A curated collection of transcriptome datasets to investigate the molecular mechanisms of immunoglobulin E-mediated atopic diseases

Susie S. Y. Huang¹, Fatima Al Ali¹, Sabri Boughorbel¹, Mohammed Toufiq¹, Damien Chaussabel¹, Mathieu Garand^{*1}

¹Systems Biology and Immunology Department, Translational Medicine, Sidra Medicine, Doha, Qatar.

*Corresponding authors: mathieu.garand@gmail.com

Manuscript length: 2749 words Number of tables: 2 Number of figures: 3 Supplement: 1 table, 2 figures, 1 additional information

ABSTRACT (Word count: 180)

Prevalence of allergies has reached ~50% of industrialized populations and with children under ten being the most susceptible. However, the combination of the complexity of atopic allergy susceptibility/development and environmental factors has made identification of gene biomarkers challenging. The amount of publicly accessible transcriptomic data presents an unprecedented opportunity for mechanistic discoveries and validation of complex disease signatures across studies. However, this necessitates structured methodologies and visual tools for the interpretation of results. Here, we present a curated collection of transcriptomic datasets relevant to immunoglobin E (IgE)-mediated atopic diseases (ranging from allergies to primary immunodeficiencies). 30 datasets from the Gene Expression Omnibus (GEO), encompassing 1761 transcriptome profiles, were made available on the Gene Expression Browser (GXB), an online and open-source web application that allows for the query, visualization, and annotation of metadata. The thematic compositions, disease categories, sample number, and platforms of the collection are described. Ranked gene lists and sample grouping are used to facilitate data visualization/interpretation and are available online via GXB (<u>http://ige.gxbsidra.org/dm3/geneBrowser/list</u>). Dataset validation using associated publications showed good concordance in GXB gene expression trend and fold-change.

Database URL: http://ige.gxbsidra.org/dm3/geneBrowser/list

Keywords: immunology, gene expression browser, atopy, immunoglobulin E, curated dataset collection.

INTRODUCTION

Allergic disease is highly prevalent and currently reaches ~50% of the populations in industrialized nations (1). Although the generation of allergic responses is well-understood, the early sensitization steps and factors contributing to the development of immunoglobin E (IgE)-mediated diseases remain unclear. IgE is the major mediator of atopic response in humans, whereas atopy represents the predisposition to become over IgE-sensitized to allergens. However, not all encounters with a potential allergen will lead to sensitization. Similarly, not all sensitizations will result in a symptomatic allergic response even in atopic individuals.

The effect of IgE spans across multiple systems. In the circulation system, IgE increases flow and permeability of the blood vessels, fluid and protein in tissues, as well as flow to the lymph nodes. In the airway, IgE decreases air conduct diameter, increases mucus congestion, and can induce blockage. In the gastro-intestinal (GI) tract, IgE increases fluid secretion, peristalsis, and expulsion-diarrhea. The immunoglobin has also been suggested to play a role in the defense against parasite infection and as a general gate keeper for any foreign materials entering the body (2,3). Ultimately, IgE is involved in the normal spectrum of reaction to expulse foreign material from the body; hence, protecting by elimination. Nevertheless, over sensitization, which is developed by unknown mechanism(s), can lead to imbalance and pathology in affected individuals.

Two main groups of immune signals initiate the production of IgE in response to an antigen: 1) the signals that drive the differentiation of CD4 naive T cell to T helper type 2 (Th2) cells and 2) the cytokines and co-stimulatory molecules secreted by Th2 cells, which subsequently promote T follicular helper cells-induced immunoglobulin B cells class switch towards IgE production. Antigen characteristics, such as concentration and localization of the encounter (i.e. tissue, mucosa, circulation), can also affect Th2 cell induction. IL-4, IL-13, and STAT6 are key mediators of Th2 responses and IgM class switch to IgE. IL-4 secretion and mast cell CD40 surface expression also contribute to the IgE class switch to IgE at the site of allergic reaction.

Systemic levels of IgE alone is not a sufficient indicator for allergy risk (4). Peripheral blood IgE level can increase upon sensitization, but not reliable enough for deducing a diagnosis of allergy or allergen type (5). Concentration, binding strength or affinity, specificity, and portion of specific IgE to total IgE are all factors in translating a humoral IgE response into a clinical symptom (6). However, genetic component exists in allergic disease. Studies have demonstrated strong heritable components of allergic diseases and atopy, estimated at 33% - 76% (7,8). Genetic components of food allergy and asthma have also been reviewed (9–12). Although single susceptibility gene have been identified for certain allergies (13–16), most genome-wide association studies reported multiple loci of susceptibility or gene regions to a wide range of allergy development (17–19). Environmental factors further complicate allergic susceptibility - the hygiene hypothesis of allergic susceptibility

has received much attention in the last few decades (20). Other exposure-related factors (e.g. diet, pollution, tobacco smoke) are also likely to have contributed to the increasing susceptibility to allergic diseases in developed nations (1).

IgE may also be implicated in some primary immunodeficiency diseases (PIDs). For CD40 ligand and CD40 deficiency, circulating IgE+ plasma cells are absent (21). For others, IgE plasma levels are elevated: DOCK8 deficiency, AD-HIES Job's syndrome, Comel-Netherton syndrome, PGM3 deficiency, IPEX (immune dysregulation, polyendocrinopathy, enteropathy X-linked), and Tyk2 deficiency. Large phenotypic heterogeneity is observed among these PIDs; however, the underlying mechanisms is not completely understood. This knowledge gap mirrors our limited understanding of the involved gene products mediating phenotypes atopic diseases.

