
Waterborne, abiotic and other indirectly transmitted
(W.A.I.T.) infections are defined by the dynamics of free-living

pathogens and environmental reservoirs

Miles D. Miller-Dickson1, & Victor A. Meszaros1, , Francis Baffour-Awuah Junior2,
Salvador Almagro-Moreno3,4, C. Brandon Ogbunugafor1,�

1 Department of Ecology and Evolutionary Biology – Brown University, Providence RI, 02906 USA
2 Department of Mathematics and Statistics – University of Vermont, Burlington, VT, 05405 USA
3 Burnett School of Biomedical Sciences – University of Central Florida, Orlando, FL, 32827 USA

4 National Center for Integrated Coastal Research – University of Central Florida, Orlando, FL, 32816 USA

These authors contributed equally to this work
� Corresponding Author: brandon ogbunu@brown.edu

Abstract— While the ecology of infectious disease is a rich
field with decades worth of empirical evidence and theory, there
are aspects that remain relatively under-examined. One example
is the importance of the free-living survival stage of certain
pathogens, and especially is cases where they are transmitted
indirectly between hosts through an environmental reservoir
intermediate. In this study, we develop an integrated, broadly
applicable mathematical method to examine diseases fitting
this description—the waterborne, abiotic and other indirectly
transmitted (W.A.I.T.) infection framework. To demonstrate
its utility, we construct realistic models of two very different
epidemic scenarios: cholera in a densely populated setting
with limited access to clean drinking water and hepatitis C
virus in an urban setting of injection-drug users. Using these
two exemplars, we find that the W.A.I.T. model fortifies the
centrality of reservoir dynamics in the “sit and wait” infection
strategy, and provides a way to simulate a diverse set of
intervention strategies.

I. INTRODUCTION

Ecology and evolutionary biology have provided a theoret-
ical basis for understanding how interactions between

pathogens and their environment shape epidemics. When
combined with quantitative modeling methods, it offers a full
systems perspective that has helped to characterize the actors,
forces and interactions that create infectious diseases [1]–[9].
Classically, the pathogen-host interaction is the presumptive
central determinant of infectious disease, and consequently,
the focus of modeling efforts: understand it, model it care-
fully, and one gains a picture for how epidemics arise and
persist.

These methods have been successful in balancing simplic-
ity with generality, and have spawned different classes of
models, summarized both in terms of the particular math-
ematical instruments applied (e.g. discrete-time, continuous
models, network models, etc) and the particular biologies
of host-pathogen systems (e.g. sexually-transmitted, vector-
borne disease, food-borne pathogen, etc) [5], [6]. These
methods have been effective in many cases, supported by

dozens of examples where they have captured the essential
character or dynamics of an epidemic [6], [8]. While these
existing classifications have served an effective organiza-
tional and pedagogical purpose, there remains room for
growth in how we translate certain epidemic phenomenon
into theoretical formalism.

A concept that has been the object of recent inquiry
includes infections transmitted indirectly between hosts via
a surface or reservoir intermediate—often abiotic—where
the pathogen lives freely and independently of a host [10]–
[27], sometimes described as “sit and wait” infections [28].
Much of this research has concentrated on fomite, aerosol
and airborne-transmitted viruses [10], [11], [13], [14], [16],
[19], [22] and waterborne infections [12], [17], [23], [26],
[29]–[33]. Other studies have focused on systems where
pathogens are growing in the environment [18], or have
explored indirectly-transmitted infections in theoretical terms
[21], [24]. One framework for studying indirect, environmen-
tal transmission—the environmental infection transmission
systems (E.I.T.S)—is engineered with explicit constraints
that render its application necessarily narrow [15]. We offer
that these prior treatments are individual examples of a
general phenomenon that would benefit from a mathematical
treatment that is both more rigorous and more broadly ap-
plicable. This new formalism should accommodate a wider-
range of pathogens than have been previously considered
and should emphasize how the environment can comprise
multiple discrete dynamic entities (not unlike how host
populations are often modeled).

In this study, we develop the “waterborne, abiotic and
other indirectly transmitted” (W.A.I.T. or WAIT) paradigm,
a generalized framework for understanding “sit and wait”
pathogens that are indirectly transmitted through an envi-
ronmental reservoir intermediate. As the WAIT perspective
specifically focuses on the peculiar dynamics of environmen-
tal compartments, we argue that it is imbued with more
features and applies to a broader set of examples than
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prior treatments. To demonstrate its novelty and range of
application, we fully examine its common relevance to two
otherwise disparate modern diseases: cholera and hepatitis C
virus. The study proceeds in stages: (1) we first introduce
a purely theoretical iteration of WAIT using a standard
epidemiological model, explaining how to conceptualize an
infection in terms of the WAIT framework, and deriving
the reproductive number (R0) using analytical methods. (2)
We apply the WAIT perspective to a waterborne disease
that has been the object of several modeling exercises: the
transmission of Vibrio cholerae in a densely populated setting
with limited access to clean drinking water. (3) We then apply
the WAIT perspective to a completely different, less-explored
disease case: an HCV epidemic among injection drug users
(IDU) in a modern urban setting. These constitute different
epidemics in terms of pathogen type (Vibrio cholerae is
a Gram-negative bacterium, HCV a single-stranded RNA
virus) and setting. Nonetheless, we conceptualize and model
each epidemic scenario, highlighting mathematical features
that are unique to the WAIT framework. We discuss how
this lens provides new perspective on cholera outbreaks and
especially the modern HCV epidemic.

