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Abstract

Genetic correlation, i.e., the proportion of phenotypic correlation across a pair of traits that
can be explained by genetic variation, is an important parameter in e↵orts to understand the
relationships among complex traits. The observation of substantial genetic correlation across a
pair of traits, can provide insights into shared genetic pathways as well as providing a starting
point to investigate causal relationships. Attempts to estimate genetic correlations among com-
plex phenotypes attributable to genome-wide SNP variation data have motivated the analysis
of large datasets as well as the development of sophisticated methods.

Bi-variate Linear Mixed Models (LMMs) have emerged as a key tool to estimate genetic
correlation from datasets where individual genotypes and traits are measured. The bi-variate
LMM jointly models the e↵ect sizes of a given SNP on each of the pair of traits being ana-
lyzed. The parameters of the bi-variate LMM, i.e., the variance components, are related to the
heritability of each trait as well as correlation across traits attributable to genotyped SNPs.
However, inference in bi-variate LMMs, typically achieved by maximizing the likelihood, poses
serious computational challenges.

We propose, RG-Cor, a scalable randomized Method-of-Moments (MoM) estimator of genetic
correlations in bi-variate LMMs. RG-Cor leverages the structure of genotype data to obtain
runtimes that scale sub-linearly with the number of individuals in the input dataset (assuming
the number of SNPs is held constant). We perform extensive simulations to validate the accuracy
and scalability of RG-Cor. RG-Cor can compute the genetic correlations on the UK biobank
dataset consisting of 430, 000 individuals and 460, 000 SNPs in 3 hours on a stand-alone compute
machine.

1 Introduction

Understanding the underlying shared genetic structure between traits and diseases can provide in-
sights into shared disease etiology and can form the starting point to investigate causal relationships
among traits [2]. Genetic correlation i.e., the proportion of phenotypic correlation across a pair of
traits that can be explained by genetic variation, is an important parameter in e↵orts to quantifying
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the relationships among complex traits as it can provide insights into biological pathways that are
shared among the pair of traits. For example, significant genetic correlation between body mass
index (BMI) and lymphocyte count have been used to conclude that lymphocytes are relevant to
body weight regulation [1]. Similarly, a number of studies have reported a high genetic correlation
between schizophrenia and bipolar disorder [6, 2].

While traditionally reliant on family studies, the availability of genome-wide genetic data have
led to a number of approaches to estimate genetic correlation from these datasets. Bi-variate Linear
Mixed Models (LMMs) have emerged as a key statistical model for this problem [13]. The bi-variate
LMM jointly models the e↵ect sizes of a given SNP on each of the pair of traits being analyzed. The
parameters of the bi-variate LMMs, i.e., the variance components, are related to the heritability of
each trait well as the genetic correlation across the traits.

The most commonly used method for estimating genetic correlation as well as trait heritabili-
ties in a bi-variate LMM relies on the restricted maximize likelihood method, termed genomic re-
stricted maximum likelihood (GREML)[5, 3, 8, 7]. However, GREML poses serious computational
burdens. GREML is a non-convex optimization problem that relies on an iterative optimization
algorithm. While a number of methods have been proposed to improve the computational e�-
ciency of GREML [5], current GREML methods are still computationally expensive when applied
to large-scale datasets such as the UK Biobank that contains genotypes from around half a million
individuals at a million SNPs [11].

Another state-of-the-art method, LD-score regression (LDSC), requires only summary statis-
tics from genome-wide association studies (GWAS) to estimate genetic correlations [2]. LDSC is
appealing as it does not require individual level data thereby mitigating concerns of privacy that
arise from sharing individual-level data. Further, LDSC often has substantially reduced compu-
tational requirements (assuming that the summary statistics have been computed). Nevertheless,
LDSC has some drawbacks: its estimates tend to have large standard errors and is prone to bias in
settings where there is a mismatch between the samples used to estimate summary statistics and
the reference datasets that are used to estimate LD [9].

1.1 Our Contribution

We propose, RG-Cor, a randomized algorithm to estimate genetic correlations of traits using
individual-level genotype that can scale to the dataset sizes typical of the UK Biobank. This
method for estimating genetic correlation builds upon our randomized estimator of heritability,
[12]. RG-Cor is a randomized Method-of-Moment(MoM) estimator of the heritability of traits as
well as the genetic correlation between pairs of traits. MoM estimators tends to be less statisti-
cally e�cient comparing to GREML. Despite the statistical ine�ciency, the MoM estimator leads
to a closed-form solution of heritability and genetic correlation parameters. On the other hand,
the main computational bottleneck of the MoM estimator in genetic correlation estimation is the
computation of the N ⇥N genetic relationship matrix, which capture the relationships between all
pairs of N individuals in the dataset.