There is a crucial need to pursue genetic markers of an atopic constitution amidst growing concern over the increasing abundance of IgE atopy and that current treatments remain mostly palliative. As both environmental interaction and genetic predisposition forms the determinant of allergy development, extrapolating potential gene markers of allergy atopy from a broad range of studies with associated clinical data is highly relevant, particularly given the high variations of the disease clinical phenotypes. With the advances in high through-put platforms for transcriptomic analyses, a large number of gene expression datasets is regularly deposited on publicly accessible repositories such as the NCBI Gene Expression Omnibus (GEO). GEO currently hosts over 90 000 datasets comprising over 2 million samples (<u>https://www.ncbi.nlm.nih.gov/geo/)</u> and presents an enormous opportunity for data mining across multiple studies.

The web-based Gene Expression Browser (GXB) is an open-source interface that allows for custom compilation of selected datasets (i.e. of interest to users) and facilitates visualization of gene expression data. GXB has been previously described (22) and used to generate a number of Data Notes (23–28). As well, GXB is a useful tool for novel gene/function discovery (29) and in system re-analysis approaches (30).

A search strategy was implemented to identify GEO datasets relevant to IgE-related atopic disease, including PIDs, and uploaded those datasets to the GXB platform online. The associated study metadata, such as the detailed gene information, relevant literature, study design, and sample information, were also uploaded to facilitate indepth interpretation. In creating this collection of datasets, we aimed provide a resource which will facilitate risk prediction and interception of allergic diseases. The datasets were retrieved from publicly available GEO series and selected by relevance to IgE and atopic diseases and filtered by analysis platform and species. As previously demonstrated, data mining and re-analysis/re-interpretation of large and publicly available dataset is a promising avenue (31) to elucidate complicated diseases such as IgE-related atopy.

METHODS

Justification of data selection and filter

The focus of the GEO dataset selection was primarily on whether or not the dataset involved 1) IgE production or function or 2) if the pathology studied implicated directly or indirectly IgE production or function (Table 1A). We ensured a broad search approach by combining the 7 independent search results (Table 1A) using the "Merge collection" function available on "My NCBI" (<u>https://www.ncbi.nlm.nih.gov/myncbi/</u>) (Table 1B) and by performing another search using an assembly of all the terms used in Table 1A (Table 1C). 203 potentially relevant datasets were identified from the initial query (Table 1D). The query results were then manually filtered to restrict datasets to human sample, expression profiling by microarrays, and relevance to IgE-related atopic diseases. The process involved inspecting the study description, design, and sample type for each dataset and resulted in 30 curated datasets. The following criteria were deemed very important: clear description of tissue type, comparisons between patient vs healthy or stimulated vs unstimulated samples, and disease category implicating IgE. Furthermore, datasets/studies that are indirectly relevant to IgE-mediated atopic diseases, such as gene expression in B cells after tonsillectomy, were also included as they were deemed valuable to 1) the discovery of putative novel gene-disease association, 2) to improving our knowledge of adaptive immunity, and/or 3) to increasing our knowledge about factors affecting IgE production.

The web-based GXB platform: a visualization tool for gene expression data

GXB is a valuable tool for training researchers about the reductionist investigative approaches (see description of such program in (31)). The creation of a web-based GXB platform was previously described in detail (22). In brief, the GXB is a simple interactive interface designed for visualization of large quantities of heterogenous data (Suppl. Figure 2). The platform allows for customizable data plots with overlapping metadata information, changeable sample order, as well as generation of sharable mini-URLs that encapsulate information about the display settings in use. The dataset navigation page allows for quick identification of datasets of interest either through filtering using pre-define lists or via query terms. The user has access to multiple functionalities within the GXB graphic interface. In brief, the data-viewing interface enables interactive browsing and graphic representation of large-scale data. This interpretable format displays ranked gene lists and expression results. The interface also allows for user flexibility in terms of changing how the gene list is ranked, the method used for ranking, sample grouping (i.e. disease type), sample sorting (i.e. gender or age) and view type (i.e. bar or chart). The end user can browse through the datasets, format graph for a selected gene within a dataset, and export data (i.e. annotation, FC, signal, groups). The original GEO data and annotation are accessible from the GXB interface

instructions are publicly available (<u>https://github.com/BenaroyaResearch/gxbrowser</u>)], as well as the necessary R scripts (https://github.com/BenaroyaResearch/gxrscripts).

Construction of the dataset collection on GXB

SOFT The selected datasets were downloaded from GEO in file format and uploaded (http://ige.gxbsidra.org/dm3/geneBrowser/list) via the GXB interface (accessed by navigating the Tools menu located in the top-right corner of the GXB webpage; Tools / Chips Loaded / Upload Expression Data). The SOFT files contain metadata and normalized signal intensity data, generated by methods indicated by the author(s). These SOFT files can be analyzed directly for differentially expressed genes; thus, no additional processing was required. Using the "Sample Set Annotation Tool" of the GXB interface, the datasets were annotated according to the information provided on GEO. The raw signal data type of the dataset (ex. raw signal, log₂ transformed and etc.,) are also specified for each GEO entry. The default data display is in linear scale (see further details below in "Presentation of datasets"). When necessary, the sample annotation file (which is part of the SOFT file) were edited in order to add group information; as it was important to identify groups in order to compute fold change (FC). For each dataset, individual samples were grouped based on relevant study variables. Three datasets (GSE19190, GSE75603, and GSE8507) were split via GXB's "Sample Set Annotation Tool/Group Sets" interface to provide a more meaningful group comparison (these datasets share the same GSE number in Table 2). Genes were then ranked based on FCs of the specified two-group comparison. All the information annotated and presented on GXB is assembled in a SQL database (Data Citation 1).

Data availability

The curated datasets collected that have been described in this data note were assembled from the public repository NCBI GEO website: <u>http://www.ncbi.nlm.nih.gov/gds/</u>. In this study, we cited each dataset GEO accession number, and raw signal and annotation files are made available for download from the GXB web-application (<u>http://ige.gxbsidra.org/dm3/geneBrowser/list</u>).

