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Abstract 26 

The addition of rewarding feedback to motor learning tasks has been shown to increase the 27 

retention of learning, spurring interest in the possible utility for rehabilitation. However, 28 

laboratory-based motor tasks employing rewarding feedback have repeatedly been shown to 29 

lead to great inter-individual variability in performance. Understanding the causes of such 30 

variability is vital for maximising the potential benefits of reward-based motor learning. Thus, 31 

in this pre-registered study, we assessed whether spatial (SWM), verbal (VWM) and mental 32 

rotation (RWM) working memory capacity as well as dopamine-related genetic profiles could 33 

predict performance in two reward-based motor tasks, using a large cohort of participants 34 

(N=241). The first task assessed participant’s ability to follow a hidden and slowly shifting 35 

reward region based on hit/miss (binary) feedback. The second task investigated participant’s 36 

capacity to preserve performance with binary feedback after adapting to the shift with full 37 

visual feedback. Our results demonstrate that SWM strongly predicts a participant’s capacity 38 

to reliably reproduce a successful motor action, measured as change in reach angle following 39 

reward, while RWM predicted a participant’s propensity to express an explicit strategy when 40 

required to make large adjustments in reach angle. Therefore, both SWM and RWM were 41 

reliable predictors of success during reward-based motor learning. Change in reach direction 42 

following failure was also a strong predictor of success rate, although we observed no 43 

consistent relationship with any type of working memory. Surprisingly, no dopamine-related 44 

genotypes predicted performance. Therefore, working memory capacity plays a pivotal in 45 

determining individual ability in reward-based motor learning.  46 

 47 

Significance statement 48 

Reward-based motor learning tasks have repeatedly been shown to lead to idiosyncratic 49 

behaviours that cause varying degrees of task success. Yet, the factors determining an 50 
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individual’s capacity to use reward-based feedback are unclear. Here, we assessed a wide 51 

range of possible candidate predictors, and demonstrate that domain-specific working 52 

memory plays an essential role in determining individual capacity to use reward-based 53 

feedback. Surprisingly, genetic variations in dopamine availability were not found to play a 54 

role. This is in stark contrast with seminal work in the reinforcement and decision-making 55 

literature, which show strong and replicated effects of the same dopaminergic genes in 56 

decision-making. Therefore, our results provide novel insights in reward-based motor 57 

learning, highlighting a key role for domain-specific working memory capacity. 58 

 59 

Introduction 60 

When performing motor tasks under altered environmental conditions, adaptation to the new 61 

constraints occurs through the recruitment of a variety of systems  (Taylor and Ivry, 2014). 62 

Arguably the most studied of those systems is cerebellum-dependent adaptation, which 63 

consists of the implicit and automatic recalibration of mappings between actual and expected 64 

outcomes, through sensory prediction errors (Morehead et al., 2017; Tseng et al., 2007). 65 

Besides cerebellar adaptation, other work has demonstrated the involvement of a more 66 

cognitive, deliberative process whereby motor plans are adjusted based on an individual’s 67 

structural understanding of the task (Bond and Taylor, 2015; Taylor and Ivry, 2011). We 68 

label this process as explicit control (Codol et al., 2018; Holland et al., 2018) but it has also 69 

been referred to as strategy (Taylor and Ivry, 2011) or explicit re-aiming (Morehead et al., 70 

2015). Recently it has been proposed that reinforcement learning, whereby the memory of 71 

successful or unsuccessful actions are strengthened or weakened, respectively, may also play 72 

a role (Huang et al., 2011; Izawa and Shadmehr, 2011; Shmuelof et al., 2012). Such reward-73 

based reinforcement has been assumed to be an implicit and automatic process (Haith and 74 

Krakauer, 2013). However, recent evidence suggests that phenomena attributed to 75 
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reinforcement-based learning during visuomotor rotation tasks can largely be explained 76 

through explicit processes (Codol et al., 2018; Holland et al., 2018).  77 

 78 

One outstanding feature of reinforcement-based motor learning is the great variability 79 

expressed across individuals (Codol et al., 2018; Holland et al., 2018; Therrien et al., 2016, 80 

2018). What factors underlie such variability? If reinforcement is indeed explicitly grounded, 81 

it  could be argued that individual working memory (WM) capacity, which reliably predicts 82 

propensity to employ explicit control in classical motor adaptation tasks (Anguera et al., 83 

2010; Christou et al., 2016; Sidarta et al., 2018), would also predict performance in a 84 

reinforcement-based motor learning task. If so, this would strengthen the proposal that reward 85 

based motor learning bears a strong explicit component. Anguera et al., (2010) demonstrated 86 

that mental rotation WM (RWM) specifically, unlike other forms of working memory such as 87 

verbal working memory (VWM), correlates with explicit control. More recently, Christou et 88 

al. (2016) reported a similar correlation with spatial WM (SWM).  89 

 90 

Another potential contributor to this variability is genetic profile. In previous work from our 91 

group (Codol et al., 2018; Holland et al., 2018), we argue that reinforcement-based motor 92 

learning performance relies on a balance between exploration and exploitation of the task 93 

space, a feature reminiscent of structural learning and reinforcement-based decision-making 94 

(Daw et al., 2005; Frank et al., 2009; Sutton and Barto, 1998). A series of studies from Frank 95 

and colleagues suggests that individual tendencies to express explorative versus exploitative 96 

behaviour can be predicted based on dopamine-related genetic profile (Doll et al., 2016; 97 

Frank et al., 2007, 2009). Reinforcement has consistently been linked to dopaminergic 98 

function in a variety of paradigms, and thus, such a relationship could also be expected in 99 

reward-based motor learning (Pekny et al., 2015). Specifically, Frank and colleagues focused 100 
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on Catecholamine-O-Methyl-Transferase (COMT), Dopamine- and cAMP-Regulated 101 

neuronal Phosphoprotein (DARPP32) and Dopamine Receptor D2 (DRD2), and suggest a 102 

distinction between COMT-modulated exploration and DARPP32- and DRD2-modulated 103 

exploitation (Frank et al., 2009).  104 

 105 

Consequently, we investigated the influence of WM capacity (RWM, SWM   and VWM) and 106 

genetic variations in dopamine metabolism (DRD2, DARP32, COMT) on an individual’s 107 

ability to perform under reward-based motor learning conditions. We examined this using 108 

two established reward-based motor learning tasks. First, a gradual task (Holland et al., 2018) 109 

required participants to learn to adjust the angle at which they reached to a slowly and 110 

secretly shifting reward region (Acquire); second, an abrupt task (Codol et al., 2018; 111 