For genetic correlation estimation, our randomized MoM estimator (RG-Cor) relies on the obser-
vation that the key computation bottleneck can be replaced by multiplying the N ⇥M (individuals
⇥ SNP) genotype matrix with a small number, B, of random vectors thereby obtaining a time
complexity of O(NMB). We can further gain e�ciency by leveraging the structure of the geno-
type matrix, where all the entries are in a finite set, {0, 1, 2} so that the time complexity can be
reduced to O( NMB

max(log3(N),log3(M))).
We apply RG-Cor to pairs of traits to estimate their heritability as well as the genetic correlation,

as well as computing estimates of the standard errors. We show in simulations that the RG-Cor
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yields accurate estimates of genetic correlation. Compared to GREML estimators, we show that
the loss in statistical ine�ciency of RG-Cor is fairly modest. On the other hand, RG-Cor is several
orders of magnitude faster than other methods. Finally, we applied RG-Cor to compute the genetic
correlation of selected pairs of traits in 291, 273 white British individuals in the UK Biobank.

2 Methods

2.1 Model assuming complete overlap of samples across traits

For simplicity, we first assume that we observe two traits measured on the same set of N samples.
We observe genotypes across these N individuals at M SNPs. The genotype vector for individual
n is a length M vector denoted by g

n

2 {0, 1, 2}M . The mth entry of g
n

denotes the number of
minor alleles carried by individual n at SNP m. Let G be the N ⇥ M matrix of genotypes. Let
X denote the N ⇥ M matrix of standardized genotypes obtained by centering and scaling each
column of G so that

P
n

x
n,m

= 0 and 1
N

P
n

x2
n,m

= 1 for all n 2 {1, . . . , N}. Let y1,y2 denote
two vectors of phenotypes of length N .

We assume the vector of phenotypes y1,y2 is related to the genotypes X by a bivariate linear
mixed model:

y1|✏1,�1 = X�1 + ✏1

y2|✏2,�2 = X�2 + ✏2

✏1n, ✏2n
iid⇠ N (0,

"
�

2
e1
N

�e
N

�e
N

�

2
e2
N

#
)

�1m,�2m
iid⇠ N (0,

"
�

2
g1

M

�g

M

�g

M

�

2
g2

M

#
)

Here �1,�2 denote the M -vectors of SNP e↵ect sizes, i.e., �1,m denotes the mean change in phe-
notype 1 when the genotype at SNP m changes from 0 to 1 or from 1 to 2.

Here phenotypes y1,y2 are centered so that
P

n

y1n = 0,
P

n

y2n = 0. �2
g1 denotes the genetic

variance of trait 1, i.e., the variance component of phenotype 1 corresponding to the vector of
genotypes across M SNPs while �2

g2 is the genetic variance for phenotype 2. �2
e1,�

2
e2 denote the

residual variance (variance not explained by genetics) for each of the two traits.
�
g

and �
e

denote the genetic and residual covariances. We define the genetic correlation as
⇢
g

⌘ �g

�g1�g2
. Let y ⌘ [yT

1 ,y
T

2 ]
T , ✏ ⌘ [✏1T , ✏2T ]T , and � ⌘ [�1

T ,�2
T ]T . Thus we have:

y|✏,� =


X
X

�
� + ✏ (1)

We have E[y] = 0 since the phenotypes are centered. The population covariance of the two
phenotypes is given by:

cov(y) = E[yyT ]� E[y]E[y]T =


�2
g1K �

g

K
�
g

KT �2
g2K

�
+


�2
e1IN �

e

I
N

�
e

I
N

�2
e2IN

�
(2)

Here K = X1XT
1

M

is the genetic relatedness matrix (GRM).
We aim to jointly estimate the genetic and residual variance as well as covariance parameters.