RESULTS

Description of datasets

After applying the filtering strategy as previously described, we curated 30 datasets encompassing 1761 transcriptome profiles relevant to IgE-related atopic diseases. Detailed information on each dataset is presented in Table 2 and the summary of the data collection is presented in an aggregation of pie charts (Figure 1). The data collection includes a wide range of studies, sample types, as well as diseases. In total, 12 different microarray platforms are represented, with the majority being Affymetrix Human Array chips (various version). 17 datasets were generated from *in vitro* studies and 13 from *ex vivo* studies. Ten sample types are represented, with the most

abundant being PBMC (n = 8) and airway epithelial cells (n = 5). Sample size of each dataset ranges from 5 to 628, with most studies having 10-50 samples. The dataset collection covered 7 main disease categories, including allergy, asthma, healthy responses, hyper IgE syndrome (HIES), dermatitis, atopic irritable bowel syndrome (IBS), and Urticaria. In the majority of the studies, comparisons are made between patients and health controls (n = 17), followed by stimulation (n = 6) and time course (n = 5). The frequency of the terms retrieved from the associated GEO descriptions and those derived from the MeSH/keywords of the published articles are visualized through word clouds presented in Figure 2.

Presentation of datasets

On the graphic interface of GXB, genes expression values are displayed in linear scale. The original signal data type can be found under the Info tab of individual datasets. The associated metadata are available under the Samples tab and this information can be used for graphical overlaying (via "Overlays" dropdown menu). The FCs are also displayed in linear scale (see Supplemental Information for a detailed example of FC calculation). For FC analysis, each subject/sample are grouped according to the experimental design (experimental variable vs controls) and/or, if available, as per the corresponding publications. It is also possible to rank the genes based on expression difference by selecting "Advanced" in the "Rank Lists" dropdown menu of the graphic interface. This display option can be more robust than FC when low expression is observed in one group. It is important to note that integration and re-analysis of the datasets is not the intent of this collection. Therefore, a more meaningful use of this collection lies in the comparison of FC expression for a gene across multiple relevant datasets (i.e. reductionist approach (31).

Dataset validation

Quality assessment of the datasets was performed by looking for key gene expression, i.e. marker genes, and highly differentiated genes as indicated in the associated publications. Table 2 includes the type of validation, the genes used, as well as the strength of the validation and the associated comments. Certain datasets were split in two to facilitate comparisons (GSE19190, GSE75603, and GSE8507); in these cases, validation is indicated for one of the two datasets as indicated in Table 2. Data validation was achieved for most datasets except for 6, due to having no publications (GSE14842, GSE37157, and GSE41861) or incomparable units (i.e. z-score) and/or absence of FC information (GSE64639, GSE54522 and GSE44956). Trend validations were done on 4 datasets that had no linked publications (GSE13619 and GSE99948) or had incomparable units to GXB (GSE70760 and GSE72542). But when possible, literature values were used for additional validation of the trend (i.e., GSE92688and GSE99948). Examples of the validation results are presented in Figure 3.

DISCUSSION

Potential application of the dataset collection

To demonstrate the potential use of the dataset collection, gene expression profile of different tissues for house dust mite (HDM) allergy were compared. Nasal epithelial (GSE19190) and PBMC-derived CD4 T cells (GSE70760) gene expression profiles (detailed in Table 2) were compared. In both dataset, genes associated with the Th2 pathway/axis were increased in HDM-sensitized patients compared against healthy controls (32,33); illustrating that Th2 response may results in the symptomatic phase. This is further supported by the IgE levels and sIgG/sIgE ratio in the same study (33).

SERPINB2, a gene coding for the inhibitor of plasminogen activator PAI-2, is markedly upregulated in patients in both datasets, hence tissues (Suppl. Figure 1A from GSE70760 and Figure 1B from GSE19190). This is consistent with previous association of asthma severity and biomarker panel including SERPINB2 from PBMC (34) and correlation of SERPINB2 expression in respiratory epithelial cells with atopic asthma severity (35). SERPINB2 has been reported to have a role in the interleukin-12-mediated signaling pathway; evidence from mice showed that SERPINB2 regulates IFNg production, causing down regulation of Th1 cytokines in macrophages (36).

The expression profiles of SERPINB2 in both tissues suggest an important role of the gene as a first line regulator of immune response, perhaps by preventing excessive Th1 response. Interestingly, IFNg was not decreased in PBMC-derived T cells, but IFNGR1 was, suggesting that in T cells, SERPINB2 may exert its role on the expression of the receptor rather than on IFNg itself. In Schroder et al (2010), stimulation of SERPINB2 -/- cells with antiCD40/IFNg resulted in greater Th1 cytokine production, thus supporting the idea that SERPINB2 affects IFNGR (36).

However, certain genes are found to be differently expressed between nasal epithelium or PBMC-derived T cells. An explanation is that the activation of Th1 immune response may be different in the target tissue and peripheral circulation. For example, IL1B, a Th1 promoting cytokine is found to be increased in CD4+ T cells in allergic patients (Suppl. Figure 1C, from GSE70760), but in the nasal epithelium, the gene is not upregulated in patients with severe case of allergic rhinitis ("uncontrol asthma") compared against healthy control (Suppl. Figure 1D, from GSE19190). Further hypothesis-generating comparisons can be made by comparing the top differently expressed genes in both datasets as listed in Suppl. Table 1.

Conclusion

The dataset collection may be useful for exploring specific gene signatures in response to natural antigen/allergen exposure (i.e. allergic patients vs control) and delineate the major genetic drivers associated with increased level of IgE (i.e. cellular responses to specific antigen/allergen). Furthermore, comparative investigation of similarities and differences in expression of genes between datasets can highlight key mechanistic differences of immune

signaling and/or provide insights for tissue-targeted intervention. In compiling the present dataset collection, we hope to offer a resource that may improve accessibility of public omics data to researchers in this field.

