
Metastatic breast cancers have reduced immune cell recruitment but harbor increased  1 

macrophages relative to their matched primary tumors 2 
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 33 

Abstract  34 

The interplay between the immune system and tumor progression is well recognized. However, 35 

current human breast cancer immunophenotyping studies are mostly focused on primary tumors 36 

with metastatic breast cancer lesions remaining largely understudied. To address this gap, we 37 

examined exome-capture RNA sequencing data from 50 primary breast tumors (PBTs) and their 38 

patient-matched metastatic tumors (METs) in brain, ovary, bone and gastrointestinal tract. We 39 

used gene expression signatures as surrogates for tumor infiltrating lymphocytes (TIL) and 40 

compared TIL patterns in PBTs and METs. Enrichment analysis and deconvolution methods 41 

both revealed that METs have a significantly lower abundance of total immune cells, including 42 

CD8+ T cells, regulatory T cells and dendritic cells. An exception was M2-like macrophages, 43 

which were significantly higher in METs across the organ sites examined. Multiplex 44 

immunohistochemistry results were consistent with data from the in-silico analysis and showed 45 

increased macrophages in METs. We confirmed the finding of a significant reduction in immune 46 

cells in brain (BRM) METs  by pathologic assessment of TILs in a set of 49 patient-matched 47 

pairs of PBT/BRMs . These findings indicate that METs have an overall lower infiltration of 48 
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immune cells relative to their matched PBTs, possibly due to immune escape. RNAseq analysis 49 

suggests that the relative levels of M2-like macrophages are increased in METs, and their 50 

potential role in promoting breast cancer metastasis warrants further study. 51 

  52 
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Introduction  53 

Breast cancer is a highly heterogenous disease affecting 1 in 8 women in the US, and the most 54 

commonly diagnosed cancer in women worldwide. Despite recent improvements in overall 55 

survival rates, it is still the second leading cause of mortality due to cancer in women (1). In the 56 

last two decades, significant progress has been made in the detection and treatment of primary 57 

breast tumors as a result of enhanced understanding of disease biology and the tumor 58 

microenvironment (TME). The breast TME represents a complex interaction between tumor 59 

cells, endothelial cells, fibroblasts, and a variety of pro- and anti-tumor immune cells capable of 60 

tipping tumor biology toward tumor growth and progression or immune rejection. During tumor 61 

growth, cancer cells can be detected and eliminated by the immune system, but some cancer cells 62 

may exploit several mechanisms to evade destruction by the immune system, enabling them to 63 

escape immune surveillance and progress through the metastatic cascade. For breast cancer, the 64 

most common sites of distant organ metastases include bones, lungs, liver and brain with ovaries 65 

and gastrointestinal tract being affected less frequently (2). 66 

 67 

The interplay between the immune system and tumor development is now well recognized in a 68 

variety of tumor types, including the triple negative (TNBC) and HER2+ subtypes of breast 69 

cancer (3, 4). However, existing immunophenotyping studies focus mainly on primary tumors, 70 

with the role of immune cells in metastatic progression remaining largely understudied. While 71 

numerous studies have now documented cellular and genomic evolution of breast cancers during 72 

metastasis (5, 6), very little is known about the co-evolution of immune cells and the TME. This 73 

study focused on addressing this gap in our understanding by performing immunophenotyping 74 

on two datasets: a) Pan-MET, transcriptomic profiles of 50 pairs of patient-matched primary 75 

(PBTs) and metastatic breast tumors (METs) in brain (BRM), ovary (OVM), bone (BOM) and 76 
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gastrointestinal tract (GIM); and b) BRM-sTIL, a multi-institutional cohort of 49 patient-77 

matched pairs of PBTs and BRMs with stromal tumor infiltrating lymphocytes (sTILs) 78 

percentages evaluated by pathologic evaluation of hematoxylin & eosin (H&E) staining. Using 79 

gene expression signatures as surrogates for TILs, we discovered quantitative differences in 80 

immune cell profiles between PBTs and METs in the first dataset (Pan-MET). Those differences 81 

were confirmed using multiplexed immunofluoresence (mIF) in three pairs of PBT/OVMs and 82 

