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ya||a is yet another parallel agent-based model for morphogenesis. It is
several orders of magnitude faster than conventional models, because it runs
on GPUs and because it has been designed for performance: Previously only
complex and therefore computationally expensive models could simulate both
mesenchyme and epithelium. We chose to extend the simple spheroid model
by the addition of spin-like polarities to simulate epithelial sheets and tissue
polarity. We also incorporate recently developed models for protrusions and
migration. ya||a is written in concise, plain CUDA/C++ and available at
github.com/germannp/yalla under the MIT license.

Introduction

Embryonic tissues come in two basic states, epithelial and mesenchymal. Epithelial cells
typically create compact tissues with strong intercellular contacts, thus acting as physical
barriers to other cells and molecules. Epithelial tissues are organized into sheets with
stable neighbourhoods and show a marked apical-basal polarity across the depth of the
sheet. Such sheets undergo complex 3D deformations by means of active cell behaviors,
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which result in folding, bending, or twisting of the sheet, or by means of passive me-
chanical forces exerted by the surrounding tissues (Honda, 2017). Mesenchymal cells,
on the other hand, are typically looser 3D tissues with abundant extracellular matrix.
Mesenchymal cells come in various shapes which are typically highly dynamic due to the
formation and retraction of protrusions (such as filopodia, lamelopodia, etc.). Mesenchy-
mal tissues change shape by proliferation, extracellular matrix secretion and remodeling,
and intercalation (G. W. Brodland and H. H. Chen, 2000). Cell transitions from ep-
ithelial to mesenchymal type, and interactions between both tissue types, are common
throughout development and disease.
Previous simulation frameworks for morphogenesis (Hoehme and Drasdo, 2010; Rich-

mond et al., 2010; Gorochowski et al., 2012; Rudge et al., 2012; Swat et al., 2012; Mirams
et al., 2013; Sütterlin et al., 2013; Kang et al., 2014; Starruß et al., 2014; Cytowski and
Szymanska, 2015; Barton et al., 2017; Somogyi and Glazier, 2017; Sussman, 2017; Ghaf-
farizadeh et al., 2018; Song et al., 2018) often emphasized either epithelial or mesenchymal
processes, e.g. vertex models describe the shapes of epithelial cells within sheets or cellu-
lar Potts models describe differential adhesion (Osborne et al., 2017). Recently, solutions
to overcome this limitation were put forward: an extension of the spheroid model by tor-
sion joints (Disset et al., 2015), a 3D implementation of the vertex model (Okuda et al.,
2015), a sub-cellular element model using apical and basal elements for epithelial cells
(Gord et al., 2014), a sub-cellular element model using cylindrical elements for epithelial
cells (Marin-Riera et al., 2015), and most recently a spheroid model with apical-basal
polarity (Delile, Herrmann, et al., 2017).
However, none of these frameworks natively supports all the diverse mesenchymal and

epithelial cellular behaviors and all are computationally more complex than necessary.
We therefore chose to write a new simulator, dedicated for running on graphics pro-
cessing units (GPUs) to take advantage of their highly efficient parallelized speed. Our
new simulator extends the classical spheroid model by incorporating concepts from mag-
netism to simulate the apical-basal polarity of epithelia and the tissue polarity seen in
mesenchyma. We also added an implementation of recent methods to model contrac-
tile protrusions (Belmonte et al., 2016; Palsson and Othmer, 2000) and individual cell
migration (Delile, Doursat, et al., 2014).

