403

The field seems to have converged on a set of relatively widely used workflow 404

languages (WL) to describe the actual flow of computation, and execution engines (EE) 405

that provide automation and portability on HPC environments. Some solutions are by 406

their nature an integrated package of WL+EE (Table 3). However, there has been a 407

widespread recognition of the need to standardize WLs, for the sake of reproducibility - 408

particularly important for clinical applications. Thus separating out an execution engine 409

that could operate on workflows written in a variety of WLs is very attractive. A few 410

clear leaders have recently emerged: CWL [18] and WDL [19] for workflow definition 411

languages, and Toil [93, 94], Rabix [95] and Cromwell [19] for execution engines 412

(Table 4). CWL enjoys very wide adoption, either being supported, or upcoming 413

support announced among Taverna [68], Galaxy [69], Toil [93], Arvados [96], Rabix [95], 414

Cromwell [19]. To some extent such data-driven workflow languages as CWL and WDL 415

can be viewed as a more advanced step in evolution of a formal scientific workflow. 416

Indeed, when a scientist is only experimenting with the new analysis, it is useful to 417

program it in a powerful lower-level language like Swift, which allows a lot of 418

experimentation with the structure and content of the workflow. Once this has been 419

developed and validated, formalizing it in more rigid data-driven framework (CWL, 420

WDL) for reproducibility and later use by non-programmers has a lot of value. 421

Further efforts toward wider adoption recognize the need to execute biomedical 422

workflows on big data platforms, such as Hadoop and Spark (e.g. Luigi), and the cloud 423

(e.g. Toil, DNAnexus, SevenBridges, Illumina’s BaseSpace, Curoverse’s Arvados and 424

iPlant Collaborative’s Agave). 425

PLOS 14/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

Table 4. Popular workflow management systems.

Comparison
aspect

Toil z [93] Rabix [95] Cromwell [19]

Nature Execution engine Execution engine Execution engine

Support community
standard WL?

CWL, WDL CWL WDL #

User interface CLI GUI ?, CLI CLI

Programming
paradigm [77]

Sequential † Dataflow [18] Dataflow

Containerization
support

Docker Docker Docker

Scalability [80] Petascale Yes Yes

Checkpointing and
caching

Yes Yes Yes

Portability ¶

LSF, Parasol,
Apache Mesos,

Open stack,
MS Azure,

Google Cloud &

Compute Engine

Open stack,
Google Cloud §

LSF,
HTCondor,

Google JES §

Distributed
execution

Spark - Spark

Supported compute
architecture

Homogeneous or
heterogeneous

Homogeneous § Homogeneous §

Compute resource
allocation

Allocated dynamically Reserved apriori § Reserved a priori

z Toil uniquely has notions of object store and data encryption, which can assure compliance with strict data
security requirements

Work is ongoing to incorporate support for CWL into Cromwell [97]
? Rabix composer (http://docs.rabix.io/rabix-composer-home) is a stand-alone GUI editor for CWL workflows.
† In Toil child jobs are executed after their parents have completed (in parallel), and follow-on jobs are run after
the successors and their child jobs have finished execution (also in parallel). This creates a Directed Acyclic
Graph of jobs to be run [94], similarly to dataflow. But, unlike in dataflow model, the order of execution
depends on whether the parent job has finished and its relation to other jobs, as opposed to whether the data
are ready [18].

¶ All these workflow management systems can run on a single server, on clusters managed by PBS, Grid Engine,
Slurm, and also on AWS

§ Work is ongoing to also provide support for the GA4GH TES job management system

426

Conclusion 427

Our experience implementing a genomic variant calling workflow in Swift/T suggests 428

that it is a very powerful system for workflow management in supercomputing 429

environments. The language is rich with features that give developers control over their 430

workflow structure and execution while providing familiar syntax. The execution engine 431

also has intelligent mechanisms for task placement and regulation, permitting efficient 432

use of compute resources. This unfortunately comes at the cost of a relatively steep 433

learning curve - a common trade-off for programming languages in general. Thus 434

Swift/T can be an extremely useful - and possibly the best - tool for certain genomics 435