Shmuelof et al., 2012) required participants to preserve performance with reward-based 112 

feedback after adapting to a visuomotor rotation (Preserve). The use of these two tasks 113 

enabled us to examine whether similar predictors of performance explained participant’s 114 

capacity to acquire and preserve behaviour with reward-based feedback. 115 

 116 

Methods 117 

Prior to the start of data collection, the sample size, variables of interest and analysis method 118 

were pre-registered. The pre-registered information, data and analysis code can be found 119 

online at https://osf.io/j5v2s/ and https://osf.io/rmwc2/ for the Preserve and Acquire tasks, 120 

respectively.  121 

Participants 122 

121 (30 male, mean age: 21.06, range: 18-32) and 120 (16 male, mean age: 19.24, range: 18-123 

32) participants were recruited for the Acquire and Preserve tasks, respectively. All 124 

participants provided informed consent and were remunerated with either course credit or 125 
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money (£7.50/hour). All participants were free of psychological, cognitive, motor or 126 

uncorrected visual impairment. The study was approved by and performed in accordance 127 

with the local research ethics committee of the University of Birmingham, UK. 128 

General procedure 129 

Participants were seated before a horizontally fixed mirror reflecting a screen placed above, 130 

on which visual stimuli were presented. This arrangement resulted in the stimuli appearing at 131 

the level on which participants performed their reaching movements. The Acquire (gradual) 132 

and Preserve (abrupt) tasks were performed on two different stations, with a KINARM 133 

(BKIN Technology, London, Ontario; sampling rate: 1000Hz) and a Polhemus 3SPACE 134 

Fastrak tracking device (Colchester, Vermont U.S.A.; sampling rate: 120Hz), employed 135 

respectively. The Acquire task was run using Simulink (The Mathworks, Natwick, MA) and 136 

Dexterit-E (BKIN Technology), while the Preserve task was run using Matlab (The 137 

Mathworks, Natwick, MA) and Psychophysics toolbox (Brainard, 1997). The Acquire task 138 

employed the same paradigm and equipment as Holland et al. (2018), with the exception of 139 

the maximum reaction time (RT) which was increased from 0.6s to 1s, and the maximum 140 

movement time (MT) which was reduced from 1s to 0.6s. The Preserve task used the same 141 

setup and display as in Codol et al. (2018); however, the number of ‘refresher’ trials during 142 

the binary feedback (BF) blocks was increased from one to two in every 10 trials. The 143 

designs were kept as close as possible to their respective original publications to promote 144 

replication and comparability across studies. In both tasks reaching movements were made 145 

with the dominant arm. 146 

Reaching tasks 147 

Acquire task. Participants performed 670 trials, each of which followed a stereotyped 148 

timeline. The starting position for each trial was in a consistent position roughly 30cm in 149 

front of the midline and was indicated by a red circle (1cm radius). After holding the position 150 
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of the handle within the starting position, a target (red circle, 1cm radius) appeared directly in 151 

front of the starting position at a distance of 10cm. Participants were instructed to make a 152 

rapid ‘shooting’ movement that passed through the target. If the cursor position at a radial 153 

distance of 10cm was within a reward region (±5.67°, initially centred on the visible target; 154 

grey region in Figure 1a) the target changed colour from red to green and a green tick was 155 

displayed just above the target position, informing participants of the success of their 156 

movement. If, however, the cursor did not pass through the reward region, the target 157 

disappeared from view and no tick was displayed, signalling failure (binary feedback). After 158 

each movement, the robot returned to the starting position and participants were instructed to 159 

passively allow this.  160 

For the first 10 trials, the position of the robotic handle was displayed as a white cursor (0.5 161 

cm radius) on screen, following this practice block the cursor was extinguished for the 162 

remainder of the experiment and participants only received binary feedback. The baseline 163 

block consisted of the first 40 trials under binary feedback, during this period the reward 164 

region remained centred on the visible target. Subsequently, unbeknownst to the participant 165 

the reward region rotated in steps of 1° every 20 trials; the direction of rotation was 166 

counterbalanced across participants. After reaching a rotation of 25° the reward region was 167 

held constant for an additional 20 trials. Performance during these last 20 trials was used to 168 

determine overall task success. Subsequently, binary feedback was removed, and participants 169 

were instructed to continue reaching as they were (maintain block) for the following 50 trials. 170 

Following this, participants were then informed that the reward region shifted during the 171 

experiment but not of the magnitude or the direction of the shift. They were then instructed to 172 

return to reaching in the same manner as they were at the start of the experiment (remove 173 

block, 50 trials). During the learning phase of the task participants were given a 1-minute rest 174 

after trials 190 and 340.  175 
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Preserve task. Participants performed 515 trials in total. On each trial participants were 176 

instructed to make a rapid ‘shooting’ movement that passed through a target (white circle, 177 

radius: 0.125cm) visible on the screen. The starting position for each trial was indicated by a 178 

white square (width: 1cm) roughly 30cm in front of the midline and the target was located at 179 

angle of 45⁰ from the perpendicular in a counter clockwise direction at a distance of 8cm. The 180 

position of the tracking device attached to the fingertip was displayed as a cursor (green 181 

circle, radius: 0.125cm). When the radial distance of the cursor from the starting position 182 

exceeded 8cm, the cursor feedback disappeared, and the end position was displayed instead. 183 

First, participants performed a baseline period of 40 trials, during which the position of the 184 

cursor was visible and the cursor accurately reflected the position of the fingertip. In the 185 

adaptation block (75 trials), participants were exposed to an abruptly introduced 20° 186 

clockwise visuomotor rotation of the cursor feedback (Figure 1b). Subsequently, all visual 187 

feedback of the cursor was removed, and participants received only binary feedback. If the 188 

end position of the movement fell within a reward region, the trial was considered successful 189 

and a tick was displayed; otherwise a cross was displayed. The reward region was centred at 190 

a clockwise rotation of 20° with respect to the visual target with a width of 10° i.e. it was 191 

centred on the direction that successfully accounted for the previously experienced 192 

visuomotor rotation. Binary feedback was provided for 200 trials divided into 2 blocks of 100 193 

trials (asymptote blocks). Furthermore, participants experienced 2 “refresher” trials for every 194 

10 trials, where rotated visual feedback of the cursor position was again accessible (Codol et 195 

al., 2018; Shmuelof et al., 2012). This represents an increase compared to Codol et al. (2018) 196 

because participants in this study tended to have poorer performance under binary feedback, 197 

possibly due to a fatigue effect following the WM tasks (Anguera et al., 2012; see discussion). 198 