Results

In a spheroid model a cell i is described by the center of its spheroid ~xi. Neighboring
cells interact via spherical potentials with a repelling core and an attractive zone around
it (Figure 1 A). Cells in contact can exert friction on each other (Okuda et al., 2015)
and can exchange chemical signals (Figure 1 A, B). To enable convergent-extension and
efficient cell sorting we added contractile cellular protrusions, which allow more distant
cells to pull on each other (Belmonte et al., 2016; Palsson and Othmer, 2000) (dotted
line in Figure 1 A). These links are created and destroyed repeatedly over time and
when a field of such links is oriented in a non-random fashion it leads to convergent-
extension, as demonstrated in Belmonte et al. (2016) and in Figure 1 C. Alternatively,
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Figure 1. Spheroid Models Capture Many Cellular Behaviours. (A) Cells are
described by their centers (black dots) surrounded by a repulsive core (red) and an attrac-
tive zone (blue). Cells within these ranges exert friction on each other (gray dashpots)
and can exchange signals (dashed lines). More distant cells can be pulling towards each
other by a contractile cellular protrusion (dotted line). Cells can migrate by pulling and
pushing other cells (blue cone). (B) Exchange of signals leads to distributions that rep-
resent diffusive gradients. (C) Contractile protrusions can drive convergent extension or
(D) cell sorting. (E) Migrating cell. (F) Image-based modeling, only half of the teapot
mesh shown. (G) UEpi at the red cell is minimized by the three depicted forces (black
arrows). (H) Balancing these forces leads to layers with an elastic resistance to bending
and (I) lets epithelial cells with initial polarities pointing radially outwards self-organize
on a sphere (cut shown, simulated with friction on the background). (J) UPol aligns
mesenchymal tissue polarity and (K) UWNT reorients it. The latter is shown in a plane
for clarity.
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if the contractile protrusions are randomly oriented but preferentially link cells of the
same type, then cell-sorting occurs (Figure 1 D). Another feature we added from the
literature is an implementation of individual cell migration: Polarized cells can migrate
by pulling towards and pushing aside cells in front (Figure 1 A, E) (Delile, Doursat, et al.,
2014; Delile, Herrmann, et al., 2017). We also implement functionality to use meshes for
image-based modeling (Figure 1 F).
To this basic mesenchymal model we add two types of cell polarity – apical-basal

polarity for epithelial cells and tissue polarity for mesenchymal cells. We represent these
polarities by a spin-like unit vector p̂i at each cell. For epithelial cells we introduce the
potential

UEpi(p̂i, ~xi) =
∑
(i,j)

(p̂i · r̂ij)2 /2,

where the sum is over all pairs of neighbors in the same epithelium. This potential is
minimal when each p̂i is orthogonal to all connections r̂ij = (~xi − ~xj)/ |~xi − ~xj | within
the epithelium. The forces ~F = −∇U (Figure 1 G, see Supplemental Material for a
derivation of the equations of motion) minimizing such a potential let cells self-organize
into layers suitable to describe epithelial sheets (Figure 1 H, I).
Similarly, for mesenchymal cells’ tissue polarity we introduce the potential

UPol(p̂i) = −
∑
(i,j)

(p̂i · p̂j)2 /2,

where the sum is over all pairs of mesenchymal neighbors. This potential is minimal
when all polarities p̂i within the mesenchyme are parallel. It is therefore suitable to
describe mesenchymal cells aligning due to tissue polarity (Figure 1 J). Diffusing signals
like WNT are believed to act as an external influence to align tissue polarity (Yang and
Mlodzik, 2015; Davey and Moens, 2017). Combining the ideas above we can simulate
such behavior. The potential

UWNT(p̂i) = −
∑
(i,j)

H(wj − wi) · wj · (p̂i · r̂ij)2 /2,

where H is the Heaviside function and w the signals concentration, orients polarities
towards cells with higher concentration of w (Figure 1 K). The mesenchymal potentials
UPol and UWNT only induce torques on the polarities p̂i and leave the positions ~xi fixed.
We implemented all these spheroid models for GPUs (c.f. Supplemental Material