PLOS 15/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

analyses, though its complexity may pose an adoption barrier for biologists. 436

Acknowledgments 437

We are grateful for the support of the Blue Waters team, NCSA Industry, and the 438

Argonne/U. Chicago Swift/T developer team during the implementation, testing, and 439

scalability efforts in this project. 440

This research is part of the Blue Waters sustained-petascale computing project, 441

which is supported by the National Science Foundation (awards OCI-0725070 and 442

ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of 443

Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. 444

This work used the Extreme Science and Engineering Discovery Environment 445

(XSEDE), which is supported by National Science Foundation grant number 446

ACI-1548562. 447

This work used Biocluster, the High Performance Computing (HPC) resource for the 448

Carl R Woese Institute for Genomic Biology (IGB) at the University of Illinois at 449

Urbana-Champaign (UIUC). We are grateful for the support by the Computer Network 450

Resource Group (CNRG) while testing the pipeline. 451

AEA and FMF are H3ABioNet members and supported by the National Institutes 452

of Health Common Fund under grant number U41HG006941. The content is solely the 453

responsibility of the authors and does not necessarily represent the official views of the 454

National Institutes of Health. 455

References

1. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet.
2010;11(1):31–46. doi:10.1038/nrg2626.

2. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–351.
doi:10.1038/nrg.2016.49.

3. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in
medical genetics. J Hum Genet. 2014;59(1):5–15. doi:10.1038/jhg.2013.114.

4. Allard MW. The Future of Whole-Genome Sequencing for Public Health and the
Clinic. J Clin Microbiol. 2016;54(8):1946–1948. doi:10.1128/JCM.01082-16.

5. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The Genome Analysis Toolkit: A MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Research. 2010;20(9):1297–1303.
doi:10.1101/gr.107524.110.

6. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nat Genet. 2011;43(5):491–498. doi:10.1038/ng.806.

7. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G,
Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the
Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics.
2013;11(1110):11.10.1–11.10.33. doi:10.1002/0471250953.bi1110s43.

PLOS 16/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

8. Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, et al. Review of
current methods, applications, and data management for the bioinformatics
analysis of whole exome sequencing. Cancer Inform. 2014;13(Suppl 2):67–82.
doi:10.4137/CIN.S13779.

9. Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities
and challenges of whole-genome and -exome sequencing. BMC Genet.
2017;18(1):14. doi:10.1186/s12863-017-0479-5.

10. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big data:
astronomical or genomical? PLoS Biol. 2015;13(7):e1002195.
doi:10.1371/journal.pbio.1002195.

11. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH, et al.
Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing
platforms. Bioinformatics. 2013;29(16):2041–2043.
doi:10.1093/bioinformatics/btt314.

12. Genalice. NGS Analysis— Genalice Map; 2017. Available from:
http://www.genalice.com/product/genalice-map/.

13. Goyal A, Kwon HJ, Lee K, Garg R, Yun SY, Kim YH, et al. Ultra-Fast Next
Generation Human Genome Sequencing Data Processing Using DRAGENTM

Bio-IT Processor for Precision Medicine. Open Journal of Genetics.
2017;7(1):9–19. doi:10.4236/ojgen.2017.71002.

14. Monat C, Tranchant-Dubreuil C, Kougbeadjo A, Farcy C, Ortega-Abboud E,
Amanzougarene S, et al. TOGGLE: toolbox for generic NGS analyses. BMC
Bioinformatics. 2015;16(1):374. doi:10.1186/s12859-015-0795-6.

15. US Government Publishing Office. type [; 2018]Available from:
https://www.govinfo.gov/content/pkg/PLAW-104publ191/html/
PLAW-104publ191.htm.

16. eCFR —Code of Federal Regulations. type [; 2018]Available from:
https://www.ecfr.gov/cgi-bin/text-idx?SID=
1248e3189da5e5f936e55315402bc38b&node=pt42.5.493&rgn=div5.

17. Leipzig J. A review of bioinformatic pipeline frameworks. Brief Bioinformatics.
2017;18(3):530–536. doi:10.1093/bib/bbw020.