Finally, two blocks (100 trials each) with no performance feedback were employed in order 199 

to assess retention of the perturbation (no-feedback blocks). Before the first of those two 200 
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blocks, participants were informed of the visuomotor rotation, asked to stop accounting for it 201 

through aiming off target and to aim straight at the target. 202 

  203 

    204 

Figure 1. Experimental design. A: Time course of the Acquire task with the 205 

different experimental periods labelled. The grey region represents the reward region, 206 

which gradually rotated away from the visual target after the initial baseline period. 207 

The rectangle enclosing the green tick above the axes represents trials in which reward 208 
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was available, and the rectangle with the ‘eye’ symbol indicates when vision was not 209 

available. B: Time course of the Preserve task. After adapting to an initial rotation with 210 

vision available, vison was removed (eye symbol) and reward-based feedback was 211 

introduced (tick and cross above the axes). Prior to the no-feedback blocks participants 212 

were instructed to remove any strategy they had been using. C: WM capacity tasks, the 213 

three tasks followed a stereotyped timeline with only the items to be remembered 214 

differing. Each trial consisted of 4 phases (Fixation, Encoding, Maintenance, and 215 

Recall) with the time allocated to each displayed below. 216 

 217 

Working memory tasks 218 

Participants performed three WM tasks, all of which followed the same design with the 219 

exception of the nature of the items to be remembered (Figure 1c). All WM tasks were run 220 

using Matlab (The Mathworks, Natwick, MA) and Psychophysics toolbox (Brainard, 1997). 221 

At the start of each trial, a white fixation cross was displayed in the centre of the screen for a 222 

period of 0.5 to 1s randomly generated from a uniform distribution (fixation period Figure 223 

1c). In the encoding period, the stimuli to be remembered was displayed for 1s and then 224 

subsequently replaced with a blue fixation cross for the maintenance period which persisted 225 

for 3s. Finally, during the recall period, participants were given a maximum of 4s to respond 226 

by pressing one of three keys on a keyboard with their dominant hand. The ‘1’ key indicated 227 

that the stimuli presented in the recall period was a ‘match’ to that presented in the encoding 228 

period, the ‘2’ key indicated a ‘non-match’ and pressing ‘3’ indicated that the participant was 229 

unsure as to the correct answer. Each WM task contained 5 levels of difficulty with the 12 230 

trials presented for each; 6 of which were trials in which ‘match’ was the correct answer and 231 

6 in which ‘non-match’ was the correct answer. Consequently, each task consisted of 60 trials 232 

and the order in which the tasks were performed was pseudorandomised across participants. 233 
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Prior to the start of each task participants performed 10 practice trials to familiarise 234 

themselves with the task and instructions. For both the Acquire and Preserve tasks, the WM 235 

tasks were performed in the same experimental session as the reaching. However, in the case 236 

of the Acquire task the WM tasks were performed after the reaching task whereas for the 237 

Preserve task the WM tasks were performed first.  238 

In the rotation WM task (RWM, Figure 1c top row), the stimuli consisted of six 2D 239 

representations of 3D shapes drawn from an electronic library of the Shepard and Metzler 240 

type stimuli (Peters and Battista, 2008). The shape presented in the recall period was always 241 

the same 3D shape presented in the encoding period after undergoing a screen-plane rotation 242 

of 60°, 120°, 180°, 240° or 300°. In ‘match’ trials, the only transform applied was the 243 

rotation; however, in ‘non-match’ trials an additional vertical-axis mirroring was also applied. 244 

The difficulty of mental rotation has been demonstrated to increase with larger angles of 245 

rotation (Shepard and Metzler, 1971) and therefore the different degrees of rotation 246 

corresponded to the 5 levels of difficulty. However, given the symmetry of two pairs of 247 

rotations (60 and 300, 120 and 240), these 5 levels were collapsed to 3 for analysis.  248 

In the spatial WM task (SWM, Figure 1c middle row), stimuli in the encoding period 249 

consisted of a variable number of red circles placed within 16 squares arranged in a circular 250 

array (McNab and Klingberg, 2008). In the recall period, the array of squares was presented 251 

without the red circles and instead a question mark appeared in one of the squares. 252 

Participants then answered to the question “Was there a red dot in the square marked by a 253 

question mark?” by pressing a corresponding key. In ‘match’ trials the question mark 254 

appeared in one of the squares previously containing a red circle and in ‘non-match’ trials it 255 

appeared in a square that was previously empty. Difficulty was scaled by varying the number 256 

of red circles (i.e. the number of locations to remember) from 3 to 7.  257 
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In the verbal WM task (VWM, Figure 1c bottom row), participants were presented with a list 258 

of a variable number of consonants during the encoding period. In the recall period a single 259 

consonant was presented, and participants answered to the question “Was this letter included 260 

in the previous array?”. Thus, the letter could either be drawn from the previous list (‘match’ 261 

trials) or have been absent from the previous list (‘non-match’ trials). Difficulty in this task 262 

was determined by the length of the list to be remembered, ranging from 5 to 9.    263 

Genetic sample collection and profiling 264 

COMT is thought to affect DA function mainly in the prefrontal cortex (Egan et al., 2001; 265 

Goldberg et al., 2003), a region known for its involvement in WM and strategic planning 266 

(Anguera et al., 2010; Doll et al., 2015), whereas DARPP32 and DRD2 act mainly in the 267 

basal ganglia to promote exploitative behaviour, possibly by promoting selection of the 268 

action to be performed (Frank et al., 2009). Consequently, we focused here on SNPs related 269 

to those genes: RS4680 (COMT) and RS907094 (DARPP32). Regarding DRD2, there are 270 

two potential SNPs available, RS6277 and RS1800497. Although previous studies focusing 271 

on exploration and exploitation have assessed RS6277 expression (Doll et al., 2016; Frank et 272 

al., 2007, 2009), it should be noted that this SNP varies greatly across ethnic groups, with 273 

some allelic variations being nearly completely absent in non-Caucasian-European groups 274 

(e.g. see RS6277 in 1000 Genomes Project (The 1000 Genomes Project Consortium et al., 275 

2015)). This has likely been inconsequential in previous work, as Caucasian-European 276 

individual represented the majority of sampled groups; here however, this represents a critical 277 

shortcoming, as we aim at investigating a larger and more representative population including 278 

other ethnic groups. Consequently, we based our analysis on the RS1800497 allele of the 279 

DRD2 gene (Pearson-Fuhrhop et al., 2013). 280 

At the end of the task, participants were asked to produce a saliva sample which was 281 

collected, stabilized and transported using Oragene.DNA saliva collection kits (OG-500, 282 
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DNAgenotek, Ontario, Canada). Participants were requested not to eat or drink anything 283 

except water for at least two hours before sample collection. Once data collection was 284 

completed across all participants, the saliva samples were sent to LGC (Hoddeson, 285 