PBT/BRMs each. Consistent results were observed by comparing the sTILs percentages in 83 

additional PBT/BRM pairs in a second dataset (BRM-sTIL). Higher immune cell recruitment to 84 

the TME was also confirmed to be associated with better survival in both datasets. Our study 85 

demonstrates the potential of using bioinformatics tools to investigate the evolution of the 86 

immune TME in breast cancer metastasis, and identifies M2-like macrophages as a potential 87 

therapeutic target for metastatic breast cancer.  88 
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Materials and Methods 89 

 90 

Pan-MET dataset 91 

Ethics approval and consent to participate were approved under the University of Pittsburgh IRB 92 

# PRO11100645, 14040193, 1500502, 1602030.  Exome-capture RNA sequencing (ecRNA-seq) 93 

of patient-matched PBTs and METs collected from brain and bone were previously reported (7, 94 

8). Ovarian and GI METs were recently reported (9). Clinical and pathological information of all 95 

samples are available in Supplementary Table S1. Formalin fixed paraffin embedded (FFPE) 96 

tissue sections of three pairs of PBT/BRMs and PBT/OVMs each were retrieved from the Pitt 97 

Biospecimen Core.  98 

 99 

BRM-sTIL dataset 100 

Sample tissues of 49 pairs of patient-matched PBTs and BRMs were collected from four 101 

participating academic institutions (Duke University Medical Center, University of North 102 

Carolina Medical Center, University of Pittsburgh, Massachusetts General Hospital). Clinical 103 

and pathological information is available in Supplementary Table S2. 15 pairs of PBT/BRMs 104 

overlap between the Pan-MET and BRM-sTIL (Table S4). 105 

 106 

Immune abundance quantification of samples in Pan-MET dataset 107 

Total immune single-sample gene set enrichment analysis (ssGSEA) score and tumor purity were 108 

calculated using R package ESTIMATE (10). Abundance of each immune cell population were 109 

calculated by R package GSVA (11) based on two sets of immune gene signatures, Davoli 110 

signatures (12) and Tamborero signatures (13). We also applied two deconvolution methods, 111 

CIBERSORT (14) and TIMER (15). All four methods were tested on a single cell RNA-seq 112 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/525071doi: bioRxiv preprint 

https://doi.org/10.1101/525071
http://creativecommons.org/licenses/by-nc-nd/4.0/


dataset of 11 breast cancer tumors (16). If multiple METs were available for one patient, for a 113 

fair comparison of all pairs, average abundance was used for all comparisons. 114 

 115 

Differential expression (DE) test and pathway enrichment analysis 116 

DE genes in ER+ BRMs versus PBTs were tested using R package DESeq2 (17). Significantly 117 

up- or down-regulated genes were further used for pathway enrichment analyses. We obtained 118 

2531 pathways, contributed by BioCarta, GO, KEGG, Reactome, containing 5–2000 genes, from 119 

Molecular Signature Database (MSigDB Version 5.1. Broad Institute, Cambridge, MA, USA). 120 

Fisher’s exact test was performed with false discovery rate (FDR) 0.05 as cutoff. 121 

 122 

Multiplex staining experiment of selective pairs in Pan-MET dataset 123 

FFPE tissue sections (5micron) were mounted on slides and deparaffinized. Briefly, tissues were 124 

subjected to cycles of antigen retrieval, blocking, primary antibody followed by secondary-HRP 125 

antibody. Separate Opal detection and signal amplification antibodies were used for each marker. 126 

The panel of markers used included CD8, CD20, CD68, Foxp3, PD-L1, pan-CK and DAPI. 127 

Imaging, analysis and quantification was performed using the Perkin Elmer Vectra platform and 128 

Inform software (18). The list of antibodies with catalog numbers and dilutions used provided in 129 

supplementary Table S5. 130 

 131 

Evaluation of stromal tumor infiltrating lymphocytes (sTILs) in BRM-sTIL dataset samples. 132 

H&E stained sections were manually counted for percent sTILs using standard criteria developed 133 

by the international TILs working group (19). sTILs were rounded to the nearest 5% increment. 134 