18. Peter Amstutz, Michael R Crusoe, Neboǰsa Tijanić. Common Workflow Language
(CWL) Workflow Description, v1.0.2; 2017. Available from:
http://www.commonwl.org/v1.0/Workflow.html{#}Workflow.

19. Voss K, Gentry J, der Auwera GV, Voss K, Gentry J, Van der Auwera G.
Full-stack genomics pipelining with GATK4 + WDL + Cromwell. F1000Research.
2017;6. doi:10.7490/F1000RESEARCH.1114631.1.

20. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT. Swift/T:
Large-Scale Application Composition via Distributed-Memory Dataflow
Processing. In: 2013 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing. IEEE; 2013. p. 95–102. Available from:
http://ieeexplore.ieee.org/document/6546066/.

21. Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster I. Swift: A
language for distributed parallel scripting. Parallel Computing.
2011;37(9):633–652. doi:10.1016/j.parco.2011.05.005.

PLOS 17/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

22. Wozniak JM, Armstrong TG, Maheshwari K, Lusk EL, Katz DS, Wilde M, et al.
Turbine: A distributed-memory dataflow engine for extreme-scale many-task
applications. In: Proceedings of the 1st ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies. ACM; 2012. p. 5.

23. Ozik J, Collier NT, Wozniak JM, Spagnuolo C. From Desktop to Large-Scale
Model Exploration with Swift/T. In: 2016 Winter Simulation Conference (WSC).
IEEE; 2016. p. 206–220. Available from:
http://ieeexplore.ieee.org/document/7822090/.

24. Wozniak JM. Highlights of X-Stack ExM Deliverable Swift/T. Argonne National
Lab.(ANL), Argonne, IL (United States); 2016.

25. Katz D. Expressing workflows as code vs. data.; 2018. Available from:
https://danielskatzblog.wordpress.com/2018/01/08/
expressing-workflows-as-code-vs-data/.

26. Mainzer L, Botha G, Meintjes A, Jongeneel V, Mulder N. Design of a custom
genotyping chip for African populations. In: Blue Waters Symposium
Proceedings; 2016.Available from: https://bluewaters.ncsa.illinois.
edu/science-teams?page=detail&psn=jti.

27. Mainzer LS, Asmann Y, Hudson M. Identification of missing variants in
Alzheimer’s disease, and the new standards for genomic variant identification in
large cohorts. In: Blue Waters Report; 2018.Available from:
https://bluewaters.ncsa.illinois.edu/apps/bwst/api/file.
php/file/5ae7a1747688d7642613016e.

28. Mainzer LS, Fields C, Rendon G, Jongeneel V. Instrumenting Human Variant
Calling Workflow on Blue Waters. In: Blue Waters Symposium Proceedings;
2015.Available from: https://bluewaters.ncsa.illinois.edu/
liferay-content/document-library/2015%20symposium/Mainzer%
20presentation.pdf.

29. Kawalia A, Motameny S, Wonczak S, Thiele H, Nieroda L, Jabbari K, et al.
Leveraging the power of high performance computing for next generation
sequencing data analysis: tricks and twists from a high throughput exome
workflow. PLoS ONE. 2015;10(5):e0126321. doi:10.1371/journal.pone.0126321.

30. Jason Pitt KW. SwiftSeq: A High-Performance Workflow for Processing DNA
Sequencing Data; 2014. Available from: http://beagle.ci.uchicago.
edu/wp-content/files/2014/05/may_newsletter_2014.pdf.

31. Puckelwartz MJ, Pesce LL, Nelakuditi V, Dellefave-Castillo L, Golbus JR, Day
SM, et al. Supercomputing for the parallelization of whole genome analysis.
Bioinformatics. 2014;30(11):1508–1513. doi:10.1093/bioinformatics/btu071.

32. Li H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM; 2013. Available from: http://arxiv.org/abs/1303.3997v2.

33. NOVOCRAFT TECHNOLOGIES SDN BHD. Novocraft; 2014. Available from:
http://www.novocraft.com/.

34. Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature
Methods. 2012;9:357–359. doi:10.1038/nmeth.1923.