Hertfordshire; https://www.lgcgroup.com/) for DNA extraction (per Oragene protocols: 286 

https://www.dnagenotek.com/) and genotyping. SNP genotyping was performed using the 287 

KASP SNP genotyping system. KASP is a competitive allele-specific PCR incorporating a 288 

FRET quencher cassette. Specifically, the SNP-specific KASP assay mix (containing two 289 

different, allele specific, competing forward primers) and the universal KASP master mix 290 

(containing FRET cassette plus Taq polymerase in an optimised buffer solution) were added 291 

to DNA samples and a thermal cycling reaction performed, followed by an end-point 292 

fluorescent read according to the manufacturer’s protocol. All assays were tested on in-house 293 

validation DNA prior to being run on project samples. No-template controls were used, and 294 

5% of the samples had duplicates included on each plate to enable the detection of 295 

contamination or non-specific amplification. All assays had over 90% call rates. Following 296 

completion of the PCR, all genotyping reaction plates were read on a BMG PHERAStar plate 297 

reader. The plates were recycled until a laboratory operator was satisfied that the PCR 298 

reaction had reached its endpoint. In-house Kraken software then automatically called the 299 

genotypes for each sample, with these results being confirmed independently by two 300 

laboratory operators. Furthermore, the duplicate saliva samples collected from 5% of 301 

participants were checked for consistency with the primary sample. No discrepancies 302 

between primary samples and duplicates were discovered. 303 

Data Analysis 304 

Acquire task: Reach trials containing MTs over 0.6s or less than 0.2s were removed from 305 

analysis (6.9%). The end point angle of each movement was defined at the time when the 306 

radial distance of the cursor exceeded 10cm. This angle was defined in relation to the visible 307 
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target with positive angles indicating clockwise rotations, end point angles and target angles 308 

for participants who experienced the counter clockwise rotations were sign-transformed. The 309 

explicit component of retention was defined as the difference between the mean reach angle 310 

of the maintain block and the remove block, while the implicit component was the difference 311 

between the mean reach angle of the remove block and baseline. If during the final 20 trials 312 

before the maintain block a participant achieved a mean reach angle within the reward region, 313 

participants were considered “successful” in learning the rotation; they were considered 314 

“unsuccessful” otherwise. For regression analysis a binary variable “task success” was 315 

defined as 1 and 0 for successful and unsuccessful participants, respectively. As in Holland et 316 

al (2018), for unsuccessful participants, the largest angle of rotation at which the mean reach 317 

angle fell within the reward region was taken as the end of successful performance, and only 318 

trials prior to this point were included for further analysis. Success rate was defined as the 319 

percentage of trials during the learning blocks in which the end point angle was within the 320 

reward region. In order to examine the effect of reward on the change in end point angle on 321 

the subsequent trial, we calculated the absolute change in end point angle between 322 

consecutive trials (Holland et al., 2018; Sidarta et al., 2018; Therrien et al., 2016, 2018). 323 

Subsequently we calculated the median absolute change in angle following rewarded trials 324 

(ΔR) and the median absolute deviation of these values (MAD [ΔR]). This analysis was 325 

repeated for the changes in angle following unsuccessful trials (ΔP and MAD [ΔP]).  326 

Preserve task: Reach trials containing MTs over 1s were removed from analysis (2.38% of 327 

all trials). The end point angle for each movement was defined at the time that the radial 328 

distance of the cursor from the start position exceeded 8cm. Trials in which the error was 329 

greater than 80° were excluded from further analysis (0.94% of trials). For each participant 330 

we plotted the reach error in one trial against the change in reach angle in the following trial 331 

for all trials in the adaptation block. The angle of the line of best fit was then used as the 332 
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learning rate (Hutter and Taylor, 2018). Using this approach, a perfect adaptation leads to a 333 

value of -1, indicating that the error on a given trial is fully accounted for on the next trial. 334 

Overall this approach fitted the data well (mean R2=0.5038, SD=0.12). As in Codol et al 335 

(2018), success rate, corresponding to percentage of rewarded trials, was measured separately 336 

in the first 30 and last 170 trials of the asymptote blocks and labelled early and late success 337 

rate, respectively. This reflects a dichotomy between a dominantly exploration-driven early 338 

phase and a later exploitation-driven phase. Implicit retention was defined as the difference 339 

between the average baseline reach direction and the mean reach direction of the last 20 trials 340 

of the last no-feedback block (Codol et al., 2018). Analysis of changes in reach angle 341 

following rewarded trials were not pre-registered, but were included post-hoc.  342 

Exploratory analysis of reaching data: In order to understand which outcome variables in the 343 

reaching tasks were predictive of overall task success, we split the learning period into two 344 

sections for every participant. We assessed trial-by-trial changes in end point angle in the first 345 

section, and compared them to success rate in the second section. For the Acquire task, we 346 

assessed trial-by-trial adjustments during the learning block, excluding the final 20 trials, and 347 

compared them to success rate in the last 20 trials of the learning block. In the Preserve task, 348 

we measured adjustments in the first 100 trials of the asymptote blocks and compared them to 349 

success rate in the last 100 trials of the asymptote blocks. 350 

WM tasks: WM performance was defined as the average percentage of correct responses 351 

across the 3 highest levels of difficulty for each task. In the case of the RWM task, the 352 

symmetrical arrangement of the angles of rotation in effect produced three levels of difficulty 353 

and therefore all trials were analysed.  354 

Genetics: Genes were linearly encoded, with heterozygote alleles being 0, homozygote 355 

alleles bearing the highest dopaminergic state being 1, and homozygote alleles bearing the 356 

lowest dopaminergic state being -1 (Table 1). All groups were assessed for violations of the 357 
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Hardy-Weinberg equilibrium. The participant pool in the Preserve task was in Hardy-358 

Weinberg equilibrium for all three genes considered, even when restricted to the Caucasian-359 

only subpopulation. In the Acquire task population, COMT and DRD2 were in Hardy-360 

Weinberg equilibrium, but DARPP32 was not (p=0.002), with too few heterozygotes. 361 

Therefore, the DARPP32 alleles were recoded, with the heterozygotes (0) and the smallest 362 

homozygote group (C:C, -1) combined and recoded as 0. In the analysis including only the 363 

Caucasian subset, all three alleles were in the Hardy-Weinberg equilibrium, although 364 

combining the heterozygote and smallest homozygote group did not change the results.  365 