Only the stromal compartment within the borders of invasive tumor was evaluated. TILs in zones 135 

of necrosis, crushed artifacts, or normal tissue were excluded. Only mononuclear infiltrate was 136 
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counted. Full tumor sections were preferentially examined over needle biopsies whenever 137 

possible; core biopsies were analyzed when full sections were unavailable. Each slide was 138 

independently reviewed by two study personnel (JLN and CL) to minimize inter-observer 139 

variability. When the sTILs differed by 10% or more, the study pathologist (AH) made the final 140 

determination. If multiple BRMs or PBTs were available for the same patient, average sTILs 141 

percentage was used for all comparisons. 142 

 143 

Data and software availability 144 

Code and data for all bioinformatic analyses are available on 145 

https://github.com/lizhu06/TILsComparison_PBTvsMET. 146 

 147 

Results 148 

 149 

METs have lower total immune abundance than patient-matched PBTs 150 

 151 

We estimated total immune abundance using RNAseq from 50 pairs of patient-matched PBTs 152 

and METs. METs showed a significantly lower total immune ssGSEA score compared to 153 

patient-matched PBTs (Fig 1A; p<0.001). To minimize the potential bias of tumor cellularity, we 154 

also compared the normalized ssGSEA immune scores which were divided by the percentage of 155 

non-tumor content, as higher tumor purity naturally indicates lower immune abundance. Since 156 

such normalization did not change the conclusion (Fig S1A), and considering this normalization 157 

was an overly simplified approximation and did not differentiate tumor from stromal regions, we 158 

used the immune ssGSEA score without normalization for further analysis to avoid introducing 159 

additional bias. The decrease in immune score was observed in METs collected from various 160 
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sites, but was especially apparent in BRMs (Fig 1B). Validating this finding, pathologic 161 

assessment of sTILs in an an additional cohort of 49 patient-matched PBTs and METs revealed 162 

that BRMs also showed a significant decrease in the percentage of sTILs compared to patient-163 

matched PBTs (Fig 1C; p<0.001). When grouping PBT/MET pairs by hormone receptor status 164 

(HR) and HER2 status, both datasets revealed a trend of decreased immune abundance in all 165 

subtypes, with TNBC subtype having the most significant decrease (Fig S1(B-C)). While the 166 

total immune ssGSEA score only estimates the overall immune abundance in the bulk sample 167 

from RNAseq, and the sTILs percentage was carefully counted as the immune cell percentage in 168 

the stroma, the two measurements of immune abundance were significantly (p< 0.001) correlated 169 

for the 15 pairs of PBT/BRMs within both data sets (Fig 1D).  170 

 171 

In addition, we also observed that METs had significantly lower expression of immune 172 

checkpoint molecules that downregulate immune response — including CD274 (PD-L1), 173 

PDCD1 (PD-1) and CTLA4 (Fig S2) — possibly due to fewer total immune cells. Differential 174 

expression (DE) test identified 1,659 up-regulated and 1,036 down-regulated genes in the 175 

comparsion of ER+ BRMs versus PBTs under FDR 0.05 cutoff. Pathway enrichment analysis of 176 

DE genes identified KEGG pathway “primary immunodeficiency” among the top 15 177 

significantly enriched pathways, further confirming our previous findings (Table S3).  178 

 179 

Taken together, both transcriptomic data and pathological assessment showed that METs have 180 

lower immune abundance than patient-matched PBTs.  181 

 182 

METs have higher percentage of M2-like macrophages relative to the total immune abundance 183 

 184 
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We inferred the abundance of each immune cell population by enrichment analysis and 185 

deconvolution methods. To validate those approaches, we first compared the GSVA scores of 186 

four common immune cell populations defined by both Davoli et al. (12) and Tamborero et al. 187 

(13). The correlations ranged from 0.4 to 0.85 (Fig S3), indicating overall high consistency. For 188 

further validation, we applied four methods; namely GSVA using the immune signatures from 189 

Davoli and Tomborero, and two methods of deconvolution (CIBERSORT and TIMER) to a 190 

publicly available single cell RNA-seq dataset (16), in which immune cell percentages were 191 

available using cell markers. Based on the correlations, the estimated levels of B cell, T cell, and 192 

macrophages by immune signatures from Davoli and Tamborero, and deconvolution method 193 

TIMER, were in general most highly correlated with actual abundance of corresponding cell 194 

types, although some signatures were not quite specific, such as CD4+ mature T cell and CD8+ 195 

effector T cell in Davoli signatures. CIBERSORT estimates showed lower correlations as 196 

expected, because the actual percentages were calculated based on three cell types, while 197 