DATA CITATION

1. IgE_GXB_Database Figshare http://doi.org/10.6084/m9.figshare.7176851 (2018).

AUTHOR CONTRIBUTIONS

MG and SSYH contributed to <u>conceptualization</u>. MG, SSYH, and FA contributed to <u>data curation</u> and <u>validation</u>. MG and SSYH led, and FA supported, <u>investigation</u> and <u>visualization</u>. MG and SSYH performed <u>formal analyses</u>. SB and MT contributed to the maintenance of <u>software</u>. MG contributed <u>writing – original</u> <u>draft</u>, <u>methodology</u>, and <u>project administration</u>. MG and SSYH led, and FA, SB, MT, DC supported, <u>writing – review & editing</u>. MG lead and SSYH supported <u>supervision</u>. DC contributed <u>funding acquisition</u> and <u>resources</u>. The contributor's roles listed above (underlined) follow the Contributor Roles Taxonomy (CRediT) described in Nature Communication 2014 (37) and managed by The Consortia Advancing Standards in Research Administration Information (CASRAI) (https://casrai.org/credit/).

COMPETING INTERESTS

No competing interests were disclosed.

FUNDING

All authors listed on this publication are affiliated with Sidra Medicine and the work is supported by the Qatar Foundation and a Qatar National Research Fund grant NPRP10-0205-170348.

ACKNOWLEDGEMENT

We would like to thank all the investigators who decided to make their datasets publicly available by depositing them into the NCBI GEO repository.

REFERENCES

- 1. Pawankar, R., Holgate, S., Canonica, G. W., et al. *WAO White Book on Allergy 2013 Update*; World Health Organization: Malwaukee, Wisconsin, USA, 2013.
- 2. Nyan, O. A., Walraven, G. E., Banya, W. A., et al. (2001) Atopy, intestinal helminth infection and total serum IgE in rural and urban adult Gambian communities, *Clin. Exp. Allergy*, **31**, 1672–1678.
- Gurish, M. F., Bryce, P. J., Tao, H., et al. (2004) IgE Enhances Parasite Clearance and Regulates Mast Cell Responses in Mice Infected with Trichinella spiralis, *The Journal of Immunology*, **172**, 1139–1145.

- 4. Galli, S. J. and Tsai, M. (2012) IgE and mast cells in allergic disease, Nat Med, 18, 693–704.
- Takhar, P., Corrigan, C. J., Smurthwaite, L., et al. (2007) Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma, *J. Allergy Clin. Immunol.*, **119**, 213–218.
- 6. Hamilton, R. G. and Oppenheimer, J. (2015) Serological IgE Analyses in the Diagnostic Algorithm for Allergic Disease, *The Journal of Allergy and Clinical Immunology: In Practice*, **3**, 833–840.
- Hopp, R. J., Bewtra, A. K., Watt, G. D., et al. (1984) Genetic analysis of allergic disease in twins, *J. Allergy Clin. Immunol.*, 73, 265–270.
- Lichtenstein, P. and Svartengren, M. (1997) Genes, environments, and sex: factors of importance in atopic diseases in 7-9-year-old Swedish twins, *Allergy*, 52, 1079–1086.
- 9. Hong, X., Tsai, H.-J. and Wang, X. (2009) Genetics of Food allergy, Curr Opin Pediatr, 21, 770–776.
- 10. Madore, A.-M. and Laprise, C. (2010) Immunological and genetic aspects of asthma and allergy, *J Asthma Allergy*, **3**, 107–121.
- 11. Ober Carole and Yao Tsung-Chieh (2011) The genetics of asthma and allergic disease: a 21st century perspective, *Immunological Reviews*, **242**, 10–30.
- Hong, X. and Wang, X. (2012) Early life precursors, epigenetics, and the development of food allergy, *Semin Immunopathol*, 34, 655–669.
- Jiang, P., Liu, J., Yan, X.-B., et al. (2009) Several interleukin-4 and interleukin-13 gene single nucleotide polymorphisms among Chinese asthmatic patients, *Allergy Asthma Proc*, **30**, 413–418.
- 14. Bønnelykke, K., Sleiman, P., Nielsen, K., et al. (2014) A genome-wide association study identifies *CDHR3* as a susceptibility locus for early childhood asthma with severe exacerbations, *Nature Genetics*, **46**, 51–55.
- 15. Gharagozlou, M., Behniafard, N., Amirzargar, A. A., et al. (2015) Association between single nucleotide polymorphisms of the interleukin-4 gene and atopic dermatitis, *Acta Dermatovenerol Croat*, **23**, 96–100.
- 16. Hong, X., Hao, K., Ladd-Acosta, C., et al. (2015) Genome-wide association study identifies peanut allergyspecific loci and evidence of epigenetic mediation in US children, *Nature Communications*, **6**, 6304.
- Tamari, M., Tanaka, S. and Hirota, T. (2013) Genome-wide association studies of allergic diseases, *Allergology International*, **62**, 21–28.
- Bønnelykke, K., Matheson, M. C., Pers, T. H., et al. (2013) Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization, *Nature Genetics*, 45, 902–906.
- 19. Portelli, M. A., Hodge, E. and Sayers, I. Genetic risk factors for the development of allergic disease identified by genome-wide association, *Clinical & Experimental Allergy*, **45**, 21–31.
- Yazdanbakhsh, M., Kremsner, P. G. and Ree, R. van (2002) Allergy, Parasites, and the Hygiene Hypothesis, *Science*, **296**, 490–494.
- Fuleihan, R., Ramesh, N., Loh, R., et al. (1993) Defective expression of the CD40 ligand in X chromosomelinked immunoglobulin deficiency with normal or elevated IgM., *PNAS*, 90, 2170–2173.