 366 

Table 1. Coding for SNPs 367 

SNP location Allele code -1 Allele code 0 Allele code 1 

rs4680 COMT G:G (val:val) A:G (met:val) A:A (met:met) 

rs1800497 DRD2 T:T (lys:lys) T:C (lys:glu) C:C (glu:glu) 

rs907094 DARPP32 C:C C:T T:T 

 368 

Statistical Analysis: Regressions were performed using stepwise linear regressions 369 

(stepwiselm function in MatLab’s Statistics and Machine Learning Toolbox), so as to select 370 

the most parsimonious model. A stepwise logistic regression was employed for overall task 371 

success in the Acquire task. Prior to the regression analysis, all predictors and predicted 372 

variables were standardised (z-scored), with the exception of the values encoding the genetic 373 

alleles. For all non-ordinal variables individual data were considered outliers if further than 3 374 

standard deviations from the mean and were removed.  Multicollinearity of predictors was 375 

also assessed before regression with Belsley Collinearity Diagnositcs (collintest function in 376 

MatLabs’s Econometrics Toolbox) and no predictors were found to exhibit condition indexes 377 
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over 30, indicating acceptable levels of collinearity. When considering retention for both 378 

tasks, unsuccessful participants were removed from the regression analysis. 379 

Results 380 

Acquire task 381 

In the Acquire task, participants had to learn to compensate for a slow and undisclosed of the 382 

reward region in order to obtain successful feedback (Figure 2, 3). As in Holland et al. (2018), 383 

about a quarter (28.1%) of participants failed to learn to compensate for the full extent of the 384 

rotation (Figure 3a). Successful participants retained most of the learnt rotation (mean 80.7% 385 

± 28.0% SD) in the maintain block. However, upon being asked to remove any strategy they 386 

had been employing, their performance returned to near-baseline levels. Consequently, a 387 

large explicit component to retention was found for successful participants (Figure 3b), 388 

whereas both successful and unsuccessful participants manifest a small but non-zero implicit 389 

component (t(86)=9.90, p=7.43×10-16 and t(33)=4.53, p=7.39×10-5, respectively; Figure 3c). 390 

Furthermore, in accordance with Holland et al (2018) we found that participants made larger 391 

(t(120)=15.80, p=4.32×10-31) and more variable changes in reach angle following unrewarded 392 

trials (t(120)=13.36, p=1.68×10-25; Figure 3d-h), whereas in participants who would go on to 393 

fail, the post-error adjustments were smaller than in successful participants (t(119)=3.33, 394 

p=0.001; Figure 3d). Changes following rewarded trials were similar between the groups 395 

(t(119)=0.71, p=0.48; Figure 3f, g). The results obtained in this sample (N=121) therefore 396 

replicate results from a previous study (N=30) and provides further confirmation that 397 

performance in this task is fundamentally explicitly driven (Holland et al., 2018). 398 

 399 

 400 
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 401 

Figure 2. Reaching performance in the Acquire task for all subjects. The grey 402 

region represents the gradually rotating rewarded region, the blue line represents mean 403 

reach angle for each trial, and the shaded blue region represent SEM. Vertical dashed 404 

lines represent different experiment blocks or breaks. Average performance for the full 405 

cohort falls within the reward region and demonstrates a clear reduction in reach angle 406 

when asked to remove strategy. N=121. 407 

 408 

 409 

Figure 3. Acquire task split by success at final angle. A: Average reach angle for 410 

the successful (green) and unsuccessful (orange) groups, shaded regions represent SEM 411 

and grey shaded region represents the rewarded region. Despite similar initial 412 
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performance a clear divergence can be seen between the two groups and an explicit 413 

component to retention is only visible in the successful group, whereas implicit retention 414 

is similar. B-G: subplots displaying derived measures separated into successful and 415 

unsuccessful participants overlaid with individual data points. Error bars represent 416 

95% confidence intervals.  Although the changes in reach after rewarded trials (ΔR) are 417 

similar, the successful group display greater changes after unrewarded trials (ΔP).  418 

 419 

In order to understand what genetic and WM factors are predictive of performance in the 420 

reaching task we performed a stepwise regression of the seven predictors (three allelic 421 

variations, three WM and ethnicity) onto each of several outcome measures representative of 422 

performance: success rate, implicit and explicit retention, ΔR, MAD[ΔR], ΔP, MAD[ΔP]. 423 

Additionally, we performed a stepwise logistic regression of the predictors onto a binary 424 

variable encoding if a participant successfully learnt the full rotation (1) or not (0). The 425 

logistic regression showed no significant predictors of task success, that is, of being able to 426 

follow the shifting reward region until the end of the learning block. However, higher SWM 427 

was predictive of an increased success rate (percentage of correct trials; β=0.416, p=2.45×10-428 

6). To ensure that the relationship between SWM and success rate was not due to failure at a 429 

later point in the task, success rate was measured during the initial period in which subjects 430 

who could not fully account for the displacement are still successful; for those who could, the 431 

full learning block was included. Next, retention was assessed by splitting up the explicit and 432 

implicit components such as in Holland et al. (2018). No predictor could explain the implicit 433 

component, but the explicit component was strongly and positively predicted by RWM 434 

(β=0.373, p=1.78×10-4). These results suggest positive effects of both RWM and SWM on 435 

task performance: greater RWM predicts a greater contribution of explicit processes to 436 

learning, whereas greater SWM predicts a greater percentage of correct trials. 437 
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Table 2: Regressions with significant models for the Acquire task. regression. SR: 438 

success rate. 439 

 440 

Ethnicity Outcome Predictor Betas SE p Model 

All SR SWM 0.416 0.084 2.45×10-6 F(117,2)=2.475, p= 0.036 

 Explicit RWM 0.373 0.095 1.78×10-4 F(117,2)=15.370, p=1.78×10-4 

 ΔP VWM -0.243 0.089 0.007 

F(117,2)=7.46, 

p=0.007 

 MAD(ΔP) RWM -0.230 0.089 0.011 

F(117,2)=6.667, 

p=0.011 

 

 

ΔR 

SWM -0.251 0.089 0.005 F(117,2)=8.028, p=0.005 

 MAD(ΔR) SWM -0.283 0.088 0.002 F(117,2)=10.355, p=0.002 

       