for details), allowing us to simulate epithelial-mesenchymal interactions at large-scale.
We demonstrate this by simulating how an epithelial Turing system induces branching
(Figure 2 A) and how epithelial signals shape a tissue by controlling intercalation (Figure
2 B) (Menshykau et al., 2012). Moreover, our implementation for GPUs operates orders
of magnitude faster than conventional implementations (Figure 2 C) (Marin-Riera et al.,
2015; Mirams et al., 2013).
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Figure 2. ya||a is Suitable for Large-scale Morphogenesis. (A) Branching driven
by differential growth in the mesenchyme (blue) induced by Turing pattern on the ep-
ithelial surface (red). Coloring shows the concentration of the morphogen in the tissue
in logarithmic scale, growing from 500 to roughly 40k cells in 4000 time steps. (B) Two
epithelial signals shaping a tissue by controlling the distribution of protrusions, which
induce intercalation. Cells intercalate along the gradient from top (shown in the series),
except where this gradient is highest, there they intercalate normal to the second gradient
from the tip (shown in the slice). The first rule folds the lower hemisphere into the upper
hemisphere and the second rule elongates the structure. Slices show the two gradients in
the final configuration. Around 12k cells, 500 time steps. (C) To compare computational
performance we simulate cells with a limited interaction range, starting from a spherical,
uncompressed, random distribution simulated until the forces were calculated 1200 times
in Chaste (Mirams et al., 2013), EmbryoMaker (Marin-Riera et al., 2015) and ya||a. ya||a
scales sub-linearly for small systems due to overhead. We use an Intel i7-4770 @ 3.40GHz
with an NVidia GeForce GTX 1060 6GB. There would be a parallel implementation of
Chaste scaling well for up to 32 CPU cores (Harvey et al., 2015).

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 20, 2019. ; https://doi.org/10.1101/525352doi: bioRxiv preprint 

https://doi.org/10.1101/525352


Discussion

Simulation frameworks for morphogenesis can be categorized into continuum models
and agent-based models (ABMs) (Tanaka, 2015). Continuum models are based on de-
scriptions of materials and describe bulk properties like viscosity or elasticity well at all
timescales. However, it is difficult to interpret material properties like stiffness in terms
of cellular behaviors and continuum models cannot be directly compared to cellular mea-
surements like dispersion (Mogilner and Manhart, 2016). Furthermore, to numerically
solve continuous models these must be discretized, usually using a mesh. Simulating
growth and large deformations with meshes is challenging and computationally expen-
sive (X. Chen and G. W. Brodland, 2008; Wittwer et al., 2016), however, often the bulk
behavior on short timescales can be neglected. Then ABMs overcome the continuum
model’s difficulties because they model cellular behaviors directly and agents provide a
natural discretization.
To keep our simulations simple and fast we thus extended the spheroid model to include

polarized cell behaviors, similarly to Hazelwood and Hancock (2013) for tissue polarity
and similarly to Delile, Herrmann, et al. (2017) for epithelia. However, our model is
inherently 3D and our potential for epithelia involves only pairwise interactions, which are
easier to parallelize. Combining these novelties with previously proposed extensions for
contractile protrusions (Palsson and Othmer, 2000; Belmonte et al., 2016) and individual
cell migration (Delile, Herrmann, et al., 2017) makes the spheroid model ideal for large-
scale simulations of 3D morphogenesis with mesenchyme and epithelium on equal footing.
For high performance at low costs we implemented these models into a GPU-based sim-

ulation framework. Current GPUs have thousands of cores, making them a cheap and
comparably easy to program and use alternative to cluster computers. GPUs become
increasingly popular for scientific computing (Nobile et al., 2017) their performance keeps
improving. Even a cheap GPU allows us to calculate forces orders of magnitude faster
than previous simulation packages (see Supplemental Material for hardware recommen-
dations). Furthermore, outsourcing the heavy lifting to the GPU leaves the computer
responsive enough for most other work during simulations.
We gain further performance over previous spheroid models (Mirams et al., 2013;

Marin-Riera et al., 2015; Delile, Herrmann, et al., 2017) by implementing friction among
neighbors, which lets deformations propagate through large systems and hence requires
fewer time steps (Okuda et al., 2015).
We deliberately kept ya||a simple. Other packages support several kinds of models