II. INITIALIZING WAIT:
AN ELEMENTARY ADAPTED S-I-R ITERATION

A. Description

While the emphasis of our examination will reside in
how we analyze several modern epidemic systems with the
WAIT framework, for explanatory purposes we will begin
by describing how it modifies very basic concepts in a
classic, purposefully prosaic susceptible-infected-recovered
(S-I-R or SIR) mathematical model. While this is analogous
to prior methods used to discuss indirect or environmental
transmission [17], a full appreciation of both cases discussed
in this study (cholera and HCV) would benefit from a full,
transparent explanation of the WAIT model-building process.
The method is defined by modeling changes in a population
of susceptible hosts (“S”), infected hosts (“I”) and recovered
(“R”). Classically, flow through the system is defined by
contact between susceptible and infected individuals, often
driven by a β factor, or transmission coefficient.

The WAIT framework would apply to a scenario where
the individuals in such a system become infected through
an environmental intermediate. Figure 1 is a compartmental
model that depicts this interaction, with the two [W] (for
“WAIT”) compartments influencing (dashed line) the flow
of hosts from the susceptible to infected compartments.

B. The adapted SIR compartmental diagram

The S, I , and R compartments represent the usual sus-
ceptible, infected, and recovered populations of hosts. Wu

and Wi represent uninfected and infected populations of
environmental hosts, respectively.

In traditional SIR models, the rate of new infection (arrow
from the S compartment to the I) is generally proportional

to the product of the susceptible and the infected popula-
tions, i.e. proportional to SI . In the WAIT framework, the
environmental compartment, and not a host, drives the rate
of infection. In this specific example, the Wi compartment
drives the infection such that the rate of infection is propor-
tional to SWi.

Fig. 1: Adapted SIR compartmental diagram. This depicts
a standard SIR style compartmental model with the added
compartments (shaded) corresponding to the WAIT environ-
ment. Note the dynamical properties of the Wi and Wu com-
partments. It is these dynamics that set the WAIT perspective
apart from others: environments are often dynamical systems,
with an ecology of their own.

The epidemic is then driven by a series of interactions:
interactions between uninfected (susceptible) hosts S and
the infected (transmitting) environmental compartment Wi

and interactions between infected individuals I and the
uninfected environmental compartment Wu. The epidemic
is sustained through infected hosts I depositing pathogen
into the environmental intermediate, creating new infection
in the reservoir, which can then interact with and infect more
susceptible hosts S, in a process resembling a feedback loop.
The dynamics of such a system as we have chosen to model
them are captured by the set of dynamical equations below
and can be visualized in Figure 1. A derivation of the terms
in the model can be read in the Supplemental Appendix.

dS

dt
= πS − β

SWi

Wu +Wi
− µS (1)

dI

dt
= β

SWi

Wu +Wi
− νI − µI (2)

dR

dt
= νI − µR (3)

dWu

dt
= πW − α

IWu

Wu +Wi
− kWu (4)

dWi

dt
= α

IWu

Wu +Wi
− kWi (5)

C. Analytic Equations

Equations 1–5 define the prosaic SIR model. πS is the
birthrate of new susceptible hosts in the environment and µ is
the fractional death rate of hosts. In this context, β represents
the strength of the interaction between the susceptible hosts
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S and the environment. This will generally be proportional
to the rate of contact between the two, and will generally
include a factor in it that accounts for the probability that
an exposure event actually leads to a new infected host.
Similarly, α characterizes the strength of interaction between
infected hosts I and the environmental reservoir; it is also
generally proportional to the contact rate between the two
and will contain a factor accounting for the probability that
when an environmental agent is exposed to infection, it will
render the agent infected. ν represents the fractional recovery
rate, πW is the birthrate of new uninfected environmental
agents, and k is the fractional death rate of the environmental
agents.

D. WAIT framework influences the basic reproductive num-
ber in a standard SIR model

As an example of how the WAIT model provides a
new take on traditional concepts, we briefly consider how
the value of the basic reproductive ratio R0 in this model
compares to its SIR counterpart. While R0 can have different
theoretical formulations, we rely on definitions as provided
by Jones (2007) [34] and Diekmann et al. 2009 [35]. In
a density-dependent SIR model with constant birth of sus-
ceptible hosts πS and death rate proportional to the host
population −µS, the R0 value is given by:

RSIR0 =
βπS
νµ

(6)

or sometimes, more simply, RSIR0 = β/ν, depending on
the form of the SIR equations used, e.g. density-dependent,
frequency-dependent, constant population, etc. β in this
equation is the traditional transmission coefficient. In this
classic case, it represents the coupling strength between two
non-environmental agents, and not one between the environ-
ment and the traditional hosts, as in the WAIT iteration. πS ,
µ, and ν have the same interpretation as in our model.

Alternatively, the value of R0 for the WAIT iteration takes
the form:

RWAIT
0 =

√
αβπS

µ(µ+ ν)πW
. (7)

The R0 formulae (equations 6–7) highlight differences
between the models: The square root in the WAIT version
arises as a consequence of implementing two infected agents
(I and Wi) into the model, as opposed to just one in the
SIR case. Next, one notices that the β factor in the SIR
formula is augmented by the additional factor α in the WAIT
formula, representing a kind of shared dependence between
the couplings controlling the I-interaction (α) and the S-
interaction (β), with the environment. Analogously, what
was the responsibility of πS in the SIR formula is now a
shared dependence on πS/πW , the ratio of the birthrate of
susceptible hosts to that of uninfected environmental agents.

In this case, the two appear as a ratio under the square root,
as opposed to a product in the αβ case, indicating that these
parameters have opposite effects on the value of R0: when
πW is increased, R0 decreases, but when πS is increased,
R0 increases. Whereas, both the α and β terms will increase
the value of R0 when increased. This presentation allows
one to disaggregate the dependencies of the disease burden,
as parameterized by R0, between hosts and environmental
agents.