 SR SWM 0.293 0.104 0.006 F(80,2)=7.822, p=0.006 

Caucasian Explicit RWM 0.300 0.105 0.002 F(80,2)=8.207, p=0.002 

 ΔP VWM -0.219 0.107 0.043 

F(80,2)=4.211, 

p=0.043 

 MAD(ΔP) RWM -0.283 0.110 0.012 

F(80,2)=6.618, 

p=0.012 

 ΔR SWM -0.280 0.109 0.013 F(80,2)=6.538, p=0.013 

 MAD(ΔR) SWM -0.282 0.111 0.013 F(80,2)=6.432, p =0.013 

 441 

 442 

 443 

In Holland et al (2018), the amplitude of the changes in reach angle participants made 444 

following unrewarded trials was found to be predictive of task success, that is, ΔP was 445 
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predictive of overall task success. Thus, it could be that RWM and SWM, that are shown to 446 

predict performance in this study, are themselves predictors of changes in reach angle. The 447 

regression results demonstrated that large ΔR was inversely predicted by SWM (β=-0.251, 448 

p=0.005), as was MAD[ΔR] (β=-0.283, p=0.002). The results indicate that greater SWM was 449 

predictive of smaller and less variable changes in reach angle after successful trials, 450 

suggesting high SWM enables the maintenance of rewarding reach angles. It was also found 451 

that the size of changes in reach angle after unrewarded trials (ΔP) was inversely predicted by 452 

VWM (β=-0.243, p= 0.007) and the variability of these changes was negatively predicted by 453 

RWM (β=-0.230, p= 0.011). This result was unexpected as it suggests that greater WM 454 

capacity predicts smaller changes following unrewarded trials, whereas previous results 455 

suggest a positive relationship between these changes and overall task success. Finally, to 456 

ensure the robustness of the results, we tested whether retaining only the largest ethnic group 457 

in our population (i.e. Caucasian, N=82/121) produced the same results as was observed with 458 

the full participant pool. In accordance with the full sample, all previously described 459 

relationships were also found in the Caucasian only subset (Table 2).  460 

Overall, WM (in particular RWM and SWM) successfully predicted various aspects of 461 

performance in the Acquire task, while genetic predictors failed to do so. Specifically, greater 462 

SWM predicted smaller and less variable changes after correct trials. This suggests that SWM 463 

underlies one’s capacity to preserve and consistently express an acquired reach direction to 464 

obtain reward. Furthermore, SWM also directly predicted success rate. In addition, greater 465 

RWM was a strong predictor of explicit control. The inverse relationships between VWM 466 

and RWM and the magnitude and variability of changes after unrewarded trials was 467 

unexpected. However, one possible explanation is that participants with poorer WM capacity 468 

make larger errors which require larger corrections. Restricting our group to Caucasians 469 

showed that these effects are robust to ethnicity. 470 
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 471 

Preserve task 472 

In this task, we addressed how well participants can maintain a previously learnt adaptation 473 

after transitioning to binary feedback. As participants are unable to compensate for a large 474 

abrupt displacement of a hidden reward region (van der Kooij and Overvliet, 2016; Manley et 475 

al., 2014), participants first adapted to an abruptly introduced 20° clockwise rotation with full 476 

vision of the cursor available. Subsequently, visual feedback of the cursor position was 477 

replaced with binary feedback; participants were rewarded if they continued reaching towards 478 

the same angle that resulted in the cursor hitting the target during the adaptation phase. 479 

Overall, participants adapted to the visuomotor rotation successfully (Figure 4, 5a-c) before 480 

transitioning to the binary feedback-based asymptote blocks. However, from the start of the 481 

asymptote blocks onward, participants exhibited very poor performance, expressing an 482 

average 45.0 ± 24.2 SD% success rate when considering all 200 asymptote trials (Figure 4, 5a, 483 

d, e). Separating successful and unsuccessful participants (40% success rate cut-off; Figure 484 

5a) revealed that successful participants expressed behaviour greatly similar to that observed 485 

in Codol et al. (2018), in which unsuccessful participants were excluded, using the same cut-486 

off (40% success rate). The ‘spiking’ behaviour observed in reach angles during the 487 

asymptote blocks (Figure 5a) is due to the presence of the ‘refresher’ trials, with the large 488 

positive changes in reach angle corresponding to trials immediately following the refresher 489 

trials. This pattern of behaviour is particularly pronounced in the unsuccessful participants. 490 

Finally, all participants demonstrated at least a residual level of retention even after being 491 

instructed to remove any strategy they had employed (Figure 5a, f). However, as expected, 492 

participants who experienced more success during asymptote blocks also expressed higher 493 

retention overall in the final two blocks (Figure 5a, f). 494 

 495 
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 496 

 497 

Figure 4. Reaching performance in the Preserve task for all subjects. The grey 498 

shaded area represents the rewarded region, and the thick black line represents the 499 

perturbation. The vertical dashed lines represent block limits. The blue line indicates 500 

mean reach angle for every trial and blue shaded areas represent SEM. After 501 

successfully adapting to the visuomotor rotation performance deteriorates at the onset 502 

of binary feedback before success rate increases towards the end of the asymptote 503 

blocks. Following the removal of all feedback and the instruction to remove any strategy, 504 

a small amount of implicit retention remains. N=120. 505 
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   506 

Figure 5. Reaching performance in the Preserve task with participants split into 507 

two groups on the basis of success rate. A: Shaded regions represent SEM. B-H: 508 

Derived variables for the two groups, error bars on the bars represent 95% confidence 509 

intervals and individual data points are displayed. SR: success rate. 510 

 511 

As in the Acquire task, we examined if performance in any of the WM tasks or genetic 512 

profile could predict participant’s behaviour. We performed separate stepwise regressions for 513 

the following outcome variables: baseline reach direction as a control variable, learning rate 514 

in the adaptation block, early and late success rate in the asymptote blocks (first 30 and last 515 

170 trials; Codol et al., 2018), retention in the no-feedback blocks, and ΔR and ΔP during the 516 

asymptote blocks. The most striking result was that both early and late success rate could be 517 

reliably predicted by RWM (early: β=0.255, p=0.005; late: β=0.287, p=0.002; Table 3), with 518 

greater RWM predicting increased success rates. Genetic profile did not predict any aspect of 519 
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performance, analogous to the Acquire task. In contrast, greater SWM successfully predicted 520 

reduced ΔR (β=-0.155, p=0.036), similarly to the Acquire task. Finally, retention values were 521 

surprisingly predicted by ethnicity (β=-0.528, p=0.037). Due to the existence of a relationship 522 

between ethnicity and retention, we performed the same analysis as in the Acquire task, that 523 

is, we tested if our observed results hold if only our largest ethnic group (Caucasian, 524 

N=85/120) was considered. In accordance with the result for the full population, the positive 525 

relationship between late success rate and RWM was again observed (β=0.232, p=0.037). 526 