CIBERSORT considered 22 cell types (Fig S4). 198 

 199 

Comparing patient-matched PBTs and METs, the GSVA score and abundance estimate from 200 

deconvolution methods for most immune cell populations were significantly lower in METs (Fig 201 

2 A-C). Adjusting for total immune abundance, most immune cell populations were still lower, 202 

but M2-like macrophages were significantly higher in METs (Fig 2D). Significant increment was 203 

also observed in the ratio of the relative percentages of M2 and M1, indicating dominant level of 204 

M2 over M1 (Fig 2E). When separating PBT/MET pairs to different MET sites or HR/HER2 205 

subtypes, the results were generally consistent (Fig S5 and S6). 206 

 207 

Multiplex staining confirms the in-silico results 208 
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 209 

To further validate in silico results, we selected three pairs of PBT/BRMs and three pairs of  210 

PBT/OVMs which were shown to have higher M2-like macrophages relative to the total immune 211 

abundance. Multispectral immunofluorescence (mIF) was performed for the pairs (Fig 3A). 212 

Three pairs of PBT/OVMs and two pairs of PBT/BRMs showed increased macrophages in 213 

METs, and the majority of METs had lower B cells and T cells (Fig 3B), consistent with 214 

percentage estimated from CIBERSORT (Fig 3C and Fig S7).  215 

 216 

Hormone receptor (HR) positive tumors are associated with lower total immune abundance  217 

 218 

When examining associations between immune ssGSEA immune score and clinical variables, 219 

both the RNAseq and the sTIL dataset revealed that HR+ PBTs have significantly lower immune 220 

scores than HR- PBTs (Fig 4A). Further, HR+ METs tended to have a smaller decrease in 221 

immune abundance compared to PBTs, although this was only significant in the BRM-sTIL 222 

dataset.  223 

 224 

Higher immune abundance is associated with longer metastasis-free survival (MFS) and 225 

survival-post-metastasis (SPM) 226 

 227 

We hypothesized that immune level of PBT may be associated with MFS, while immune level of 228 

MET and its change from PBT to MET are potentially associated with SPM. Combining all 229 

PBT/MET pairs into one cohort, immune ssGSEA score was not significantly associated with 230 

MFS or SPM (Fig S8), likely due to the confounding effect of different MET sites on outcome. 231 

Considering PBT/BRM pairs had the largest sample size, we tested the potential association 232 
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between immune ssGSEA score and survival specifically in PBT/BRMs. In the pan-MET 233 

dataset, there was a trend in association between higher immune levels in PBTs and longer time 234 

to development of BRMs (i.e. MFS) (Fig 4B). However, such a trend was not observed between 235 

SPM with immune levels in BRM or immune level change between PBT and BRM (Fig 4B). In 236 

the BRM-sTIL dataset, higher sTILs percentage in PBT was not associated with MFS. Instead, 237 

there was a trend toward an association between a higher sTILs percentage in MET and longer 238 

SPM (Fig 4C). We did not observe significant associations between the relative level of M2-like 239 

macrophage and survivals (Fig S9). 240 

 241 

Discussion 242 

It is now well appreciated that immune cells are a critical component of the TME. Studies of the 243 

breast TME have largely focused on tumor mutational and transcriptional landscapes in primary 244 

breast cancers, and with more recent attention to metastatic tumors. Our study is novel in two 245 

main regards: (1) we examined two cohorts of matched PBTs and METs, one of which includes 246 

METs in different sites, allowing us to discern site-specific immune changes from primary to 247 

metastatic disease and (2) we evaluated immune abundance by both gene expression analysis and 248 

H&E staining, and observed overall high consistency. Our data demonstrate the potential of 249 

using bioinformatics tools to investigate the immune contexture of both primary and matched 250 

metastatic tumors when tumor lesions may not be available for staining. 251 

 252 

Our paired patient-matched comparison revealed a decrease in immune cells from primary to 253 

metastatic breast cancer, which is consistent with limited existing studies (20-22). In-silico 254 

analysis of the Pan-MET dataset, validated by mIF staining, highlights the potential enrichment 255 

of M2-like macrophages as the tumor cells metastasize to various sites, especially brain and 256 
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ovary. This is consistent with the growing body of literature that has shown macrophages to be 257 

one of the key players in establishment of distant METs (23-25). Our survival analysis suggests 258 

enhanced MFS and SPM in patients with higher immune cell recruitment to primary and 259 

metastatic tumors, although the significance of these findings were not consistent between the 260 