An additional observation can be made regarding the form
of the R0 in the WAIT iteration. RWAIT

0 can be viewed as
a geometric mean of two other R0-like values: (1) number
of new host infections caused infected environmental agents,
and (2) number of new environmental agent infections caused
by infected hosts. The first of these R0-like quantities can
be calculated using the rate equations above (1–5), assuming
that the system is near the disease free equilibrium (DFE)—
the regime where R0 is calculated. One will find that the
rate of new host infections caused by infected environmental
agents, near the DFE, is given by βπS/(µπW ). The second
R0-like quantity refers to the number of new environmental
agent infections caused by infected hosts, near the DFE. One
will find that this value is given by, α/(µ+ν). Thus, one can
see that the form of R0 given in equation 7 can be written
as,

RWAIT
0 =

√
α

µ+ ν
×

√
βπS
µπW

(8)

The details of the full calculation can be found in the Sup-
plemental Appendix. Thus, the full R0 for the WAIT system
represents a kind of average of the associated R0 values for
the different modes of transmission. By stressing the role of
environmental reservoirs, this modelling perspective has the
capacity to dissect properties of dynamics that other models
may omit.

E. Basic rules for building a WAIT model

Constructing models using the WAIT framework requires
an understanding of the specific biologies of the agents
involved in the system of interest. Consequently, the use of
the WAIT framework is as much a conceptual exercise as
it is a mathematical one, driven by domain expertise on the
problem of interest. The implementation of the framework
can be summarized by three key concept-activities:

• Identify the relevant agent-compartments that define the
dynamics of the system of interest (e.g. S, I, R, latent
infected, etc.) and construct a compartmental model that
captures interactions between them.

• If infection in the system is driven by interactions
between hosts and an environmental reservoir, one can
consider and model dynamics of the latter indepen-
dently. One should ask how pathogens are deposited
in this reservoir, and if/how the pathogen of interest
replicates and/or survives in this setting. This is a
key point of innovation, as it allows the modeler to
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think carefully about the biology and ecology of the
environmental reservoir.

• Consider how the WAIT reservoir interacts with hosts.
How does this interaction occur? What parameters
would define how effectively pathogens are transmitted
into the reservoir? Note that the nature of this reservoir
can be : it can be large or small, liquid or solid, mobile
or immobile, and there could also be multiple reservoirs.
It is generally abiotic in nature, as the transmitting
reservoir isn’t a living organism as in vector-borne
diseases (one could consider some exceptions, but these
descriptions hold for most cases).

Having proposed a brief outline for how to think about and
model a disease system using the WAIT perspective, we will
apply it to two different, modern epidemic scenarios: first
cholera in a densely populated setting with limited access
to clean drinking water, and then hepatitis C virus in a
community of injection drug users.

III. THE CHOLERA WAIT MODEL

A. Description

Here we present a WAIT-style model of cholera (caused
by the gram negative bacterium Vibrio cholerae), which has
been the object of prior modeling efforts [12], [29]–[31],
[33]. This specific iteration is based on a simulation of a
2010 outbreak in Haiti [32]. It is set with a population of
400,000 (the approximate population of the Carrefour section
of Port Au Prince, Haiti), features seven ordinary differen-
tial equations, seven compartmentalized agents, and twenty
parameters. It contains high-infectious and low-infectious
water reservoirs, which are the mode of transmission [36].
Recent studies have examined other modes of transmission
in cholera, (including transmission within households) [37],
but we have chosen to focus on waterborne transmission.
Treatment and prevention is undertaken via vaccination, an-
tibiotic administration, and modification of the contaminated
water dynamics.

B. Cholera WAIT model: compartmental diagram

The model can be visualized using a compartmental di-
agram as seen in Figure 2. Some general features, which
reflect findings in prior studies [32], [36], [38], include the
following:

• Disease is acquired by individuals as they become
infected from drinking water from either the low-
infectious or high-infectious reservoirs.

• Infected individuals (symptomatic and asymptomatic)
shed bacteria into the high-infectious reservoir.

• Bacteria are removed from the system either via decay
in the low-infectious reservoir, or via the death of
infected individuals. These reservoirs differ in how
much V. cholerae exist in a given amount of water, with
the high-infectious reservoir much more likely to cause
disease.

• Some individuals are vaccinated and individuals return
to the susceptible compartment as their vaccine induced
immunity wanes.

• Individuals enter and exit the system via equal natural
birth and death rates, as well as a death rate due to the
disease. Since natural birth and death rates are equal,
and additional death can occur from disease, there is
a loss of susceptible individuals as the model moves
forward through time.

C. Cholera WAIT model: Analytic equations and parameters
The set of ordinary differential equations (Eq. 9–15) define

the dynamics of the system. As outlined in the “elementary
adapted S.I.R example,” the environmental dynamics are
realized within their own set of differential equations.

dS

dt
= µN + ωR+ εV − αS

BL
κL +BL

(9)

− αS
BH

κH +BH
− µS − τν

dI

dt
= (1− p)αS

BL
κL +BL

+ (1− p)αS
BH

κH +BH
(10)

− (µc + µ+ (1− θ)γ + θγλ)I

dA

dt
= pαS

BL
κL +BL

+ pαS
BH

κH +BH
(11)

− (µ+ γ)A

dR

dt
= ((1− θ)γ + θγλ)I + γA− (µ+ ω)R (12)

dV

dt
= τν − εV − µV (13)

dBH
dt

= (ψθ + (1− θ))
ξs
W
I +

ξA
W
A− χBH (14)

dBL
dt

= χBH − δBL (15)

Table I lists the parameters and values used in this simu-
lation. Of note, the BL,H

κL,H+BL,H
terms in Eq. 9–11 quantify

the likelihood that an individual, per day, will be infected
with V. cholerae given the contaminated water consumption
rate α. These terms are constructed using the minimum low
and high infectious reservoir dose in units of cells per day.
Other notable terms include, α the water consumption rate
and ξs the symptomatic individuals excretion rate.