However, the SWM-ΔR and RWM-early success rate relationships were no longer observed 527 

in this smaller subset of the population. Interestingly, retention was now predicted by a 528 

genetic variable, DARPP32 (β=-0.335, p=0.041), suggesting that less dopaminergic 529 

metabolism leads to better retention. This last result again suggests a possible confound, that 530 

is, that DARPP32 allelic distribution was different across ethnic groups. However, a χ2 test 531 

analysis demonstrated that DARPP32 alleles were evenly distributed between the Caucasian 532 

and non-Caucasian group, ruling out this possibility (χ2=2.578, p=0.276).  533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 
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Table 3. Regression with significant models for Preserve task. SR: success rate. 545 

Ethnicity Outcome Predictor β SE p Model 

All early SR RWM 0.255 0.089 0.005 

F(2,117)=8.207, 

p=0.005 

 late SR RWM 0.287 0.088 0.002 

F(2,117)=10.583, 

p=0.002 

 Retention Ethnicity -0.528 0.248 0.037 

F(2,117)=4.525, p = 

0.037 

 ΔR SWM -0.155 0.073 0.036 

F(2,117)=4.502, 

p=0.036 

       

Caucasian Late SR RWM 0.233 0.106 0.031 

F(2,83)=4.815, 

p=0.031 

 Retention DARPP32 -0.335 0.159 0.041 

F(2,83)=4.451, 

p=0.041 

  

      
  

      
 546 

Overall the regression results fit a pattern similar to that found for the Acquire task with 547 

greater RWM and SWM predicting improved performance on the reaching task and greater 548 

SWM predicting smaller changes in reach angle after rewarded trials. However, in the 549 

Preserve task we did not observe any predictors of ΔP, and only in one specific instance did 550 

we observe any genetic predictors of performance. 551 

 552 

Exploratory analysis 553 

As a relationship exists between SWM and ΔR in both the Acquire and Preserve paradigms, 554 

we ran exploratory regressions to assess the relationship between ΔR and success rate across 555 
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both tasks. Since ΔR and success rate are conceptually strongly related variables, and 556 

measuring them on the same data set would render them non-independent, we split each 557 

individual’s reaching data into two sections and assessed whether ΔR or ΔP in the first 558 

section could reliably predict success rate in the second (see methods for details). Although 559 

we found no predictors of ΔP in our primary analysis, results here in combination with 560 

previous work (Holland et al., 2018) has demonstrated a link between ΔP and task success, 561 

with a greater ΔP indicative of greater success. Therefore, we also performed the same 562 

analysis for ΔP. 563 

 564 

 565 

 566 

Figure 6. Slice plots showing regression results for prediction of late success rate 567 

(SR) by changes in reach angle following rewarded (A) and unrewarded (B) trials 568 

during the early learning period. The central axis of each panel displays the individual 569 

data from the Acquire (yellow) and Preserve (pink) task, the smoothed distribution of 570 

the data in each dimension is displayed on the corresponding axis. Solid lines represent 571 

the prediction of the regression model when the other predictor is held at its mean value. 572 

 573 

 574 

 Table 4: Regression results for split data.  575 
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  ΔR ΔP Model 

Acquire β 

SE 

p 

-0.274 0.581 

F(115,2)=11.9 

p=2.09×10-5 
 0.111 0.120 

 0.015 3.89×10-6 

Preserve β 

SE 

p 

-0.750 0.229 

F(112,2)=35.3 

p=1.28×10-12 
 0.093 0.084 

 1.07×1012 0.007 

 576 

 577 

In the Acquire task, ΔR and ΔP in the first section of learning trials predicted success rate in 578 

the final twenty trials, though ΔP appeared as the strongest predictor (ΔR: β=-0.274, p=0.015; 579 

ΔP: β=0.581, p=3.89-6; Figure 6a, b, yellow; Table 4). Similarly, for the Preserve task ΔR and 580 

ΔP in the first half of asymptote trials predicted success rate in the second half (ΔR: β=-0.750, 581 

p=1.07-12; ΔP: β=0.229, p=0.007; Figure 6a, b, pink; Table 4). In both tasks the directions of 582 

these relationships were opposite; greater success rate was predicted by smaller changes 583 

following rewarded trials and greater changes following unrewarded trials. In summary, we 584 

found that for both tasks the magnitude of changes in behaviour in response to rewarded and 585 

unrewarded trials early in learning were strongly predictive of future task success across both 586 

the Acquire and Preserve tasks. 587 

 588 

Discussion 589 

In this study, we sought to identify if genetic background or specific domains of WM 590 

capacity could explain the variability observed in performance levels during reward-based 591 

motor learning. We found that RWM and SWM both successfully predicted different aspects 592 

of the Acquire and Preserve tasks, while VWM did not consistently relate to any behavioural 593 

measures of performance. Specifically, RWM predicted the explicit component of retention 594 
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in the Acquire task and success rate at the early and late stage in the Preserve task, whereas 595 

SWM predicted success rate in the Acquire task and ΔR in both tasks. Conversely, allelic 596 

variations of the three dopamine-related genes (DRD2, COMT and DARPP32) did not 597 

predict any behavioural variables in the full sample of participants. This suggests that SWM 598 

strongly predicts a participant’s capacity to reproduce a successful motor action, while RWM 599 

predicts a participant’s ability to express an explicit strategy when required to make large 600 

behavioural adjustments. Therefore, we conclude that WM capacity plays a pivotal in 601 

determining individual ability in reward-based motor learning.  602 

 603 

An interesting dichotomy observed here was the strong reliance on SWM and RWM for the 604 

Acquire and Preserve task, respectively. Although both tasks involved binary feedback, the 605 

Preserve task required the maintenance of an abrupt, large change in behaviour, whereas the 606 

Acquire task required the gradual adjustment of behaviour based on the rewarding outcomes 607 

of recent trials. Therefore, it could be that RWM underscores one’s capacity to express a 608 

large correction consistently over trials (i.e. to preserve it) with binary feedback, while SWM 609 

reflects one’s capacity to maintain a memory of previously rewarded actions and adjust 610 

behaviour accordingly. Conforming to this, the magnitude of ΔRs was strongly and 611 

negatively predicted by SWM but not RWM in both tasks, suggesting high SWM enables the 612 

maintenance of rewarding reach angles. Furthermore, explicit retention, an element of the 613 

Acquire task requiring a large, sudden changes in reach direction, was predicted not by SWM, 614 

but by RWM. 615 

 616 

Surprisingly, although ΔP was a very strong predictor of success in both the Acquire and 617 

Preserve tasks, this behavioural measure was not predicted by any genetic variable. In the 618 