- 22. Speake, C., Presnell, S., Domico, K., et al. (2015) An interactive web application for the dissemination of human systems immunology data, *Journal of Translational Medicine*, **13**, 196.
- 23. Rinchai, D., Boughorbel, S., Presnell, S., et al. (2016) A curated compendium of monocyte transcriptome datasets of relevance to human monocyte immunobiology research, *F1000Research*, **5**, 291.
- 24. Blazkova, J., Boughorbel, S., Presnell, S., et al. (2016) A curated transcriptome dataset collection to investigate the immunobiology of HIV infection, *F1000Research*, **5**, 327.
- 25. Marr, A. K., Boughorbel, S., Presnell, S., et al. (2016) A curated transcriptome dataset collection to investigate the development and differentiation of the human placenta and its associated pathologies, *F1000Research*, **5**, 305.
- Rahman, M., Boughorbel, S., Presnell, S., et al. (2016) A curated transcriptome dataset collection to investigate the functional programming of human hematopoietic cells in early life, *F1000Research*, 5, 414.
- 27. Roelands, J., Decock, J., Boughorbel, S., et al. (2017) A collection of annotated and harmonized human breast cancer transcriptome datasets, including immunologic classification, *F1000Res*, **6**, 296.
- Mackeh, R., Boughorbel, S., Chaussabel, D., et al. (2017) -A curated transcriptomic dataset collection relevant to embryonic development associated with in vitro fertilization in healthy individuals and patients with polycystic ovary syndrome, *F1000Research*, 6, 181.
- 29. Rinchai, D., Kewcharoenwong, C., Kessler, B., et al. (2016) Increased abundance of ADAM9 transcripts in the blood is associated with tissue damage, *F1000Res*, **4**.
- Rinchai, D., Presnell, S., Vidal, M., et al. (2015) Blood Interferon Signatures Putatively Link Lack of Protection Conferred by the RTS,S Recombinant Malaria Vaccine to an Antigen-specific IgE Response, *F1000Res*, 4, 919.
- Chaussabel, D. and Rinchai, D. (2018) Using "collective omics data" for biomedical research training, *Immunology*, 155, 18–23.
- 32. Giovannini-Chami, L., Marcet, B., Moreilhon, C., et al. (2012) Distinct epithelial gene expression phenotypes in childhood respiratory allergy, *Eur. Respir. J.*, **39**, 1197–1205.
- 33. Holt, P. G., Strickland, D., Bosco, A., et al. (2016) Distinguishing benign from pathologic TH2 immunity in atopic children, *J. Allergy Clin. Immunol.*, **137**, 379–387.
- 34. Baos, S., Calzada, D., Cremades-Jimeno, L., et al. (2018) Nonallergic Asthma and Its Severity: Biomarkers for Its Discrimination in Peripheral Samples, *Front Immunol*, **9**, 1416.
- 35. ELBadawy, N. E., Abdel-Latif, R. S. and El-Hady, H. A. (2017) Association between SERPINB2 Gene Expression by Real Time PCR in Respiratory Epithelial Cells and Atopic Bronchial Asthma Severity, *Egypt J Immunol*, 24, 165–181.
- Schroder, W. A., Le, T. T. T., Major, L., et al. (2010) A physiological function of inflammation-associated SerpinB2 is regulation of adaptive immunity, *J. Immunol.*, **184**, 2663–2670.
- 37. Allen, L., Scott, J., Brand, A., et al. (2014) Publishing: Credit where credit is due, Nature, 508, 312-313.

- Holland, S. M., DeLeo, F. R., Elloumi, H. Z., et al. (2007) STAT3 mutations in the hyper-IgE syndrome, *N. Engl. J. Med.*, **357**, 1608–1619.
- 39. Kosoy, R., Agashe, C., Grishin, A., et al. (2016) Transcriptional Profiling of Egg Allergy and Relationship to Disease Phenotype, *PLoS ONE*, **11**, e0163831.

LIST OF TABLES AND FIGURES

Table 1. Search strategy for dataset retrieval from the Gene Expression Omnibus (GEO) database.

 Table 2. Descriptive summary of the dataset collection.

Figure 1. Characteristic of the curated dataset collection.

Figure 2. Word clouds depicting the frequency of terms retrieved from the associated GEO descriptions (A) and those derived from the MeSH/keywords of the published articles (B).

Figure 3. Examples of dataset validation.

LIST OF SUPPLEMENT TABLES AND FIGURES

Suppl. Table 1. Top 50 differently expressed genes in datasets GSE70760 and GSE19190 as represented on GXB.

Suppl. Figure 1. Comparison of gene expression profile in different tissues from house dust mite (HDM)-sensitized individuals.

Suppl. Figure 2. GXB interfaces.

LIST OF SUPPLEMENT INFORMATION

Supplement Information 1. Calculation of FC expression.

FIGURE LEGENDS

Figure 1. Characteristic of the curated dataset collection. Proportion and number of the study type, sample type, sample size, disease categories, and type of comparison performed for fold-change calculation on the GXB are depicted.

Figure 2. Word clouds depicting the frequency of (A) the terms retrieved from the associated GEO descriptions of the datasets and (B) those derived from the MeSH/keywords of the associated published articles.

Figure 3. Examples of dataset validation. Differently expressed genes from 2 datasets were compared with the results presented in the respective publications. A) When comparing between Job's syndrome patients (HIES_control_0) and healthy controls (Healthy_control_0), the mean fold-change of CD151 was 1.7 on the GXB (GSE8507-PBMC). The reported value in Holland et al (2010) was 2.0 (38). B) When comparing between PBMC samples from egg allergic patients (Allergic_Egg) and allergic egg-tolerant controls (Allergic_Control), the mean fold-change of CEACAM1 was 1.69 on the GXB (GSE8796). Kosoy et al. (2016) reported a mean fold-change of 1.6 for the same gene (39). The overall trends of gene expression are conserved between GXB and published data.