The initial conditions across all simulations included a
population of 400,000 susceptible individuals with an initial
small amount of Vibrio cholerae present in each reservoir to
prime the outbreak (5 cells in each reservoir). Additionally,
the values of the symptomatic, asymptomatic, vaccinated,
and recovered compartments were set to zero.

D. Cholera WAIT model: disease dynamics
The simulation was constructed with a time step resolution

of 10,000 over a period of 130 days. Figure 3 provides an
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Fig. 2: Cholera compartmental diagram. Left: Green arrows highlight the flow of the population of hosts through the
system. Right: here the red arrows highlight flow of disease through the system.

overview of the dynamics of the disease and the effect of
potential interventions. From these simulations, we can ob-
serve the behavior of the infected populations (symptomatic
and asymptomatic), both of which grow rapidly in the first 20
days of simulation time (Figure 3A). The symptomatic group
peaks first, shortly after which the asymptomatic group rises
to a higher value. The decay that is seen in the latter days of
the outbreak naturally occurs as the total number of suscep-
tible individuals decreases. Further discussion regarding the
long term behavior of the model, as well as the susceptible,
recovered and vaccinated populations can be found in the
Supplemental Appendix.

Using the WAIT environmental reservoir equations, one
can model the relative changes in water reservoir infectious-
ness. In Figure 3b, we observe the high-infectious reservoir
peak first, driven by the symptomatic population’s shedding
of bacteria into the aquatic environmental reservoir. This
behavior is is propelled by high excretion rate of symp-
tomatically infected individuals (ξs), which is three orders
of magnitude larger than (ξA). The high-infectious reservoir
drives the rise of new infected cases. As the system moves
forward in time, the high-infectious reservoir decays via the
χ parameter, which shifts the disease-driving burden to the
low-infectious reservoir.

Vaccination is approximated as a constant number of
individuals vaccinated per day, resulting in a linear increase
in the vaccinated population. On long time scales (greater
than 2500 days) the recovered population peaks and declines
as the total number of susceptible individuals ultimately de-
cays, which no longer resembles realistic disease dynamics.
Further exploration of this behavior can be found in the
Supplemental Appendix.

E. Cholera WAIT model parameters influence the R0

The R0 provides a signature of the average infectiousness
of a given pathogen in a given setting [34], [35]. In this
model, given the parameters, R0 = 0.199 (A derivation of
the analytic expression for R0, as well as details regarding
the sensitivity analysis, can be found in the Supplementary
Appendix.) Thus, in its current configuration, the model does
not describe a self-sustaining epidemic. (This is observable
through the decay of the asymptomatic and symptomatic
cases as depicted in Figure 3a). Additionally, the eigenvalues

of the Jacobian matrix for the ODE system at the disease-
free equilibrium are real numbers less then or equal to zero,
with the largest eigenvalue being zero. Consequently, given
enough time, the flow of disease will move to the disease
free equilibrium.

Label Value Units Definition Sources

α 0.003 (person day)−1 Rate of contaminated
water consumption [39]

κL 105 cells / day Low-infectious V.cholerae
Infectious dose [40]

κH 2000 cells / day High-infectious V.cholerae
Infectious dose [41]

χ 1 % / day
Rate of decay from
high-infectious to

low-infectious water
[42]

δ 0.33 % / day Environmental death
rate of V. cholerae [?]

µ 4.49 · 10−5 % / day Natural birth &
death rate [43]

µc 0.046 # / day Symptomatic
mortality rate [44]

γ 0.20 % / day Disease recovery rate [45]

p 0.79 % / day Proportion of
asymptomatic cases [46]

ξS 1.30 · 1011 cells / day Symptomatic
excretion rate [47]

ξA 1.30 · 108 cells / day Asymptomatic
excretion rate [48]

ω 3.42 · 10−3 % / day Waning of
natural immunity [49]

ν 1000 vaccines / day Vaccination rate [50]

τ 0.67 % / day Vaccine efficacy [51]

ε 1.37 · 10−3 % / day Waning vaccine
induced immunity [52]

θ 0.08 % / day Proportion symptomatic
& receiving antibiotics [53]

ψ 0.52 % / day
Rate at which persons

receiving antibiotics shed
bacteria into reservoir

[54]

λ 2.30 % / day Relative recovery rate
receiving antibiotics [45]

W 1.5·N Deciliters Size of water
reservoir [55]

N 4·105 People Number of
individuals —

TABLE I: Cholera WAIT model parameters
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(a) (b)

(c) (d)

Fig. 3: Cholera WAIT model dynamics and simulated interventions. (a): The dynamics of both the symptomatic
and asymptomatic infected populations. (b): The fractional relative infectiousness of each reservoir (normalized to 1).
(c): Antibiotic, vaccine, and water purification interventions applied at 15 days after the start of the model outbreak (d):
Compound staggered interventions mimicking an example real world disease management strategy.

The relative sensitivity of R0 to changes in the model
parameters was examined, and we find that p, W , α, and
ξS are the four most sensitive parameters. These include
two parameters strongly related to WAIT aspects of the
model: the rate of contaminated water consumption α, and
the total water reservoir size W . Further analysis was also
conducted to better understand how adjustments to the model
parameters can push R0 > 1. The results of these analysis
can be found in the Supplemental Appendix.