Acquire task ΔP was inversely predicted by VWM. This is a surprising result given the 619 
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positive relationship between ΔP and success rate found in both tasks, suggesting VWM 620 

would likely be positively related to success rate, which was found for neither task. Whilst no 621 

predictor of ΔP was found in the Preserve task, ΔP is however likely to be important for 622 

explicit control, as errors are a central element leading to the induction of structural learning 623 

in reward-based tasks, reinforcement learning (Daw et al., 2011; Manley et al., 2014; Sutton 624 

and Barto, 1998) and motor learning in general (Maxwell et al., 2001; Sidarta et al., 2018).  625 

 626 

If RWM is important for explicit control and the main element predicting success in the 627 

Preserve task, this raises the question as to whether a gradual design (as in the Acquire task) 628 

is more suitable to engage implicit reinforcement learning, at least in the very early stage. 629 

However, the Acquire task still bears a strong explicit component (Holland et al., 2018). So 630 

how can those two views be reconciled? In reward-based motor learning tasks, it is generally 631 

agreed that participants begin to reflect upon task structure and develop a strategy when they 632 

encounter negative outcomes (Leow et al., 2016; Loonis et al., 2017; Manley et al., 2014; 633 

Maxwell et al., 2001), which happens in the Preserve task nearly immediately once binary 634 

feedback is introduced, due to a lack of generalisation of cerebellar memory (Codol et al., 635 

2018). On the other hand, in the Acquire task, participants first experience an early learning 636 

phase with mainly rewarding outcomes, thus possibly preventing development of explicit 637 

control and allowing for this early window of reward-based implicit learning. Other studies 638 

have demonstrated that minor adjustments in reach direction under reward-based feedback 639 

can occur, though none has assessed their explicitness directly in the very early stages, such 640 

as about 1° to 4° (Izawa and Shadmehr, 2011; Pekny et al., 2015; Therrien et al., 2016). Of 641 

note however, Izawa and Shadmehr, (2011) observed that after 8° shifts of a similarly-sized 642 

reward region, participants indeed noticed the shift occurrence, but this was not assessed for 643 

smaller shifts. 644 
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In a previous study (Holland et al., 2018), we asked participants to perform the Acquire task 645 

while performing a secondary task similar to the RWM employed here. We showed that the 646 

secondary task was very effective in preventing explicit control, leading to participants 647 

invariably failing at the reaching task itself. It may therefore appear as surprising that here, 648 

RWM does not relate strongly with success rate in the Acquire task. A possible explanation is 649 

that RWM and SWM share the same memory buffer (Anguera et al., 2010; Beschin et al., 650 

2005; Cohen et al., 1996; Jordan et al., 2001; Suchan et al., 2006), thus allowing interference. 651 

Similarly, another study employing force-field adaptation showed that the early component of 652 

adaptation – which is considered as bearing a strong explicit element – is selectively 653 

disrupted if a VWM is employed (Keisler and Shadmehr, 2010). In that latter study, the 654 

author argued that the memory buffers for VWM and SWM tasks do not overlap (Babcock 655 

and Vallesi, 2015; Jordan et al., 2001), and thus that the disrupting effect of VWM may be 656 

due to the explicit component also bearing a verbal representation (Buszard and Masters, 657 

2018). However, we found no evidence of this in our reward-based motor tasks. It may be 658 

possible that reward-based motor performance relies more exclusively on spatial instances of 659 

WM as opposed to some other tasks such as force-field adaptation. 660 

 661 

A notable feature of the Preserve task is the “spiking” behaviour observed at the group level, 662 

immediately following “refresher” trials. This phenomenon suggests a central role of 663 

‘refresher’ trials in binary feedback-based performance when included (Codol et al., 2018; 664 

Shmuelof et al., 2012). Nevertheless, the transient nature of this decrease in error showed that 665 

this was not sufficient to promote generalisation to binary feedback trials, at least in the case 666 

of unsuccessful participants. However, it remains an open question whether the good 667 

performance of successful participants was partly due to a capacity to generalise information 668 

from refresher trials.  669 
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 670 

The absence of DA-related genetics effects on behaviour is a surprising result as a substantial 671 

body of literature points to a relationship between dopamine and performance in reward-672 

based tasks, including those with a motor component (Deserno et al., 2015; Doll et al., 2016; 673 

Frank et al., 2007, 2009; Gershman and Schoenbaum, 2017; Izawa and Shadmehr, 2011; 674 

Nakahara and Hikosaka, 2012; Pekny et al., 2015; Therrien et al., 2016). There is a growing 675 

appreciation of the links between decision making and motor learning (Chen et al., 2018; 676 

Haith and Krakauer, 2013). Chen et al., (2017) demonstrated that exploratory motor learning 677 

can be modelled as a sequential decision-making process, with an individual’s explorative 678 

drive shared between motor and decision-making tasks. However, the results presented here 679 

suggest that genetic predictors of exploration and exploitation found in decision-making tasks 680 

are not also predictive of the same behaviours in reward-based motor learning. 681 

 682 

One possibility is that our dataset did not provide enough statistical power. However, our 683 

sample sizes were defined a priori for 90% power based on previous work (Doll et al., 2016; 684 

Frank et al., 2009; see pre-registrations), and therefore our study is unlikely to be 685 

underpowered. Another possibility is that we employed the wrong variables to assess 686 

behaviour. However, given the informative and coherent relationships between WM and 687 

motor learning and the ability to predict overall performance on that basis, could it be that the 688 

genes we focused on do not relate in any meaningful way to performance in these reward-689 

based tasks? In line with this, a recent study showed that DA pharmacological manipulation 690 

did not alter reward effects in a visuomotor adaptation task (Quattrocchi et al., 2018). 691 

However, previous work has shown that Parkinson’s disease patients show heavily impaired 692 

reward-based motor performance (Pekny et al., 2015). It is possible that genetic variations 693 

may not impact reward-based motor learning significantly, especially compared to the wide 694 
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depletion of dopaminergic neurons occurring in Parkinson’s disease. Finally, future work 695 

should also address the possibility that other neuromodulators could also be involved during 696 

reward-based motor learning such as acetylcholine, norepinephrine and serotonin (for a 697 

review, see Dash et al., 2007).  698 

 699 

In summary, despite employing two distinct tasks and an independent participant pool on 700 

different devices, we find strikingly similar results in reward-based motor learning. While 701 

SWM strongly predicted a participant’s capacity to reproduce a successful motor action, 702 

RWM predicted a participant’s ability to express an explicit strategy when required to make 703 

large behavioural adjustments. Therefore, both SWM and RWM are reliable predictors of 704 

success during reward-based motor learning. Surprisingly, no dopamine-related genotypes 705 

predicted performance. Therefore, WM capacity plays a pivotal in determining individual 706 

ability in reward-based motor learning. This could have important implications when using 707 

reward-based feedback in applied settings as it indicates only a subset of the population may 708 

benefit.   709 

 710 
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