Supplement Figure 1. Comparison of gene expression profile in different tissue from house dust mite (HDM)sensitized individuals. Gene expression data from two datasets present in our collection are shown: 1) Gene expression patterns in house dust mite stimulated CD4 T cells and IgG to IgE ratios - GSE70760, and 2) Distinct epithelial gene expression phenotypes in childhood respiratory allergy - GSE19190 - Disease State. SERPINB2 (A and B) and IL1 β (C and D) gene expression. HDM = house dust mite; Control = Healthy = healthy individuals; AND Uncontrolled asthma = individuals with rhinitis and uncontrolled asthma (further definition can be found in the original study description (32).

Supplement Figure 2. GXB interfaces. The end-users interact with 3 main interactive pages: the Landing Page (A), Dataset Browser (B) and Graphical (C) interfaces. A detailed description of the interface and functionalities have been previously described (PMID 26088622).

SUPPLEMENTAL INFORMATION

Supplement Information 1. Calculation of FC expression.

GXB uses the geometric means of replicates of each sample and calculates FC via the difference (for data in log2 scale) or the ratio (for data in linear scale) of the means. The data displayed in GXB are linear scale FC. The following example illustrates the calculation:

GSE ID: GSE54336

Type of file: *.soft file (The data deposited by the contributor were analyzed with Partek Genomic Suite 6.6 using Affymetrix default analysis settings, quantile normalization and RMA background correction) Number of samples: 6 Number of groups: 3 (G1TEPP, G1V, and Mock) Groups compared (for this example): G1TEPP and G1V Gene symbol: DUSP2 Probe set ID: 204794_at

Sample Information:

GSM1313408 A2EN cells_Chlamydia G1TEPP_4h_rep1 GSM1313409 A2EN cells_Chlamydia G1TEPP_4h_rep2 GSM1313410 A2EN cells_Chlamydia G1V_4h_rep1 GSM1313411 A2EN cells_Chlamydia G1V_4h_rep2 GSM1313412 A2EN cells_Mock infected_rep11 GSM1313413 A2EN cells_Mock infected_rep12

Condition 1: G1TEPP (signal value in log₂ scale)

GSM1313408: 6.31727

GSM1313409: 6.26554

Geometric Mean = sqrt (6.31727 * 6.26554)

→ Geometric Mean = 6.29135183214

Condition 2: G1V (signal value in log₂ scale)

GSM1313410: 6.93182 GSM1313411: 6.88052

Geometric Mean = sqrt (6.93182 * 6.88052)

→ Geometric Mean = 6.90612236689

Calculation of FC expression (G1TEPP/G1V) and transformation to linear scale FC:

log₂ FC = Condition 1 - Condition 2 log₂ FC = 6.29135183214 - 6.90612236689 = -0.61 linear FC = Antilog (-0.61) = $2^{(-0.61)} = 0.65$ Mathematical transformation when linear FC is less than 1: -1/(FC) → -1/0.65 = -1.52 (i.e. down regulation in linear scale)

Reference:

The dataset used in this example can be accessed via these links: GXB: <u>http://cd2k.gxbsidra.org/dm3/geneBrowser/show/4000099</u> GEO2R: <u>https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE54336</u>

Description certified by peer review) i	s the author/funder. All rights reserved, No reuse allowed without permission.	# of dataset
Dataset relevant to hypersensitivity, hyper-IgE syndrome, and IgE in syndromes, disorders, diseases, and the regulation/phenotype in general of IgE.	("Hypersensitivity" OR "hyper ige syndrome" OR HIES OR hyper-IgE OR IgE OR "immunoglobulin e") AND (syndrome OR syndromes OR disorder OR disorders OR 'job's syndrome" OR disease OR diseases OR regulation OR modulation OR change OR changes OR elevated OR decreased OR deficiency OR phenotype) AND "gse"[Filter]	130
Dataset relevant to hyper-IgE and IgE.	("hyper ige syndrome"[All Fields] OR HIES[All Fields] OR hyper-IgE[All Fields] OR IgE[All Fields] OR "immunoglobulin e"[All Fields]) AND "gse"[Filter] = 75	75
Dataset relevant to hyper-IgE and IgE in allergenic/antigenic reactions, syndromes, disorders, diseases, and the regulation/phenotype in general of IgE.	("Hyperimmunoglobulinemia E syndrome" OR "hyper ige syndrome" OR HIES OR hyper-IgE OR IgE OR "immunoglobulin e") AND ("Allergens"[Mesh] OR "Antigens"[Mesh] OR syndrome OR syndromes OR disorder OR disorders OR "job's syndrome" OR disease OR diseases OR regulation OR modulation OR change OR elevated OR decreased OR deficiency OR phenotype) AND ("gse"[Filter])	62
Dataset relevant to IgE receptor, hyper-IgE, IgE and mast cells in hypersensitivity and allergy.	nhenotyne) AND ("gse"[Filter]) (FeeR OR "lgE receptor" OR "hyper ige syndrome"[All Fields] OR HIES[All Fields] OR hyper- IgE[All Fields] OR IgE[All Fields] OR "immunoglobulin e"[All Fields] OR "mast cells"[All Fields] OR "Mast Cells"[Mesh]) AND ("hypersensitivity"[MeSH Terms] OR "allergy and immunology"[MeSH Terms] OR (allergy[All Fields]))) AND "gse"[Filter]	48
Dataset relevant to hyper-IgE and IgE in hypersensitivity and allergy.	("hyper ige syndrome"[All Fields] OR HIES[All Fields] OR hyper-IgE[All Fields] OR IgE[All Fields] OR "immunoglobulin e"[All Fields]) AND ("hypersensitivity"[MeSH Terms] OR "allergy and immunology"[MeSH Terms] OR allergy[All Fields]) AND "gse"[Filter]	33
Dataset relevant to IgE in dermatitis, hypersensitivity, allergy, and mast cells.	((("dermatitis"[MeSH Terms] OR dermatitis[All Fields]) OR ("hypersensitivity"[MeSH Terms] OR "allergy and immunology"[MeSH Terms] OR allergy[All Fields]) OR ("mast cells"[MeSH Terms] OR mast cells[All Fields])) AND (IgE[DESC] OR ("immunoglobulin e"[All Fields]))) AND "gse"[Filter]	50
Dataset relevant to hyper-IgE and IgE in immune system diseases and study about allergens.	("hyper ige syndrome"[All Fields] OR HIES[All Fields] OR hyper-IgE[All Fields] OR IgE[All Fields] OR "immunoglobulin e"[All Fields]) AND "gse"[Filter] AND ("Immune System Diseases"[Mesh] OR "Allergens"[Mesh])	37