F. Cholera WAIT model and simulated interventions: antibi-
otics, vaccination and water purification

Having explained the model structure and analyzed pa-
rameter influences on the basic reproductive ratio, we then
analyzed a range of potential interventions, comparing their
impact on various properties of the cholera dynamics. Specif-
ically, we examine three types of interventions: vaccination,
antibiotic administration, and water purification. Each were
realized by modifying the respective model parameters that
encode information relevant to that intervention.

Figure 3 shows various iterations of the simulation, track-
ing the sum of both symptomatic and asymptomatic in-
dividuals in the standard model (Figure 3a), with various
different interventions implemented (3c, 3d). In Figure 3c,
we observe how the effect of daily vaccine administration

manifests most clearly in the longer term (>100 days)
behavior of the dynamics, where it can eventually exceed the
effects of reduction in contaminated water consumption (if
vaccine effectiveness is sufficiently high). We can also see the
large impact of instantaneously reducing contaminated water
consumption on the number of infected individuals (in terms
of both number of infected individuals, and the rate at which
that impact manifests). For example, increasing antibiotic,
and vaccine administration two-fold has less immediate
impact on disease dynamics than decreasing contaminated
water consumption even by a quarter. Together, the cholera
WAIT model offers the hypothesis that ideal interventions
might include a combination of long-term (e.g. vaccination)
and short-term (e.g. water purification) interventions to limit
the number of infected cases.

Lastly, compound intervention dynamics are considered
(Figure 3d). These aim to simulate disease management
strategies where, given practical strategies such as resource
allocation and response time, a staggered or combined re-
sponse is more likely to be implemented. We chose this par-
ticular compound intervention to demonstrate how the WAIT
model can broadly accommodate the types of modifications
that represent public health interventions.
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IV. THE HEPATITIS C VIRUS WAIT MODEL

A. Description

The HCV model describes a population of approximately
170,000 individuals—based on estimates of the size of the
IDU community in New York City [56]—where infected
injection drug users may migrate into the population. In this
model, needles serve as the environmental intermediate for
infection, and the sharing of infected needles will constitute
the means of transmitting new infection. Note that while the
term “needle” is only one part of a syringe, we use it to refer
to the entire syringe. HCV can also be transmitted sexually
[57], but in this paper we restrict our attention to transmission
through infected needles. As with the cholera model, this
section of the main text focuses on the main structure and
dynamical properties of the model. Further model details and
discussion can be found in the Supplemental Appendix.

B. HCV WAIT model: Compartmental diagram

We model the dynamics of needle populations, injection
drug users, and infected individuals through a series of five
ordinary differential equations. The compartments, labeled S,
IE , IL, Nu, and Ni represent the populations of susceptible
individuals, early-infected individuals (sometimes referred to
as acutely infected), late-stage infected individuals (some-
times referred to as chronically infected), uninfected needles,
and infected needles, respectively. This model has several
features:

• The susceptible compartment refers to individuals who
are injecting drugs and who are sharing needles with
other members in the IDU community.

• The needle population is divided into two compart-
ments: infected and uninfected, and we model the
dynamics of each compartment separately.

• New infections (of both people and needles) will depend
on the fraction of infected or uninfected needles in
circulation.

• There are various estimates for the ability of HCV to
survive in needles [58] [59]. We incorporate HCV free-
living survival via the parameter ε, which quantifies

the rate at which the virus spontaneously clears from
infected needles.

C. HCV WAIT model: Analytic equations and parameters

The dynamics of the HCV transmission process are gov-
erned by equations 16–20. The population of individuals
who are being treated and those who have recovered are not
explicitly modeled in this WAIT iteration, as the dynamics
of treatment and recovery are not central to the questions
explored in this study. There are, however, several modeling
studies of HCV that focus on treatment [60]–[63], and their
effects are not ignored in the HCV WAIT model. Entering or
leaving treatment (and re-entering the susceptible population,
as in case of drug relapse in the IDU population) are
approximated by the “birth” terms πS and πT and removal
terms −τIL and −τIE .

dS

dt
= πS + φ(IE + IL)− cβS

Ni
Ni +Nu

− µS (16)

dIE
dt

= πI + cβS
Ni

Ni +Nu
− (ω + τ + µ+ φ)IE (17)

dIL
dt

= πT + ωIE − (µ+ τ + φ)IL (18)

dNu
dt

= πN − γζ(IE + IL)
Nu

Ni +Nu
− kuNu + εNi (19)

dNi
dt

= γζ(IE + IL)
Nu

Ni +Nu
− kiNi − εNi (20)

πS is the birthrate (via migration or first-time use) of new
members into a given community of injection drug users
(constant in this model). This includes those who may be
returning to the population of IDU after recovering from
HCV. πT represents the rate that individuals enter the in-
fected stage coming from an unsuccessful treatment program.
φ represents the daily fraction of individuals infected with
HCV who spontaneously clear the infection. c represents
the rate of sharing a needle with another user (infected or
otherwise) per capita. β represents the probability that an
uninfected individual will convert to HCV+ after injection
with an infected needle. µ is the combined fractional death

Fig. 4: Hepatitis C virus compartmental diagram. Left: Green arrows highlight the flow of the population of hosts through
the system. Right: Red arrows highlight flow of disease through the system, and where there is a color/transparency gradient
there is a flow of infection away from an infected compartment towards an uninfected one.
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and IDU cessation rate (individuals who leave the IDU
community). πI represents the rate of migration of early
stage infected individuals into the study population of IDU
(assumed to be constant). ω is the daily fraction of early-
stage infected individuals who progress to the late-stage of
infection. τ is the daily fraction of infected individuals who
go into treatment. πN is the rate of introduction of uninfected
needles into the population of IDU. γ is the average number
of injections per user per day. ζ represents the probability
that a new needle becomes infected after use by an infected
user. ku is the daily fraction of uninfected needles which are
discarded. ki is the daily fraction of infected needles which
are discarded. Lastly, ε is the fraction of infected needles
which become uninfected in the period of a day due to de-
activation (or “death”) of virus populations on the needle.
Parameter values and sources can be seen in Table II.