(Osborne et al., 2017) or provide sophisticated user interfaces (Marin-Riera et al., 2015;
Delile, Herrmann, et al., 2017; Swat et al., 2012; Starruß et al., 2014). ya||a just works
with spheroid models and relies on external programs for visualization. Thus the numer-
ous tests and examples, including all models used to generate the figures, can be quickly
understood and easily extended, because they are concise and plain CUDA/C++. This
also leads to shorter compilation times, accelerating model development. The avoid-
ance of dependencies additionally will make it easy to maintain ya||a in the future and
the modular design will make it easy to integrate ya||a into larger pipelines, e.g. for
parameter optimization.
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While we are developing ya||a specifically for limb bud morphogenesis (Hopyan et al.,
2011), similar cellular behaviors drive other developmental processes like tooth formation
(Kim et al., 2017) or branching morphogenesis (Affolter et al., 2009) and computational
modeling is becoming increasingly popular in developmental biology (Sharpe, 2017).
Furthermore, epithelial-to-mesenchymal transitions are at the core of many cancers and
cellular interactions are central to the immune system (Nagarsheth et al., 2017). The
cell-centers ~xi can even be re-interpreted as sub-cellular elements, then our model for
epithelia could be used to describe cellular membranes (Milde et al., 2014). We therefore
believe that ya||a will be very valuable to a wide community.
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Supplemental Methods

Derivation of the Equations of Motion

Cells move with low inertia and high local friction, thus Newton’s equations m~̈x =
~F − γ(~̇x − 〈~̇x〉(i,j)) become ~̇x − 〈~̇x〉(i,j) ∝ ~F (Mao et al., 2013; Okuda et al., 2015). We
usually use spherical forces like ~Fij = [max(0.7− r, 0) · 2−max(r− 0.8, 0)/2]r̂ij between
cells ~xi and ~xj if |~xi − ~xj | < 1, because they are simple to adapt. More complicated
forces, like Lennard-Jones, require smaller time steps and do not qualitatively change
behavior over long time scales. We simulate diffusion of a signaling molecule w at each
cell i as

ẇi = −D
∑
(i,j)

(wi − wj)

where the sum is over all neighbors of i. For protrusions we typically use constant forces
and for proliferation we simply duplicate random cells, more sophisticated models can
be easily implemented.
We describe polarities p̂ in spherical coordinates with r = 1, i.e.

θ = arccos pz

ϕ = arctan(py/px)

and conversely

px = sin θ cosϕ

py = sin θ sinϕ

pz = cos θ

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. In these coordinates the scalar product is

p̂i · p̂j = sin θi cosϕi sin θj cosϕj + sin θi sinϕi sin θj sinϕj + cos θi cos θj

= sin θi sin θj cos(ϕi − ϕj) + cos θi cos θj ,

the gradient is

∇f =
∂f

∂θ
θ̂ +

1

sin θ

∂f

∂ϕ
ϕ̂,

and the velocity is
~v = θ̇θ̂ + sin θϕ̇ϕ̂.

To find the equations of motion ~F = −∇U for UPol = −
∑

(i,j) (p̂i · p̂j)2 /2 we therefore
need to solve

θ̇i ∝
∑
(i,j)

(p̂i · p̂j) [cos θi sin θj cos(ϕi − ϕj)− sin θi cos θj ]

ϕ̇i ∝ −
∑
(i,j)

(p̂i · p̂j) sin θj sin(ϕi − ϕj)/ sin θi.
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For UWNT = −
∑

(i,j)H(wj − wi) · wj · (p̂i · r̂ij)2 /2 the second polarity p̂j has to be
replaced with r̂ij and a strength like H(wj − wi) · wj chosen.

Similarly, for UEpi =
∑

(i,j) (p̂i · r̂ij)2 /2 mainly the signs change, i.e.

θ̇i ∝ −
∑
(i,j)

(p̂i · r̂ij) [cos θi sin θij cos(ϕi − ϕij)− sin θi cos θij ]

ϕ̇i ∝
∑
(i,j)

(p̂i · r̂ij) sin θij sin(ϕi − ϕij)/ sin θi.

However, additionally contributions to ~̇x arise, because movement affects the angle be-
tween p̂i and r̂ij too. The contribution to ~Fi from the angle between p̂i and rij is

∆~Fi,ij = −∇ (p̂i · r̂ij)2 /2
= −(p̂i · r̂ij)∇(p̂i · r̂ij)

= − p̂i · ~rij
r
∇ p̂i · ~rij

r

= − p̂i · ~rij
r

(
∇(p̂i · ~rij)

r
+ (p̂i · ~rij)∇(1/r)

)
= − p̂i · ~rij

r

(
∇(p̂i · (~xi − ~xj))

r
− p̂i · ~rij

r3
~rij

)
= − p̂i · ~rij

r2
p̂i +

(p̂i · ~rij)2

r4
~rij

and similarly the contribution from the angle between p̂j and rji is

∆~Fi,ji = −∇ (p̂j · r̂ji)2 /2

= − p̂j · ~rji
r

(
∇(p̂j · (~xj − ~xi))

r
− p̂j · ~rji

r3
~rij

)
=
p̂j · ~rji
r2

p̂j +
(p̂j · ~rji)2

r4
~rij

= − p̂j · ~rij
r2

p̂j +
(p̂j · ~rij)2

r4
~rij .