PLOS 18/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
Sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352.

36. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast
processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032–2034.
doi:10.1093/bioinformatics/btv098.

37. Faust GG, Hall IM. SAMBLASTER: fast duplicate marking and structural
variant read extraction. Bioinformatics. 2014;30(17):2503–2505.
doi:10.1093/bioinformatics/btu314.

38. The Broad Institute. Picard Tools; 2017. Available from:
https://broadinstitute.github.io/picard/.

39. The Broad Institute. GATK |Best Practices; 2017. Available from:
https://software.broadinstitute.org/gatk/best-practices/.

40. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der
Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands
of samples. BioRxiv. 2017;doi:10.1101/201178.

41. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Consortium W, et al.
Integrating mapping-, assembly- and haplotype-based approaches for calling
variants in clinical sequencing applications. Nat Genet. 2014;46(8):912–918.
doi:10.1038/ng.3036.

42. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, et al.
Strelka2: fast and accurate calling of germline and somatic variants. Nat
Methods. 2018;15(8):591–594. doi:10.1038/s41592-018-0051-x.

43. Babuji Y, Chard K, Foster I, Katz DS, Wilde M, Woodard A, et al. Parsl:
Scalable Parallel Scripting in Python. In: 10th International Workshop on
Science Gateways (IWSG 2018); 2018.

44. Parsl- Parallel Scripting Library; 2018. Available from:
http://parsl-project.org.

45. Lusk E, Pieper S, Butler R. More scalability, less pain: A simple programming
model and its implementation for extreme computing. SciDAC Review.
2010;17:30–37.

46. HPCBio. BW VariantCalling; 2016. Available from:
https://github.com/HPCBio/BW_VariantCalling.

47. NCSA. Scheduler; 2017. Available from:
https://github.com/ncsa/Scheduler.

48. Wozniak JM, Chan A, Armstrong TG, Wilde M, Lusk E, Foster IT. A model for
tracing and debugging large-scale task-parallel programs with MPE. Proc
LASH-C at PPoPP. 2013;.

49. Chang W, Cheng J, Allaire J, Xie Y, McPherson J. shiny: Web Application
Framework for R; 2017. Available from:
https://CRAN.R-project.org/package=shiny.

50. Carl R Woese Institute for Genomic Biology at the University of Illinois at
Urbana-Champaign. Biocluster (High Performance Computing resource); 2017.
Available from: https://help.igb.illinois.edu/Biocluster.

PLOS 19/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

51. Wozniak JM. Swift/T Sites Guide; 2017. Available from:
http://swift-lang.github.io/swift-t/sites.html.

52. NCSA. Swift-T-Variant-Calling/README.md; 2017. Available from:
https://github.com/ncsa/Swift-T-Variant-Calling/blob/
master/README.md#cray-system-like-blue-waters-at-uiuc.

53. NCSA. Swift-T-Variant-Calling/test/TestCases.txt; 2017. Available from:
https://github.com/ncsa/Swift-T-Variant-Calling/blob/
master/test/TestCases.txt.

54. Stephens ZD, Hudson ME, Mainzer LS, Taschuk M, Weber MR, Iyer RK.
Simulating Next-Generation Sequencing Datasets from Empirical Mutation and
Sequencing Models. PLOS ONE. 2016;11(11):1–18.
doi:10.1371/journal.pone.0167047.

55. The University of Illinois at Urbana-Champaign - National Center for
Supercomputing Applications. iForge Cluster; 2017. Available from:
http://www.ncsa.illinois.edu/industry/iforge.

56. USDA. SoyBase and Soybean Breeder’s Toolbox - Nested Association Mapping;
2015. Available from:
https://www.soybase.org/SoyNAM/soynamdetails.php.

57. The University of Texas at Austin’s Texas Advanced Computing Center.
Stampede2 supercomputer; 2017. Available from:
https://www.tacc.utexas.edu/systems/stampede2.

58. giab data indexes: This repository contains data indexes from NIST’s Genome in
a Bottle project; 2017. Available from:
https://github.com/genome-in-a-bottle/giab_data_indexes.

59. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al.
Full-length transcriptome assembly from RNA-Seq data without a reference
genome. Nature biotechnology. 2011;29(7):644.

60. Campbell MS, Holt C, Moore B, Yandell M. Genome annotation and curation
using MAKER and MAKER-P. Current Protocols in Bioinformatics.
2014;48(1):4–11.

61. Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, et al. A
guided tour of the Trans-Proteomic Pipeline. Proteomics. 2010;10(6):1150–1159.

62. Spjuth O, Bongcam-Rudloff E, Hernández GC, Forer L, Giovacchini M, Guimera
RV, et al. Experiences with workflows for automating data-intensive
bioinformatics. Biology Direct. 2015;10(1):43. doi:10.1186/s13062-015-0071-8.

63. Armstrong TG, Wozniak JM, Wilde M, Foster IT. Compiler techniques for
massively scalable implicit task parallelism. In: SC14: International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE; 2014.
p. 299–310. Available from:
http://ieeexplore.ieee.org/document/7013012/.

64. Gadelha Jr LMR, Clifford B, Mattoso M, Wilde M, Foster I. Provenance
management in Swift. Future Generation Computer Systems. 2011;27(6):775–780.
doi:10.1016/j.future.2010.05.003.

PLOS 20/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

65. Wilde M, Wozniak JM, Armstrong TG, Katz DS, Foster IT. Productive
composition of extreme-scale applications using implicitly parallel dataflow. In:
DOE Workshop on Software Productivity for eXtreme scale Science (SWP4XS);
2014.

66. Wozniak JM, Wilde M, Foster IT. Language Features for Scalable
Distributed-Memory Dataflow Computing. In: Data-flow Execution Models for
Extreme-scale Computing; 2014.

67. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C.
Nextflow enables reproducible computational workflows. Nat Biotech.
2017;35(4):316–319. doi:10.1038/nbt.3820.

68. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al. The
Taverna workflow suite: designing and executing workflows of Web Services on
the desktop, web or in the cloud. Nucleic Acids Res. 2013;41(Web Server
issue):W557–61. doi:10.1093/nar/gkt328.

69. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, et al. The
Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–W544.
doi:10.1093/nar/gky379.

70. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler: an
extensible system for design and execution of scientific workflows. In: Scientific
and Statistical Database Management, 2004. Proceedings. 16th International
Conference on. IEEE; 2004. p. 423–424.

71. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics. 2012;28(19):2520–2522.

72. GitHub - spotify/luigi; 2018. Available from:
https://github.com/spotify/luigi.

73. Guimera RV. bcbio-nextgen: Automated, distributed next-gen sequencing
pipeline. EMBnet j. 2012;17(B):30. doi:10.14806/ej.17.B.286.

74. Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running and managing
bioinformatics pipelines. Bioinformatics. 2012;28(11):1525–1526.

75. Tommaso PD. Nextflow - Introducing Nextflow REPL Console; 2015. Available
from: https://www.nextflow.io/blog/2015/
introducing-nextflow-console.html.

76. Kurs JP, Simi M, Campagne F. NextflowWorkbench: Reproducible and Reusable
Workflows for Beginners and Experts. bioRxiv. 2016; p. 041236.
doi:10.1101/041236.

77. Roosta SH. Data Flow and Functional Programming. In: Parallel Processing and
Parallel Algorithms. New York, NY: Springer New York; 2000. p. 411–437.
Available from:
http://link.springer.com/10.1007/978-1-4612-1220-1{_}9.

78. Abouelhoda M, Issa S, Ghanem M. Tavaxy: Integrating Taverna and Galaxy
workflows with cloud computing support. BMC Bioinformatics. 2012;13(1):77.
doi:10.1186/1471-2105-13-77.

PLOS 21/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

79. Goderis A, Brooks C, Altintas I, Lee EA, Goble C. Composing Different Models
of Computation in Kepler and Ptolemy II 1 The Need for Composing Models of
Computation in E-Science. LNCS. 2007;4489:182–190.