Our approach to estimate both the variance components and the genetic correlation relies on
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a Method-of-Moments (MoM) estimator obtained by equating the population covariance to the
empirical covariance. The empirical covariance of the concatenated phenotype vector y is estimated
by the sample covariance: yyT . The MoM estimator is obtained by solving the following ordinary
least squares problem:

( b�
g

, b�
e

, c�2
g1,

c�2
g2,

c�2
e1,

c�2
e2) = argmin

�g ,�e,�
2
g1,�

2
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2
e1,�

2
e2
||yyT �(


�2
g1K �

g
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�
g

KT �2
g2K

�
+


�2
e1IN �

e

I
N

�
e

I
N

�2
e2IN

�
)||2

F

(3)
Setting the gradient of the objective function to zero gives us the normal equations (see Supple-

mentary Material). We observe that solving for genetic and residual covariance parameters (�
g

, �
e

)
is independent of solving the variance parameters: �2

g1,�
2
e1,�

2
g2,�

2
e2. Thus, MoM estimates of the

covariance parameters can be obtained by solving the set of normal equations:


tr(K2) tr(K)
tr(K) N

� 
b�
g

b�
e

�
=


yT

2 Ky1

yT

2 y1

�
(4)

The GRM K can be computed in time O(MN2) and requires O(N2) memory. Given the GRM,
computing each of the coe�cients for the normal equations requires O(N2) time.

Given each of the coe�cients, we can solve analytically for b�
g

, and b�
e

. Indeed, we can write:

b�
g

=
yT

1 Ky2 � yT

1 y2

tr[K2]�N

Here we have used the property that tr(K) = N due to the use of a standardized genotype matrix.
Finally, we use estimates of the genetic variance parameters to obtain a plug-in estimate of the

genetic correlation:

b⇢
g

=
b�
gq

c�2
g1

q
c�2
g2

The estimators for �2
g1 and �2

g2 are give by c�2
g1 =

yT
1 Ky1�yT

1 y1

tr[K2]�N

and c�2
g2 =

yT
2 Ky2�yT

2 y2

tr[K2]�N

(see

Supplementary Material).
Substituting these expressions for the genetic covariance and variances gives us the following

estimator of genetic correlation:

b⇢
g

=
yT

1 Ky2 � yT

1 y2q
yT

1 Ky1 � yT

1 y1

q
yT

2 Ky2 � yT

2 y2

(5)

2.2 Model assuming partial overlap of samples across traits

We now generalize our approach to the setting where the traits are no longer observed on the
same samples. Assume we have N1 samples for trait 1 and N2 samples for trait 2 of which N
samples (N  N1, N  N2) contain measurements for both the traits. G1 and G2 denote the
matrix of genotypes for the two traits separately and assume that the samples are observed on the
same set of SNPs. We define X1,X2 to be the N1 ⇥ M and N2 ⇥ M matrices of standardized
genotypes obtained by centering and scaling each column of G1 and G2 so that

P
n

x
a,n,m

= 0
for all m 2 {1, . . . ,M}, a 2 {1, 2}. Let y1,y2 denote the two vectors of phenotype with size N1

and N2 respectively. Additionally, we define an N1 ⇥N2 indicator matrix, C where C
i,j

= 1 when

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/525055doi: bioRxiv preprint 

https://doi.org/10.1101/525055


individual i and j refer to the same sample and 0 otherwise. We also define �1,�2 to be the
M-vectors of SNP e↵ect sizes.

We assume the two phenotypes, y1,y2 are related to the genotypes by the following bivariate
linear mixed model:

y1|✏1,�1 = X1�1 + ✏1

y2|✏2,�2, = X2�2 + ✏2
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X
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The population covariance of the phenotypes is now:

cov(y) = E[yyT ]� E[y]E[y]T =


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g1K1 �

g
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�
g
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g2K2

�
+


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(6)

Here K1 = X1X1
T

M

is the GRM for the samples observed for the first trait while K2 = X2X2
T

M

is the

GRM for the samples for the second trait. KA is the GRM for all pairs of samples: KA = X1X2
T

M

.
Thus the MoM estimator could be obtained by equating the population covariance to the

empirical covariance, estimated by yyT . Thus the MoM estimator is obtained by solving the
following ordinary least squares problem:

( b�
g
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e
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(7)
Define KC to be the GRM for samples with measurements of both phenotypes while y1C and y2C

denote the N -vector of phenotypes for traits 1 and 2. The MoM estimator for genetic covariance
satisfies the set of normal equations:


tr(KAKA

T) tr(KC)
tr(KC) N

� 
b�
g

b�
e

�
=


yT

1 KAy2

yT

2Cy1C

�
(8)

Finally, given each of the coe�cients, we can solve analytically for b�
g

, and b�
e

.
Finally the estimate of genetic correlation is given by the plug-in estimate:

b⇢
g

=
b�
gq

c�2
g1

q
c�2
g2

(9)