Pan-MET and BRM-sTIL, possibly due to small sample size and/or sample heterogeneity. 261 

 262 

This work has multiple important strengths. First, it utilizes established genomic data sets for 263 

elucidating the immunobiology of matched PBTs and METs. Second, it is one of the larger 264 

studies of a cohort of patient-matched PBTs and METs. Third, it effectively integrates state-of-265 

the-art genomic analyses with multiplexed immunohistochemistry conducted in a subset of 266 

tumors to confirm results. Our study also has several limitations. First, due to the scarcity of 267 

patient-matched pairs of primary and metastatic breast cancer, our sample set remains somewhat 268 

small relative to studies of primary breast tumors alone. Second, RNAseq analysis was 269 

performed on bulk tumor samples, and thus gene expression cannot be attributed to specific cells. 270 

Although we attempted to reduce such bias by normalizing the immune ssGSEA score against 271 

the non-tumor cell percentage (with consistent conclusions), single cell RNA-sequencing may be 272 

needed to completely resolve uncertainties related to cellular heterogeneity. Third, in our mIF 273 

studies, the percentage of all immune cells within the tumor was often below 10%. Given these 274 

limited numbers of immune cells, our results should be interpreted with caution. Despite these 275 

limitations, our study clearly highlights an opportunity to utilize existing data to shed light on the 276 

co-evolution and involvement of immune cells in the progression of a primary tumor and its 277 

metastatic cascade within an individual patient. It also nominates M2-like macrophages as a 278 

potential target for therapeutic immune manipulation of the metastatic cascade. 279 

 280 
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 386 

Figure legends 387 

 388 

Figure 1. Lower immune abundance in metastatic breast tumors (METs) compared to 389 

primary breast tumors (PBTs).  390 

(A) Total immune ssGSEA score in PBT/MET pairs in Pan-MET dataset, together with the 391 

paired changes (MET-PBT). (B) Total immune ssGSEA score grouped by MET sites: METs in 392 

brain (BRM), ovary (OVM), bone (BOM), and GI (GIM). (C) Stromal tumor infiltrating 393 

lymphocytes (sTILs) percentages of 49 pairs of PBT/BRMs in BRM-sTIL dataset. (D) 394 

Spearman’s correlation between sTILs percentages and total immune ssGSEA score for 15 pairs 395 
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of PBT/BRMs overlapped by Pan-MET and BRM-sTIL. ****p <0.0001, ***p <0.001, **p < 396 

0.01, *p < 0.05 from two-sided Wilcoxon signed rank test in (A-C) and correlation test in (D) 397 

 398 

Figure 2. Paired comparison of the abundance of immune cell population in PBT/MET 399 

pairs in Pan-MET.  400 

 (A-B) GSVA score changes (MET-PBT) of (A) Davoli signature and (B) Tamborero signature. 401 

(C) Abundance changes estimated by deconvolution method TIMER. (D) Changes of 402 

percentages relative to total immune level estimated by deconvolution method CIBERSORT. (E) 403 

Changes of the ratio of relative percentages of M2 and M1. ****FDR < 0.0001, ***FDR < 404 

0.001, **FDR < 0.01, *FDR < 0.05 by Benjamini-Hochberg correction. Two-sided Wilcoxon 405 

signed rank test.  406 

 407 

Figure 3. Multispectral immunohistochemical (mIHC) staining of selective pairs in Pan-408 

MET.  409 

(A) mIHC staining images of one pair of PBT/OVMs and PBT/BRMs. (B) Percentage of each 410 

immune cell population denoted by markers using mIHC staining. (C) Relative percentages of 411 

corresponding immune cell populations estimated by CIBERSORT. 412 

 413 

Figure 4. Association of immune abundance with clinical variables and survivals.  414 