80. Ferreira da Silva R, Filgueira R, Pietri I, Jiang M, Sakellariou R, Deelman E. A
characterization of workflow management systems for extreme-scale applications.
Future Generation Computer Systems. 2017;75:228–238.
doi:10.1016/j.future.2017.02.026.

81. Wilde M, Wozniak JM, Armstrong TG, Katz DS, Foster IT. Productive
composition of extreme-scale applications using implicitly parallel dataflow. In:
ASCR Workshop on Software Productivity for Extreme-Scale Science; 2014.

82. Chilton J, Moskalenko O, Frey J, Chorny I. Running Galaxy Tools on a Cluster;
2018. Available from: https:
//docs.galaxyproject.org/en/latest/admin/cluster.html.

83. Afgan E, Baker D, Beek MVD, Blankenberg D, Bouvier D, Chilton J, et al. The
Galaxy platform for accessible, reproducible and collaborative biomedical
analyses : 2016 update. Nucleic Acids Research. 2016;44(W1):3–10.
doi:10.1093/nar/gkw343.

84. Riazi S. SparkGalaxy: Workflow-based Big Data Processing; 2016.

85. Pireddu L, Leo S, Soranzo N, Zanetti G. A Hadoop-Galaxy adapter for
user-friendly and scalable data-intensive bioinformatics in Galaxy. In:
Proceedings of the 5th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics - BCB ’14. New York, New York, USA: ACM
Press; 2014. p. 184–191. Available from:
http://dl.acm.org/citation.cfm?doid=2649387.2649429.

86. Galaxy: Scaling and Load balancing; 2018. Available from: https:
//docs.galaxyproject.org/en/latest/admin/scaling.html.

87. Milicchio F, Rose R, Bian J, Min J, Prosperi M. Visual programming for
next-generation sequencing data analytics. BioData Mining. 2016;9(1):16.
doi:10.1186/s13040-016-0095-3.

88. Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, et al.
Pegasus: a Workflow Management System for Science Automation. Future
Generation Computer Systems. 2015;46:17–35. doi:10.1016/j.future.2014.10.008.

89. Cingolani P, Sladek R, Blanchette M. BigDataScript: a scripting language for
data pipelines. Bioinformatics. 2014;31(1):10–16.

90. Goodstadt L. Ruffus: a lightweight Python library for computational pipelines.
Bioinformatics. 2010;26(21):2778–2779.

91. Brown DK, Penkler DL, Musyoka TM, Bishop OT. JMS: An Open Source
Workflow Management System and Web-Based Cluster Front-End for High
Performance Computing. PLOS ONE. 2015;10(8):1–25.
doi:10.1371/journal.pone.0134273.

92. Garcia Castro A, Thoraval S, Garcia LJ, Ragan MA. Workflows in
bioinformatics: meta-analysis and prototype implementation of a workflow
generator. BMC Bioinformatics. 2005;6(1):87. doi:10.1186/1471-2105-6-87.

PLOS 22/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

93. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil
enables reproducible, open source, big biomedical data analyses. Nature
Biotechnology. 2017;35(4):314–316. doi:10.1038/nbt.3772.

94. UCSC Computational Genomics Lab . Developing a Workflow — Toil 3.12.0
documentation; 2017. Available from:
http://toil.readthedocs.io/en/3.12.0/developingWorkflows/
developing.html{#}workflows-with-multiple-jobs.

95. Kaushik G, Ivkovic S, Simonovic J, Tijanic N, Davis-Dusenbery B, Kural D.
Rabix: an Open-Source Workflow Executor Supporting Recomputability and
Interoperability of Workflow Descriptions. Pacific Symposium on Biocomputing
Pacific Symposium on Biocomputing. 2016;22:154–165. doi:10.1101/074708.

96. Arvados— Open Source Big Data Processing and Bioinformatics;. Available from:
https://arvados.org/.

97. Gentry J. Multiple workflow languages coming to Cromwell, starting with CWL;
2018. Available from: https:
//gatkforums.broadinstitute.org/wdl/discussion/11109/.

PLOS 23/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/524645doi: bioRxiv preprint

https://doi.org/10.1101/524645
http://creativecommons.org/licenses/by/4.0/