D. HCV WAIT model parameters influence the R0

Having constructed and elaborated on the details of the
HCV WAIT model, we now explore how parameters related
to the environment (in this case, those framing the population
of infected needles) influence the R0. We directly measured
the influence of parameters on the R0 by considering the
effect of modifying the parameters. The value of R0 was
calculated using established methods [34], [35], and is also
found to conform to a geometric mean of two other R0-like
quantities, just as in our adapted SIR model in section II. The
full calculation and its presentation as a geometric mean is
outlined in the Supplemental Appendix.

R0 =

√
cγζβkuπS

πNµ(µ+ τ + φ)(ε+ ki)
(21)

From the form of R0 given in equation 21, one could
surmise that several parameters in the formula have com-
parable sensitivities. We tested this directly by calculating
the Partial Rank Correlation Coefficient (PRCC) for each of
the parameters in the model, with respect to R0, based on
methods used in prior studies [64]. We find that parameters
related to an interaction with the environmental reservoir (the
population of needles) such as ku (the fractional discard rate
of uninfected needles), γ (the rate of daily injections per
capita), and πN (the birthrate of new needles) are as central
to HCV dynamics as traditionally considered parameters,
such as πS (the birthrate of susceptibles), c (the contact
or sharing rate of IDU), or µ (the combined death and
cessation rate of IDU) (Figure 5). This fortifies the notion
that WAIT-specific properties dictate the spread of HCV,
providing opportunities to explore more precise targeting by
public health interventions.

E. HCV WAIT model and simulated interventions: needle-
exchange programs

Having demonstrated the structural relevance of the WAIT
framework in terms of how it influences the basic reproduc-
tive number, we can consider the utility of the model with

respect to other properties, including how it offers insight
into potential interventions.

Fig. 5: R0 sensitivity in HCV: the Partial Rank Corre-
lation Coefficient (PRCC). A PRCC calculation was per-
formed for R0 using Latin Hypercube Sampling. Parameters
were sampled from uniform distributions with widths speci-
fied by the ranges given in Table II. The PRCC calculation
was repeated for 50 independent iterations. The average of
these iterations is shown here, with the standard deviations
for each parameter shown as the error bars.

One such intervention may be the implementation of
needle-exchange programs. Needle-exchange programs are
an example of “harm reduction” public health strategies
that aim to reduce harm stemming from behaviors that put
the affected individuals or communities at risk [65]. These
policies are controversial, but have been demonstrated to be
effective interventions for HIV and HCV in certain settings
[66]. With respect to the HCV WAIT model, some of these
programs (especially ones targeting injection equipment, like
safe injection sites) can increase the discard rate of infected
needles by providing a safe location to use and discard
needles, while also providing uninfected needles to IDU. In
our model, parameters like the needle discard rate, ki and ku,
and πN are affected by needle exchange programs. Figure
6 demonstrates how R0 is affected by these parameters.
One can see that R0 can be reduced by increasing ki—the
infected needle discard rate—along a fixed value of πN—
the birthrate of uninfected needles—and that increasing πN
along a fixed value of ki has the same effect. It is also evident
that R0 can be reduced more rapidly by increasing ki and
πN simultaneously, as expected. In this way, the proportion
of infected needles is reduced because of an increase in clean
needles and a reduction of infected ones, lowering R0.

In Figure 6, we demonstrate how changing ku and ki
modifies the value of R0. Notice that R0 is reduced by
increasing ki across fixed values of ku. The opposite effect
is observed when increasing ku along fixed values of ki.
That is, removing infected needles at an increased rate may
decrease infection risk in a population of IDU, while doing
the opposite can increase the risk. One can also see that
increasing ku and ki simultaneously along the dashed line—
where ku = ki—will increase R0. This indicates that if a
distinction between infected and uninfected needles cannot
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Fig. 6: HCV R0 as a function of various model features. Left: The relationship between the rate of acquisition of clean
needles πN and the discard rate of infected needles ki with respect to various values of R0. The curves are contours of
constant values of R0 and are labelled as such. The vertical and horizontal dashed lines indicate the chosen values for their
respective parameters. Right: The relationship between the infected and uninfected needle discard rate, with respect to R0.
The diagonal line represents when ku = ki. Notice that moving upwards along this diagonal increases R0.