(A) Association between immune ssGSEA score and sTILs with clinical variables. (B) Test 415 

association with survivals in Pan-MET datset: immune ssGSEA of PBTs and MFS, immune 416 

ssGSEA of BRMs and SPM, and immune ssGSEA changes and SPM. (C) Test associations with 417 

survivals in BRM-sTIL datset: sTILs of PBTs and MFS, sTILs of BRMs and SPM, and sTIL 418 
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changes and SPM. ****p <0.0001, ***p <0.001, **p < 0.01, *p < 0.05 from Wilcoxon signed 419 

rank and Kruskal-Wallis test in (A) and log-rank test in (B)-(C).  420 

Supplementary materials 421 

 422 

Table S1. Clinical information of samples in Pan-MET dataset 423 

 424 

Table S2. Clinical information of samples in BRM-sTIL dataset 425 

 426 

Table S3. PathwayRes_MET_vs_PRI_Brain_ERpos.csv 427 

Pathway enrichment analysis of differentially expressed genes in comparison of ER+ Brain 428 

METs versus matched PBTs. 429 

 430 

Table S4. 15 pairs of PBT/BRMs overlap between the Pan-MET and BRM-sTIL. 431 

 432 

Table S5. Detailed list of antibodies and dilutions used for multispectral 433 

immunofluorescence staining of slides as shown in Figure 3 434 

 435 

Figure S1. Lower immune abundance in metastatic breast tumors (METs) compared to 436 

primary breast tumors (PBTs).  437 

(A) Comparison of normalized immune ssGSEA score in Pan-MET pairs. (B) Total Immune 438 

ssGSEA score in Pan-MET dataset, together with the paired changes (MET-PBT), grouped by 439 

HR/HER2 subtypes. (C) sTILs percentages of PBT/BRM pairs in BRM-sTIL dataset, grouped by 440 

HR/HER2 subtypes. ****p <0.0001, ***p <0.001, **p < 0.01, *p < 0.05 from two-sided 441 

Wilcoxon signed rank test. 442 
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 443 

Figure S2. Expression (log2(TPM+1)) of CD274 (PD-L1), PDCD1 (PD-1), and CTAL4 in 444 

PBT and MET.  445 

Two-sided Wilcoxon signed rank test was used to compare PBT and MET. Spearman’s 446 

correlation with immune ssGSEA change was calculated and tested using correlation test. 447 

****p <0.0001, ***p <0.001, **p < 0.01, *p < 0.05.  448 

 449 

Figure S3. Correlation between GSVA scores of Davoli and Tamborero signatures for 450 

PBT/MET pairs in Pan-MET dataset. 451 

 452 

Figure S4. Correlation between immune abundance estimated from RNA-seq data and cell 453 

count/proportion (relative to total immune cell count) in single cell RNA-seq dataset.  454 

(A-B) GSVA score of (A) Davoli and (B) Tamborero signatures. (C) Percentage relative to total 455 

immune level estimated by CIBERSORT. (D) Immune abundance estimated by TIMER. White 456 

in the heatmap indicates CIBERSORT estimates are all zero, and spearman’s correlation is not 457 

applicable. 458 

 459 

Figure S5. Comparison of the abundance of immune cell population in PBT/MET pairs in 460 

Pan-MET dataset, grouped by MET sites.  461 

(A-B) GSVA score change (MET-PBT) of (A) Davoli and (B) Tamborero signatures. (C) 462 

Abundance change estimated by deconvolution method TIMER. (D) Change of percentage 463 

relative to total immune estimated by deconvolution method CIBERSORT.  ****FDR<0.0001, 464 

***FDR <0.001, **FDR < 0.01, *FDR < 0.05. Two-sided Wilcoxon signed rank test. 465 

 466 
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Figure S6. Comparison of the abundance of immune cell population in PBT/BRM pairs in 467 

Pan-MET dataset, grouped by HR/HER2.  468 

(A-B) GSVA score change (BRM-PBT) of (A) Davoli and (B) Tamborero signatures. (C) 469 

Abundance change estimated by deconvolution method TIMER. (D) Change of percentage 470 

relative to total immune estimated by deconvolution method CIBERSORT.  ****FDR<0.0001, 471 

***FDR <0.001, **FDR < 0.01, *FDR < 0.05. Two-sided Wilcoxon signed rank test. 472 

 473 

Figure S7. Correlation between mIHC staining results and CIBERSORT estimates. 474 

(A) PBT/OVM pairs. (B) PBT/BRM pairs in Pan-MET. Spearman’s correlation. 475 

 476 

Figure S8. Test association between survivals and total immune ssGSEA of all pairs of 477 