B. Merged of the result from the search strategy described in A.

Description	Search strategy	# of dataset
Merging the results of all 7 collections mentioned above.	Merge saved collections in "My NCBI"(https://www.ncbi.nlm.nih.gov/myncbi/)	196
> performed on human samples	Filtering	143
> performed on mouse samples	Filtering	52

C. Merged of the terms used in the search strategy described in A.

Description	Search strategy	# of dataset
Merging all terms used in the 7 search strategy above.	(FceR[All Fields] OR "IgE receptor"[All Fields] OR "mast cells"[All Fields] OR "Mast Cells"[Mesh] OR "hyper ige syndrome"[All Fields] OR HIES[All Fields] OR hyper- IgE[All Fields] OR IgE[All Fields] OR "immunoglobulin e"[All Fields] OR "Immunoglobulin E"[Mesh]) AND ("Immune System Diseases"[Mesh] OR dermatitis[All Fields] OR allergy[All Fields] OR ("Allergens"[Mesh] OR "Antigens"[Mesh]) syndromes[All Fields] OR disease[All Fields] OR "disorder"[All Fields] OR "job's syndrome"[All Fields] OR "regulation"[All Fields] OR modulation[All Fields] OR (change[All Fields] OR changes[All Fields]) OR elevated[All Fields] OR decreased[All Fields] OR deficiency[All Fields] OR phenotype[All Fields]) AND "gse"[Eiter]	117
> performed on human samples	Filtering	70
> performed on mouse samples	Filtering	37

D. Final assembly and curation of search strategy

Description	Search strategy	# of dataset
Merging of "B"and "C" results, only gene expression profiling by microarrays or high-throughput sequencing.	Assembly of the final list of dataset by merging collections B (196) and C (117) in "My NCBI"(https://www.ncbi.nlm.nih.gov/myncbi/)	203
> performed on human samples	Filtering	115
> performed on mouse samples	Filtering	76
For human samples only:		
Manual inspection of dataset to confirm implication to	Inspect all human dataset descriptions using the "GEO accession display tool"	53
IgE-related pathogenesis in human only.	(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi)	
Select gene expression by arrays only.	Filter platform type	49
Manual inspection of the type of study and design, the type of samples, and the disease groups.	Read full description and protocol of each dataset available on "GEO accession display tool" (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi) and inspect associated published article when necessary	30

	Title	GEO ID	Platform name	GPL	Disease/ treatment/ therapy	Sample type	Number of sample	Expt design	Pubmed ID*	Trend validation	FC validation	Comments for validation
1	Gene expression patterns in house dust mite stimulated CD4 T cells and IgG to IgE ratios	GSE70760	Affymetrix Human Gene 1.0 ST Array [hugene10st_Hs_ENTREZG_ 19.0.0]	GPL20171	House dust mite	T cells	90	In vitro	26518094	IL4, IL13, IL17RB		Data not available or reported differently in associated publication
2	* NEW Gene expression patterns in PBMC associated with asthma exacerbation attack	GSE19301	Affymetrix Human Genome U133A Array	GPL96	Asthma	РВМС	685	Ex vivo	21779351			Data reported differently
3	Comparison of two sets of microarray experiments to define allergic asthma expression pattern	GSE41649	Affymetrix Human Genome U133A Array	GPL96	Allergic asthma	Bronchial biopsy	8	Ex vivo	19842841		SERPINB2, CX3CR1, C7	Strong validation
4	Distinct epithelial gene expression phenotypes in childhood respiratory allergy - Disease State	GSE19190	Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]	GPL6244	Rhinitis, allergy, asthma	Human nasal epithelium cells	38	In vitro	22005912			Validated with stimulation
5	Distinct epithelial gene expression phenotypes in childhood respiratory allergy - Stimulation	GSE19190	Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]	GPL6244	Rhinitis, allergy, asthma	Human nasal epithelium cells	21	In vitro	22005912		DHX58, PRIC285, STARD5	Good validaton
6	Effect of intradermal immunotherapy (IDIT) injections on gene expression profiles of activated T cells derived from skin biopsy explants	GSE72324	Illumina HumanHT-12 V4.0	GPL10558	Grass pollen allergy	T cells	15	In vitro	27773851		TNFSF8, TNIP3, HDAC1	Strong validation
7	Expression data for human epithelium from subjects with atopic dermatitis, psoriasis and nonatopic controls	GSE26952	Sentrix HumanRef-8 Expression BeadChip	GPL2700	Atopic dermatitis, psoriasis	Epidermis	16	Ex vivo	21163515		GJA1, TGM1, OCLN	Strong validation
8	Expression data from IBS patients before and after treatment	GSE14842	Affymetrix Human Genome U133 Plus 2.0 Array	GPL570	Diarrhea- irritable bowel syndrome	Epidermis	14	Ex vivo	N/A			No associated publication
9	Functional classes of bronchial mucosa genes that are differentially expressed in asthma	GSE15823	Affymetrix Human Genome U95 Version 2 Array	GPL8300	Asthma	Bronchial biopsy	12	Ex vivo	15038835		SFRP1, Alox15, LDB1	Strong validation
10	Gene expression analysis related to olive pollen allergy	GSE37157	Affymetrix Human Genome U133 Plus 2.0 Array	GPL570	Olive pollen allergy	РВМС	28	Ex vivo	23830385			No associated publication
11	Gene expression changes in early phase of venom immunotherapy	GSE92866	Affymetrix Human Gene Expression Array [Brainarray ENTREZG Version 20]	GPL22841	Venom allergy	Blood	59	Ex vivo	N/A		GATA3, FoxP3	No associated publication, but some articles mentioned up-regulated genes that matches with GXB data
12	Gene expression pattern of alveolar macrophages of allergic asthmatics in comparison with control subjects	GSE22528	Affymetrix Human Genome U133A Array	GPL96	Asthma	Alveolar macrophage	10	Ex vivo	19913588		CCR1, HSPD1, SERPINH1	Strong validation
13	Gene expression profile of patients with moderate and severe chronic spontaneous urticaria	GSE72542	Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 (Feature Number version)	GPL16699	Chronic spontaneous urticaria	Skin/whole blood	61	Ex vivo	28407332	FOSB, S100A9, ADAMTS4		Data not available or reported differently in associated publication
14	Gene expression profiling of patients with allergy to latex and/or vegetable food	GSE13619	Affymetrix Human HG-Focus Target Array	GPL201	Latex/plant- derived food allergy	РВМС	21	Ex vivo	N/A	IFNG, STAT4, IL10RA		No associated publication, but some articles mentioned up-regulated genes that matches with GXB data
15	Genome-wide expression analysis demonstrates a dominant role of TLR4 for activation of human phagocytes by the alarmin MRP8	GSE56681	Affymetrix Human Genome U133 Plus 2.0 Array	GPL96 GPL570	Alarmins myeloid-related protein 8 and 14 signalling	Monocytes	19	In vitro	25505274		TRIP10, NFKB1, RNASE6	Good validaton
16	Human basophil expression profiles - Atopic vs Non-atopic	GSE64639	Illumina HumanHT-12 V4.0	GPL10558	Healthy subject	Pheripheral blood	16	In vitro	25962139			Data not available or reported differently in associated publication

