




















bioRxiv preprint doi: https://doi.org/10.1101/525055; this version posted January 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

the low heritability setting, RG-Cor achieves a lower standard error than GREML. We also observe
that in all cases LDSC attains large standard errors, consistent with previous observations [14].
We conclude that RG-Cor is comparable to BOLT-REML and is particularly useful in cases where
heritability for both traits are low and their genetic correlation is high. Finally, the results are
indistinguishable when RG-Cor uses B = 10 versus B = 100.

Figure 1: RG-Cor is an accurate estimator of genetic correlation: We compared the accuracy of
methods for genetic correlation estimation using simulated phenotypes and genotypes from the North Finland
Birth Cohort (NFBC). In figure 1(a), the heritability of two traits are fixed to be 0.1 and 0.2 while in figure
1(b), the heritabilities of the two traits are 0.2 and 0.8. We vary the genetic correlation to be {0, 0.2,0.5,0.8}.
In some cases where the genetic correlation is high, RG-Cor is statistical efficient relative to . We observe
that the standard error of the RG-Cor estimates is relatively insensitive when we change B from 10 to 100.

Table 1: Estimates of bias, mean square error and standard error of genetic correlation estima-
tion methods in simulations

Method Trait 1 hg Trait 2 hg Bias MSE SE Bias MSE SE Bias MSE SE Bias MSE se
% =0 % =0.2 % =0.5 % =0.8

GREML 0.1 0.2 -0.007 0.036 0.19 0.037 0.025 0.154 0.054 0.051 0.168 0.03 0.022 0.145
BOLT-REML 0.1 0.2 0.062 0.104 0.316 0.091 0.093 0.29 0.042 0.052 0.223 0.013 0.029 0.171
LDSC 0.1 0.2 0.125 0.226 0.459 -0.093 0.14 0.362 -0.121 0.263 0.499 -0.182 0.162 0.36
RG-Cor (B=100) 0.1 0.2 0.05 0.1 0.313 0.072 0.083 0.281 -0.039 0.018 0.129 0.025 0.011 0.1
RG-Cor (B=10) 0.1 0.2 0.05 0.1 0.313 0.072 0.083 0.281 -0.039 0.018 0.129 0.025 0.011 0.1
GREML 0.2 0.8 -0.01  0.001 0.033 -0.007 0.003 0.05 0.007 0.004 0.062 0.034 0.008 0.084
BOLT-REML 0.2 0.8 0.008 0.01 0.099 0.014 0.011 0.103 -0.003 0.006 0.081 0.028 0.009 0.091
LDSC 0.2 0.8 -0.032 0.043 0.204 0.013 0.035 0.185 -0.056 0.044 0.202 0.003 0.021 0.144
RG-Cor (B=100) 0.2 0.8 -0.016 0.018 0.134 0.013 0.016 0.129 -0.04 0.018 0.129 0.025 0.01 0.1
RG-Cor (B=10) 0.2 0.8 -0.016 0.018 0.134 0.013 0.016 0.129 -0.04 0.018 0.129 0.025 0.01 0.1

3.3 RG-Cor is computationally elcient

In order to measure computational efficiency, we sub-sampled the UK Biobank genotypes to sample
sizes of 1,000, 2,000, 5,000, 10,000 50,000, 100,000, and 290,000 which is approximately the
sample size of the UK Biobank dataset after quality control.



bioRxiv preprint doi: https://doi.org/10.1101/525055; this version posted January 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Prior the sub-sampling experiment, we performed the following individual-level and SNP-level
quality controls. We constrained the samples to the British white population as indicated by self-
reported ethnicity. We removed 14, 255 samples with missingness > 0.1 . We restricted our analysis
to SNPs that were present on the UKBiobank Axiom array used to genotype the UKBiobank. We
removed SNPs with greater than 1% missingness and minor allele frequency smaller than 1%. Our
final dataset contained 291, 273 individuals and 459, 792 SNPs after quality control. All experiments
were performed on an AMD EPYC machine on which we restricted the run time to 6 days and
memory usage to 200GB.

Figure 2 shows that both GREML and BOLT-REML do not scale to large sample sizes. GREML
could not scale beyond sample sizes greater than 100,000 due to the requirement of computing and
operating on a genetic relatedness matrix (GRM)The runtime of BOLT-REML scales as N! as
reported previously[7]. We observed a difficulty in convergence while running BOLT-REML on
subsets of the UK Biobank data. Based on the observed runtimes, we extrapolate that BOLT-
REML would require about 17 days to run on the full UK Biobank dataset with 291, 273 samples.
On the other hand, RG-Cor ran in about 3 hours and used 50 GB memory on the set of 291,273
individuals. The memory usage of RG-Cor also scales linearly.
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Figure 2: RG-Cor is efficient: We measured the run time and memory usage of methods for genetic
correlation estimation as a function of the number of samples while fixing the number of SNPs to 459, 792.
The samples were obtained as subsets of unrelated, white British individuals in the UK Biobank. We
performed all comparisons on an AMD EPYC machine. In Figure 2(a), GREML could not finish computation
on 100,000 samples. BOLT-REML scales well but is nevertheless computationally intensive with increasing
sample sizes. RG-Cor runs in a few hours on even the largest dataset. Figure 2(b) shows that both RG-Cor
and BOLT-REML have scalable memory requirements.

3.4 Genetic correlation among traits in UK biobank

We applied RG-Cor to analyze phenotypes in the UK Biobank. We restricted our analysis to
SNPs genotyped on the UK Biobank Axiom array, filtering out the genetic markers that had high
missingness rate (> %1) and low minor allele frequency (< 1%). We also filtered out subjects that
had high missing genotype rate (> 1%), as well as samples that have genetic kinship with any
other sample (samples having any relatives in the dataset using the phenotype field 22021: Genetic
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kinship to other participants).After quality control, we obtained 291,273 non-related individuals
and 459,792 SNPs.

We analyzed seven continuous phenotypes and estimated the genetic correlations on all 21 pairs
of phenotypes (Figure 3). All genetic correlation estimates across traits are adjusted for gender, UK
Biobank assessment center, age at recruitment, and top 10 principal components of the genotype.
We estimated the standard error of the RG-Cor estimator using a computationally efficient block
Jackknife (see Supplementary Material).
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Figure 3: Genetic correlation among seven traits in the UK Biobank analyzed by RG-Cor. Blue
indicates negative genetic correlation and red indicates positive genetic correlation. Genetic correlations
that are significantly different from 0 are marked with an asterisk. Genetic correlations that are significantly
different from 0 after Bonferroni correction for 21 tests in this analysis are marked with two asterisk. Genetic
correlations between traits are computed after correcting for covariates: gender, UK Biobank assessment
center, age at recruitment, and top 10 genotype principal components.

4 Discussion

We have described RG-Cor, a scalable estimator for genetic correlation. We show that the RG-
Cor estimates for genetic correlation are accurate and achieve similar statistical efficiency while
being highly scalable. We use RG-Cor to compute genetic correlations across seven continuous
phenotypes in UK Biobank obtaining estimates consistent with previous results.

This genome-wide analysis of genetic correlation is the stepping stone for understanding the
relationships across human traits and diseases. In future analyses, we intend to systematically scan
pairs of traits in biobank datasets to obtain genetic correlation estimates. We can further partition
the genetic correlation with respect to the function and minor allele frequency of the SNPs to
further interpret the underlying relationships and causality.
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Availability

The RHE-reg software is made freely available to the research community at:
https://github.com/sriramlab/RHE-reg
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