Label Value Units Definition Sources

πS 300± 100 person / day
Birthrate of susceptibles

(entering the IDU
community)

Estimate

πT 25± 10 person / day Rate of treatment
failure Estimate

φ 0.26± 0.05 % / day HCV self-clearance
fraction per day [60] [67]

c 1± 0.5 shares / day Daily sharing rate of
needles per capita [68]

β 0.018± 0.005 %
Probability of

infection from an
infected needle

[69]

µ (2.7± 0.5) · 10−4 % / day

Fractional rate of
removal from IDU
community due to
cessation & death

[70]

πI 40± 10 person / day
Migration rate of

new early infected
into IDU community

Estimate

ω 0.5± 0.3 % / day
Birthrate of late

infections as a fraction
of early infections

[71] [72]

τ 0.04± 0.02 % / day Fractional rate
of entering treatments [73] [74]

πN (8± 3) · 103 needles / day Birthrate of
uninfected needles [75] [76]

γ 2.5± 2 injections / day Daily rate of
injections per capita [72] [76]

ζ 0.25± 0.1 %
Probability of transferring

infection to a needle [77]

ku 0.3± 0.2 % / day Fractional discard rate
of uninfected needles Estimate

ki 0.3± 0.2 % / day Fractional discard rate
of infected needles Estimate

ε 0.96± 0.03 % / day
Fractional decay rate
of HCV infection in

needles
[59]

TABLE II: HCV WAIT model parameters

be established in a given setting, then it may be more
helpful to add a higher proportion of uninfected needles than
it would be to remove a higher proportion of all needles.

V. DISCUSSION

In this study, we propose a framework—the waterborne,
abiotic and other indirectly transmitted pathogen paradigm
(WAIT)—for modeling infectious diseases where transmis-
sion is dictated by an interaction between hosts and dy-
namic multi-compartment environmental reservoirs. We use
it to explore two very different modern epidemics of sig-
nificant public health consequence: cholera and hepatitis
C virus. We first establish it through a simple form, an
elementary adapted SIR formulation, and highlight how it
modifies fundamental properties of epidemics such as the
basic reproductive number (R0). We then build mathematical
models to explore cholera and HCV disease dynamics. We
demonstrate how the integrated framework highlights poten-
tially overlooked properties of these systems, and highlights
potential avenues for intervention. The model is compatible
with existing canon in epidemiology, and can accommodate
theory in the ecology and evolution of infectious disease.
For example, the “curse of the pharaoh hypothesis,” which
predicts that pathogens with high free-living survival can be
more virulent [78], can be modeled on a population scale
using the WAIT framework. In addition, its careful treatment
of environmental dynamics makes it amenable to questions
regarding how changes in climate, social policy, or behavior
may influence the spread of disease.

In the context of cholera, modeling the aquatic reservoir
allows us to interrogate the interplay between several notable
aspects of cholera epidemics. For example, the interaction
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between the relative size of the body of water and changes in
infected populations, and the notion that the symptomatic and
asymptomatic infectious populations fuel different aspects of
the epidemic (initial and longer-term phase, respectively).
These are areas of present and future inquiry.

In the context of HCV, the WAIT perspective reveals that
the dynamics of injection needle populations are crucial
to the spread of HCV, which offers a lens on approaches
that might attenuate outbreaks of HCV. To the best of
our knowledge, no existing mathematical model of HCV
epidemiology has interrogated the dynamics in this manner.
It is our hope that the HCV modeling community exploits
and improves upon this perspective by further adapting the
model to study HCV in specific settings.

More generally, The WAIT framework is driven by a
contextual understanding of the disease dynamics, where
the model parameterization follows the intuition of the
scientist. Consequently, it broadens the scope of diseases
that can be responsibly understood using mathematical or
computational models, potentially generates hypotheses, and
fosters improved recapitulation (and possibly prediction) of
epidemics driven by “sit and wait” pathogens.
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[12] Cláudia Torres Codeço. Endemic and epidemic dynamics of
cholera: the role of the aquatic reservoir. BMC Infectious
diseases, 1(1):1, 2001.

[13] Stephanie A Boone and Charles P Gerba. Significance of
fomites in the spread of respiratory and enteric viral disease.
Applied and Environmental Microbiology, 73(6):1687–1696,
2007.

[14] Thomas P Weber and Nikolaos I Stilianakis. Inactivation of
influenza a viruses in the environment and modes of transmis-
sion: a critical review. Journal of infection, 57(5):361–373,
2008.

[15] Sheng Li, Joseph NS Eisenberg, Ian H Spicknall, and James S
Koopman. Dynamics and control of infections transmitted
from person to person through the environment. American
journal of epidemiology, 170(2):257–265, 2009.

[16] Raymond Tellier. Aerosol transmission of influenza a virus: a
review of new studies. Journal of the Royal Society Interface,
6(suppl 6):S783–S790, 2009.

[17] Joseph H Tien and David JD Earn. Multiple transmission
pathways and disease dynamics in a waterborne pathogen
model. Bulletin of mathematical biology, 72(6):1506–1533,
2010.

[18] Majid Bani-Yaghoub, Raju Gautam, Zhisheng Shuai, P Van
Den Driessche, and Renata Ivanek. Reproduction numbers
for infections with free-living pathogens growing in the envi-
ronment. Journal of biological dynamics, 6(2):923–940, 2012.

[19] Jijun Zhao, Joseph E Eisenberg, Ian H Spicknall, Sheng Li,
and James S Koopman. Model analysis of fomite mediated
influenza transmission. PloS one, 7(12):e51984, 2012.

[20] Romulus Breban. Role of environmental persistence in
pathogen transmission: a mathematical modeling approach.
Journal of Mathematical Biology, 66(3):535–546, 2013.

[21] Michael H Cortez and Joshua S Weitz. Distinguishing between
indirect and direct modes of transmission using epidemiolog-
ical time series. The American Naturalist, 181(2):E43–E52,
2013.

[22] N Van Doremalen, T Bushmaker, and VJ Munster. Stability
of middle east respiratory syndrome coronavirus (mers-cov)
under different environmental conditions. Eurosurveillance,
18(38):20590, 2013.

[23] Meili Li, Junling Ma, and P van den Driessche. Model for
disease dynamics of a waterborne pathogen on a random
network. Journal of mathematical biology, 71(4):961–977,
2015.