The estimators for �2
g1,�

2
g2 require computing tr[K2

1] and tr[K2
2] (see Supplementary Materials).
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2.3 RG-Cor: Randomized MoM estimator for Genetic Correlation

The computational bottleneck in obtaining MoM estimators for ( b�
g

, c�2
g1,

c�2
g2) lies in computing

yT
s

Ky
t

, s, t 2 {1, 2} for the setting of complete overlap of samples, and computing tr(KAKA
T),

tr(K1
2) tr(K2

2) for partially overlapping samples.
Naive computation of tr(KAKA

T) requires O(N1N2M) operations, where N1, N2 are the sam-
ple size of each of the traits. Similarly, tr(K1

2) and tr(K2
2) can be computed in O(N2

1M) and
O(N2

2M) time.
To overcome this computational bottleneck, we replace these quantities with randomized esti-

mators \tr(K1
2), \tr(K2

2) and \tr(KAKA
T).

Given a N ⇥ N matrix A and a random vector z with mean zero and covariance I
N

, we use
the following identity to construct the randomized estimators [4].

E[zTAz] = tr[A] (10)

Equation 10 leads to the following unbiased estimator for the trace of tr(KAKA
T), tr(K1

2) tr(K2
2)

given B random vectors, z1, . . . , zB

, z
b

2 RN , b 2 1 . . . B drawn independently from a distribution
with zero mean and identity covariance matrix IN :

L
BA = \tr(KAKA

T) =
1

B

1

M2

X

b

||XAXA
Tz

b

||22

L
B1 = \tr(K2

1) =
1

B

1

M2

X

b

||X1X
T

1 zb

||22

L
B2 = \tr(K2

2) =
1

B

1

M2

X

b

||X2X
T

2 zb

||22

In practice, we compute the above estimators by drawing each entry of z
b

independently from a
standard normal distribution.

The RG-Cor estimator (�̃
g

, �̃
e

) is obtained by solving Equation 8 by replacing tr[KAKA
T] with

L
BA .


L
BA tr(KC)

tr(KC) N

� 
�̃
g

�̃
e

�
=


tr(yT

1 KAy2)
tr(y1NyT

2N )

�

2.4 Inclusion of covariates

In a number of settings, it is desirable to include covariates, such as age, sex, or principal components
to correct for population structure, in the analysis. In the complete overlap setting, the samples
share the covariates. This changes Equation 1 into:

y|✏,� =


W
W

�
↵+


X
X

�
� + ✏ (11)

Here W is N ⇥ C matrix of covariates while ↵ is a C-vector of fixed e↵ects. In this set-

ting, we transform Equation 11 by multiplying both slides by the projection matrix


V
V

�
=


IN �W (W TW )�1W T

IN �W (W TW )�1W T

�
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Similarly, for traits that partially share samples, where the covariate is


W1

W2

�
, where W1 is

the covariate for trait 1, and W2 is the covariate for trait 2, the projection matrix is:


V1

V2

�
=


IN1 �W1(W1

TW1)�1W1
T

IN2 �W2(W2
TW2)�1W2

T

�

3 Experiments

3.1 Simulation to assess the accuracy and computational e�ciency of RG-Cor

We performed simulations to compare the performance of RG-Cor to other methods for genetic
correlation estimation in terms of accuracy, running time and memory usage. Specifically, we
compared the performance of RG-Cor to GREML (as implemented in the GCTA software) [5],
BOLT-REML [7], and LD-score regression (LDSC) [2]. The GREML software aims to compute
maximum likelihood (or restricted maximum likelihood (REML)) estimates of a bi-variate linear
mixed model [5]. BOLT-REML is an approximate REML method that can scale to larger problem
sizes relative to GREML. LDSC, on the other hand, is widely used to estimate genetic correlation
when only summary statistics from GWAS on pairs of traits are available.

Experiments were based on real genotypes from the UK Biobank [11] and on the Northern
Finland Birth Cohort (NFBC) dataset [10]. We simulated pairs of traits with known values of
heritability and genetic correlation. Experiments to assess the estimation accuracy of each method
used the full NFBC dataset, containing 315, 529 SNPs and 5326 individuals, so that all the methods
could be run in reasonable time. While comparing computational e�ciency, we compared RG-Cor
to BOLT-REML and GREML in terms of running time and memory usage on subsets of UK
biobank data.

3.2 RG-Cor estimator is accurate

In our first set of simulations, we compared the accuracy of RG-Cor to GREML, BOLT-REML,
and LDSC. We evaluated the accuracy of estimates of RG-Cor when the number of random vectors
B were set to 10 as well as 100.