PBTs and METs in Pan-MET dataset.  478 

(A) Kaplan-Meier (KM) curves of MFS for PBTs with total immune ssGSEA below or above 479 

median. (B) KM curves of SPM for METs with total immune ssGSEA below or above median. 480 

(C) KM curves of SPM for METs with total immune ssGSEA change below or above median. P-481 

values were from log-rank test.  482 

 483 

Figure S9. Test association between survivals and relative percentage of M2-like 484 

macrophages of PBT/BRM pairs in Pan-MET dataset.  485 

(A) Kaplan-Meier (KM) curves of MFS for PBTs with relative percentage of M2-like 486 

macrophage below or above median. (B) KM curves of SPM for METs with relative percentage 487 

of M2-like macrophage below or above median. (C) KM curves of SPM for METs with relative 488 

percentage change of M2-like macrophage below or above median. P-values were from log-rank 489 

test. 490 
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Figure 1. Lower immune abundance in metastatic breast tumors (METs) compared to primary breast 
tumors (PBTs). (A) Total immune ssGSEA score in PBT/MET pairs in Pan-MET dataset, together with the 
paired changes (MET-PBT). (B) Total immune ssGSEA score grouped by MET sites: METs in brain (BRM), 
ovary (OVM), bone (BOM), and GI (GIM). (C) Stromal tumor infiltrating lymphocytes (sTILs) 
percentages of 49 pairs of PBT/BRMs in BRM-sTIL dataset. (D) Spearman’s correlation between sTILs
percentages and total immune ssGSEA score for 15 pairs of PBT/BRMs overlapped by Pan-MET and 
BRM-sTIL. ****p <0.0001, ***p <0.001, **p < 0.01, *p < 0.05 from two-sided Wilcoxon signed rank 
test in (A-C) and correlation test in (D)
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Figure 2. Paired comparison of the abundance of immune cell population in PBT/MET pairs in Pan-
MET. (A-B) GSVA score changes (MET-PBT) of (A) Davoli signature and (B) Tamborero signature. (C) 
Abundance changes estimated by deconvolution method TIMER. (D) Changes of percentages relative to 
total immune level estimated by deconvolution method CIBERSORT. (E) Changes of the ratio of relative 
percentages of M2 and M1. ****FDR < 0.0001, ***FDR < 0.001, **FDR < 0.01, *FDR < 0.05 by 
Benjamini-Hochberg correction. Two-sided Wilcoxon signed rank test. 

**** **** *** *** **** * **** **

*** *** ***** ** *** *** *** * ***

* * * * **** *

(A) (C)

(B)

(D)

G
SV

A 
ch

an
ge

 (M
ET

-P
BT

)

Ab
un

da
nc

e 
ch

an
ge

 (M
ET

-P
BT

) * ** ** ***

**

G
SV

A 
ch

an
ge

 (M
ET

-P
BT

)
Pe

rc
en

ta
ge

 ch
an

ge
s 

re
la

tiv
e 

to
 

to
ta

l i
m

m
un

e 
le

ve
l (

M
ET

-P
BT

) ***

(E)

Ch
an

ge
s 

of
 t

he
 ra

tio
 

M
2%

/M
1%

 (M
ET

-P
BT

)

****

M2/M1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/525071doi: bioRxiv preprint 

https://doi.org/10.1101/525071
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Multispectral immunohistochemical (mIHC) staining of selective pairs in Pan-MET. (A) mIHC 
staining images of one pair of PBT/OVMs and PBT/BRMs. (B) Percentage of each immune cell population 
denoted by markers using mIHC staining. (C) Relative percentages of corresponding immune cell 
populations estimated by CIBEROSRT. 
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Figure 4. Association of immune abundance with clinical variables and survivals. (A) Association 
between immune ssGSEA score and sTILs with clinical variables. (B) Test association with survivals in 
Pan-MET datset: immune ssGSEA of PBTs and MFS, immune ssGSEA of BRMs and SPM, and immune 
ssGSEA changes and SPM. (C) Test associations with survivals in BRM-sTIL datset: sTILs of PBTs and MFS, 
sTILs of BRMs and SPM, and sTIL changes and SPM. ****p <0.0001, ***p <0.001, **p < 0.01, *p < 0.05 
from Wilcoxon signed rank and Kruskal-Wallis test in (A) and log-rank test in (B)-(C). 
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