Implementation

We approximate the equations of motion for ~xi as ~̇x = ~F + 〈~̇x(t − ∆t)〉(i,j). We solve
the resulting ODE system using Heun’s method. Using a second order method allows
taking approximately four times larger time steps without oscillations. The resulting
time steps provide a suitable timescale for proliferation in our simulations, thus we do
not use higher orders.
ya||a takes the definition of the right hand side in three parts, Pairwise_interaction,

Pairwise_friction, and Generic_forces. The former two functions are called for
each pair of neighbors and have to return a contribution to ~F and a friction coefficient,
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respectively. The third, Generic_forces, can be used to compute further interactions
that are not necessarily among neighbors, like the forces exerted by protrusions.
Most of the computational time is spent calculating the pairwise force and friction

terms. For this we implemented two methods: Tile_solver calculates the interactions
between each pair (Nyland et al., 2007) and Grid_solver uses a grid to identify possibly
interacting pairs (Green, 2013). Tile_solver has less overhead and is thus faster for
small systems, but calculation times grow with the square of the number of spheroids,
while Grid_solver scales linearly. Our implementation is for Linux and macOS in
CUDA/C++ and does not depend on additional libraries. We visualize the resulting
Vtk files using Paraview (Ahrens et al., 2005).
Since the order of atomic operations is not deterministic, certain models produce dif-

ferent results in each run, due to accumulating numerical errors. While we could avoid
many atomic operations we decided to embrace variation by seeding our random gener-
ators for each run, because we believe that biologically relevant models must be robust
to this kind of noise.
We only use single (float) precision in our models. Single precision calculations run

efficiently on the cheap consumer NVidia Geforce GPUs. Such GPUs can be installed
in most computers, given enough power supply. Using various GPUs and profiling with
nvvp we found that our calculations are memory bound, i.e. the execution speed scales
with the memory bandwidth of the GPU.
While our early CUDA implementations were already comparably fast, they were held

back by poor design. Initially, following Numerical recipes in C (Press et al., 1996), we
used function pointers to pass the different interactions to our solvers. Using macros, and
later templates, drastically improved performance. A second significant improvement was
accumulating the forces in the local register, instead of writing each contribution directly
into the GPU’s global RAM. The calculations are usually faster than writing the output,
thus we use threads to generate output, while the GPU computes several steps.
We used Blender (Blender Online Community, 2017) to create a closed mesh for the

teapot in Figure 1 F and Python packages for scientific computing (Waskom et al., 2017;
McKinney, 2010; Hunter, 2007; Kluyver et al., 2016) to create the plot in Figure 2 C.

Limitations

We have built ya||a for limb bud morphogenesis and we have not studied unrelated
morphogenetic processes, like apical constriction or planar cell polarity. However, ya||a
is very flexible and developing corresponding models would be straight forward.
Similarly, the solvers we require are based on the overlapping spheres model, i.e. all

cells within a certain radius are potentially interacting neighbours. Such a model is
not ideal for processes with cells deforming drastically before changing neighbors (Path-
manathan et al., 2009; Osborne et al., 2017). While alternative interaction models can
be implemented on top of the provided solvers, the required code might be more complex
and the resulting simulations might be slower than dedicated solvers.
Running ya||a requires a graphics card from NVidia, since it is implemented for

NVidia’s parallel computing platform CUDA. CUDA supports many generic program-
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ming features and includes valuable resources like a visual profiler, making CUDA easier
to program than more portable platforms. This platform choice affects mainly laptops
as other computers can be upgraded at low cost.
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