For these experiments, we analyzed the Northern Finland Birth Cohort (NFBC) dataset, which
contains 5326 individuals and 315, 529 SNPs after removing SNPs with minor allele frequency
 0.05 and with Hardy-Weinberg Equilibrium p-value < 0.01.

Given the genotypes, we simulated a pair of phenotypes based on the complete overlap model
specified in equation (1). We assume all SNPs have an e↵ect on each trait (i.e., the trait architecture
is infinitesimal). We considered settings where the true heritability of phenotypes are i) both low
(set to 0.1 and 0.2 respectively), and ii) one of the phenotypes has low heritability while the other
has high heritability (set to 0.2 and 0.8) Fixing the true heritability of each phenotype, we vary
the true genetic correlation across {0, 0.2, 0.5, 0.8}. We repeated each experiment 100 times.

Figure 1(a), we show the situation where the true heritability of both phenotypes are low and
fixed to be 0.1 and 0.2. This is a typical situation since complex phenotypes tend to have low
heritability in human populations. In Figure 1(b), the true heritability of each phenotype is fixed
to be 0.2 and 0.8. Table 1 summarizes these results reporting the bias, standard error and mean
square error (MSE) of the methods for each parameter setting of Figure 1. We observe that
the the statistical e�ciency of the estimates from BOLT (approximate REML) and RG-Cor are
comparable. While GREML estimates tend to be the most statistically e�cient, as expected, in
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the low heritability setting, RG-Cor achieves a lower standard error than GREML. We also observe
that in all cases LDSC attains large standard errors, consistent with previous observations [14].
We conclude that RG-Cor is comparable to BOLT-REML and is particularly useful in cases where
heritability for both traits are low and their genetic correlation is high. Finally, the results are
indistinguishable when RG-Cor uses B = 10 versus B = 100.

Figure 1: RG-Cor is an accurate estimator of genetic correlation: We compared the accuracy of
methods for genetic correlation estimation using simulated phenotypes and genotypes from the North Finland
Birth Cohort (NFBC). In figure 1(a), the heritability of two traits are fixed to be 0.1 and 0.2 while in figure
1(b), the heritabilities of the two traits are 0.2 and 0.8. We vary the genetic correlation to be {0, 0.2, 0.5, 0.8}.
In some cases where the genetic correlation is high, RG-Cor is statistical e�cient relative to . We observe
that the standard error of the RG-Cor estimates is relatively insensitive when we change B from 10 to 100.

Table 1: Estimates of bias, mean square error and standard error of genetic correlation estima-

tion methods in simulations

Method Trait 1 h2
g

Trait 2 h2
g

Bias MSE SE Bias MSE SE Bias MSE SE Bias MSE se
⇢
g

= 0 ⇢
g

= 0.2 ⇢
g

= 0.5 ⇢
g

= 0.8
GREML 0.1 0.2 -0.007 0.036 0.19 0.037 0.025 0.154 0.054 0.051 0.168 0.03 0.022 0.145

BOLT-REML 0.1 0.2 0.062 0.104 0.316 0.091 0.093 0.29 0.042 0.052 0.223 0.013 0.029 0.171
LDSC 0.1 0.2 0.125 0.226 0.459 -0.093 0.14 0.362 -0.121 0.263 0.499 -0.182 0.162 0.36

RG-Cor (B=100) 0.1 0.2 0.05 0.1 0.313 0.072 0.083 0.281 -0.039 0.018 0.129 0.025 0.011 0.1
RG-Cor (B=10) 0.1 0.2 0.05 0.1 0.313 0.072 0.083 0.281 -0.039 0.018 0.129 0.025 0.011 0.1

GREML 0.2 0.8 -0.01 0.001 0.033 -0.007 0.003 0.05 0.007 0.004 0.062 0.034 0.008 0.084
BOLT-REML 0.2 0.8 0.008 0.01 0.099 0.014 0.011 0.103 -0.003 0.006 0.081 0.028 0.009 0.091

LDSC 0.2 0.8 -0.032 0.043 0.204 0.013 0.035 0.185 -0.056 0.044 0.202 0.003 0.021 0.144
RG-Cor (B=100) 0.2 0.8 -0.016 0.018 0.134 0.013 0.016 0.129 -0.04 0.018 0.129 0.025 0.01 0.1
RG-Cor (B=10) 0.2 0.8 -0.016 0.018 0.134 0.013 0.016 0.129 -0.04 0.018 0.129 0.025 0.01 0.1