[24] Thomas Caraco, Carrie A Cizauskas, and Nang Wang. Envi-
ronmentally transmitted parasites: Host-jumping in a heteroge-
neous environment. Journal of theoretical biology, 397:33–42,
2016.

[25] Andrew F Brouwer, Marisa C Eisenberg, Justin V Remais,
Philip A Collender, Rafael Meza, and Joseph NS Eisenberg.
Modeling biphasic environmental decay of pathogens and
implications for risk analysis. Environmental science &
technology, 51(4):2186–2196, 2017.

[26] Andrew F Brouwer, Mark H Weir, Marisa C Eisenberg, Rafael
Meza, and Joseph NS Eisenberg. Dose-response relationships
for environmentally mediated infectious disease transmission
models. PLoS computational biology, 13(4):e1005481, 2017.

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/525089doi: bioRxiv preprint 

https://doi.org/10.1101/525089
http://creativecommons.org/licenses/by-nc-nd/4.0/


[27] Joanne P Webster, Anna Borlase, and James W Rudge. Who
acquires infection from whom and how? disentangling multi-
host and multi-mode transmission dynamics in the ‘elimina-
tion’era. Phil. Trans. R. Soc. B, 372(1719):20160091, 2017.

[28] Bruno A Walther and Paul W Ewald. Pathogen survival
in the external environment and the evolution of virulence.
Biological Reviews, 79(4):849–869, 2004.

[29] E Bertuzzo, R Casagrandi, M Gatto, I Rodriguez-Iturbe, and
A Rinaldo. On spatially explicit models of cholera epidemics.
Journal of the Royal Society Interface, 7(43):321–333, 2009.

[30] Lorenzo Mari, Enrico Bertuzzo, Lorenzo Righetto, Renato
Casagrandi, Marino Gatto, Ignacio Rodriguez-Iturbe, and An-
drea Rinaldo. Modelling cholera epidemics: the role of
waterways, human mobility and sanitation. Journal of the
Royal Society Interface, 9(67):376–388, 2011.

[31] Ashleigh R Tuite, Joseph Tien, Marisa Eisenberg, David JD
Earn, Junling Ma, and David N Fisman. Cholera epidemic
in haiti, 2010: using a transmission model to explain spatial
spread of disease and identify optimal control interventions.
Annals of internal medicine, 154(9):593–601, 2011.

[32] Jason R Andrews and Sanjay Basu. Transmission dynamics
and control of cholera in haiti: an epidemic model. The Lancet,
377(9773):1248–1255, 2011.

[33] Marisa C Eisenberg, Zhisheng Shuai, Joseph H Tien, and
P Van den Driessche. A cholera model in a patchy envi-
ronment with water and human movement. Mathematical
Biosciences, 246(1):105–112, 2013.

[34] James Holland Jones. Notes on r0. California: Department
of Anthropological Sciences, 2007.

[35] O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts. The
construction of next-generation matrices for compartmental
epidemic models. Journal of the Royal Society Interface,
7:873–885, 2010. doi:10.1098/rsif.2009.0386.

[36] Salvador Almagro-Moreno and Ronald K Taylor. Cholera:
environmental reservoirs and impact on disease transmission.
Microbiology spectrum, 1(2), 2013.

[37] Christine Marie George, Khaled Hasan, Shirajum Monira,
Zillur Rahman, KM Saif-Ur-Rahman, Mahamud-ur Rashid,
Fatema Zohura, Tahmina Parvin, Md Sazzadul Islam Bhuyian,
Md Toslim Mahmud, et al. A prospective cohort study com-
paring household contact and water vibrio cholerae isolates
in households of cholera patients in rural bangladesh. PLoS
neglected tropical diseases, 12(7):e0006641, 2018.

[38] Hartley DM, Morris JG Jr, Smith DL . Hyperinfec-
tivity: A critical element in the ability of v. cholerae
to cause epidemics? PLOS Medicine, 3(1):e7, 2005.
https://doi.org/10.1371/journal.pmed.0030007.

[39] Kolaye, G., Bowong, S., Houe, R., Aziz-Alaoui,
M., & Cadivel, M. Mathematical assessment of
the role of environmental factors on the dynamical
transmission of cholera. 2018, August 23.
https://www.sciencedirect.comhttps://doi.org/10.1016/
j.cnsns.2018.06.023.

[40] Ayeni A. O. Domestic Water Source, Sanitation and High
Risk of Bacteriological Diseases in the Urban Slum: Case
of Cholera in Makoko, Lagos, Nigeria. Journal of En-
vironment Pollution and Human Health, 2(1):12–15, 2005.
http://www.sciepub.com/reference/32827.

[41] Ashfaqul Alam, Regina LaRocque, Jason Harris, Cecily
Vanderspurt, Edward Ryan, Firdausi Qadri, and Stephen
Calderwood. Hyperinfectivity of human-passaged vib-
rio cholerae can be modeled by growth in the infant
mouse. Infection and Immunity, 73(10):6674–6679, 2005.
https://iai.asm.org/content/73/10/6674.

[42] Merrell, D. S., Butler, S. M., Qadri, F., Dolganov, N. A.,
Alam, A., Cohen, M. B., Camilli, A. Host-induced epidemic
spread of the cholera bacterium. Nature, 2002, June 06.
https://www.nature.com/articles/nature00778.

[43] Department of Economic and Population Division
Social Affairs. World population prospects the
2008 revision, highlights, working paper. 2008.
http://www.un.org/esa/population/publications/wpp2008/wpp
2008 highlights.pdf.
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