Abstract
Defining a complete set of cell types within the cortex requires reconciling disparate results achieved through diverging methodologies. To address this correspondence problem, multiple methodologies must be applied to the same cells across multiple single-cell experiments. Here we present a new approach applying spatial transcriptomics using multiplexed fluorescence in situ hybridization, (mFISH) to brain tissue previously interrogated through two photon optogenetic mapping of synaptic connectivity. This approach can resolve the anatomical, transcriptomic, connectomic, electrophysiological, and morphological characteristics of single cells within the mouse cortex.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.