3.3 RG-Cor is computationally e�cient

In order to measure computational e�ciency, we sub-sampled the UK Biobank genotypes to sample
sizes of 1, 000, 2, 000, 5, 000, 10, 000 50, 000, 100, 000, and 290, 000 which is approximately the
sample size of the UK Biobank dataset after quality control.
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Prior the sub-sampling experiment, we performed the following individual-level and SNP-level
quality controls. We constrained the samples to the British white population as indicated by self-
reported ethnicity. We removed 14, 255 samples with missingness > 0.1 . We restricted our analysis
to SNPs that were present on the UKBiobank Axiom array used to genotype the UKBiobank. We
removed SNPs with greater than 1% missingness and minor allele frequency smaller than 1%. Our
final dataset contained 291, 273 individuals and 459, 792 SNPs after quality control. All experiments
were performed on an AMD EPYC machine on which we restricted the run time to 6 days and
memory usage to 200GB.

Figure 2 shows that both GREML and BOLT-REML do not scale to large sample sizes. GREML
could not scale beyond sample sizes greater than 100, 000 due to the requirement of computing and
operating on a genetic relatedness matrix (GRM)The runtime of BOLT-REML scales as N1.5 as
reported previously[7]. We observed a di�culty in convergence while running BOLT-REML on
subsets of the UK Biobank data. Based on the observed runtimes, we extrapolate that BOLT-
REML would require about 17 days to run on the full UK Biobank dataset with 291, 273 samples.
On the other hand, RG-Cor ran in about 3 hours and used 50 GB memory on the set of 291, 273
individuals. The memory usage of RG-Cor also scales linearly.

Figure 2: RG-Cor is e�cient: We measured the run time and memory usage of methods for genetic
correlation estimation as a function of the number of samples while fixing the number of SNPs to 459, 792.
The samples were obtained as subsets of unrelated, white British individuals in the UK Biobank. We
performed all comparisons on an AMD EPYC machine. In Figure 2(a), GREML could not finish computation
on 100, 000 samples. BOLT-REML scales well but is nevertheless computationally intensive with increasing
sample sizes. RG-Cor runs in a few hours on even the largest dataset. Figure 2(b) shows that both RG-Cor
and BOLT-REML have scalable memory requirements.

3.4 Genetic correlation among traits in UK biobank

We applied RG-Cor to analyze phenotypes in the UK Biobank. We restricted our analysis to
SNPs genotyped on the UK Biobank Axiom array, filtering out the genetic markers that had high
missingness rate (> %1) and low minor allele frequency (< 1%). We also filtered out subjects that
had high missing genotype rate (> 1%), as well as samples that have genetic kinship with any
other sample (samples having any relatives in the dataset using the phenotype field 22021: Genetic
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kinship to other participants).After quality control, we obtained 291, 273 non-related individuals
and 459, 792 SNPs.

We analyzed seven continuous phenotypes and estimated the genetic correlations on all 21 pairs
of phenotypes (Figure 3). All genetic correlation estimates across traits are adjusted for gender, UK
Biobank assessment center, age at recruitment, and top 10 principal components of the genotype.
We estimated the standard error of the RG-Cor estimator using a computationally e�cient block
Jackknife (see Supplementary Material).

Figure 3: Genetic correlation among seven traits in the UK Biobank analyzed by RG-Cor. Blue
indicates negative genetic correlation and red indicates positive genetic correlation. Genetic correlations
that are significantly di↵erent from 0 are marked with an asterisk. Genetic correlations that are significantly
di↵erent from 0 after Bonferroni correction for 21 tests in this analysis are marked with two asterisk. Genetic
correlations between traits are computed after correcting for covariates: gender, UK Biobank assessment
center, age at recruitment, and top 10 genotype principal components.

4 Discussion

We have described RG-Cor, a scalable estimator for genetic correlation. We show that the RG-
Cor estimates for genetic correlation are accurate and achieve similar statistical e�ciency while
being highly scalable. We use RG-Cor to compute genetic correlations across seven continuous
phenotypes in UK Biobank obtaining estimates consistent with previous results.

This genome-wide analysis of genetic correlation is the stepping stone for understanding the
relationships across human traits and diseases. In future analyses, we intend to systematically scan
pairs of traits in biobank datasets to obtain genetic correlation estimates. We can further partition
the genetic correlation with respect to the function and minor allele frequency of the SNPs to
further interpret the underlying relationships and causality.
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Availability

The RHE-reg software is made freely available to the research community at:
https://github.com/sriramlab/RHE-reg
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