18 Illumina Bead expression array data from Human GSE99948 Illumina HumanHT-12 V4.0 GPL10558 Ionstillectomy/ Heathly subject B cells 24 In vitro N/A CD99, SDC1 mentioned up-regulated genes that matche with GXB data 19 Influence of olive pollen stimuli on the gene- expression profile in healthy controls and allergic patients GSE54522 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 Olive pollen allergy PBMC 46 In vitro V/A CD99, SDC1 Data not available or reported differently in associated publication													
Image: Processing of the program of the pro	17			, ST Array [transcript (gene)	GPL6244	Job's syndrome	B cells	14	In vitro	24159173		,	
19 Spectracing partiers Anymetrix kinnan Genome GPLS70 Unive pole PBMC 46 In vitro 2553322 Data not available or reported differently in associated publication 19 Spectracing partiers GSEL402 Anymetrix kinnan Genome GPLS70 Unive pole PBMC 46 In vitro 2553322 Data not available or reported differently in associated publication 20 Default on CVAIDING Application GSEL400 Application Oplication GSEL400 Application Oplication Associated publication Associated publication 21 Default on CVAIDING Application GSEL400 Affymetrix kinnan Genome GPLS70 Leukotriene E4 As to relis As In vitro 26530450 GRL32 GRL32 Good validation 22 Interrant (kinan Genome Carron GSEL500 Affymetrix kinana Genome Carron GPLS70 Iot's syndrome Neutrophils 90 In vitro 26830450 GRL32 GGRL32 Good validation 23 Neutrophil and PBMC Gene expression data from Carron GSEL500 Affymetrix kinnan Genome Clarron GPLS70 Iot's syndrome Neutrophils 90 I	18		GSE99948	Illumina HumanHT-12 V4.0	GPL10558		B cells	24	In vitro	N/A	CD99, SDC1		No associated publication, but some articles mentioned up-regulated genes that matches with GXB data
21Matches how the importance of modular plochtory for disease susceptibility, diagnosis and plochtory for disease susceptibility, diagnosis and textorine text is a full functional agonist for textorine text is a full functional agonist for eversionSeasonal allergic human cysteminedealdealIn vitro2d571673Data not available or reported differently in associated publication21human cystemine text is a full functional agonist for stimulationGSE75663SF Array (transcript (gene) version)GPL244leeukotriene E4 responsen vitro2d5830450SF 373, God validation22human cystemine [exist full functional agonist for stimulationGSE7563SF Array (transcript (gene) version)GPL244leeukotriene E4 responsemast cells9In vitro2d5830450SF 373, God validation23Neutrophil and PBMC gene expression data from ob's Syndrome - NeutrophilGSE8507Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Job's syndromePBMC511In vitro17881745CD14Validated with PBMC24Neutrophil and PBMC gene expression data from over syndromeGSE3047Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570AsthmaSputum22Ex vivo2055409TemAr TemAr TemAr24Neutrophil and PBMC gene expression data from over syndromeGSE3047Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Asthma <t< td=""><td>19</td><td>expression profile in healthy controls and allergic</td><td>GSE54522</td><td></td><td>GPL570</td><td></td><td>РВМС</td><td>46</td><td>In vitro</td><td>25553522</td><td></td><td></td><td>Data not available or reported differently in associated publication</td></t<>	19	expression profile in healthy controls and allergic	GSE54522		GPL570		РВМС	46	In vitro	25553522			Data not available or reported differently in associated publication
21 Numan cystelinyl leukotrine type 1 receptor - Cell GS 257600 ST 74 ray (transcript (gene) version] GPL6244 response Mast cells 6 In vitro 26830450 Validated with stimulation 22 human cystelinyl leukotrine type 1 receptor - Simulation GS7560 ST 74 ray (transcript (gene) version] GPL6244 response Mast cells 9 In vitro 26830450 STX3, GGR3, G	20	studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and	GSE44956	Human GE 8x60K Microarray	GPL14550		T cells	48	In vitro	24571673			Data not available or reported differently in associated publication
22 SimulationImage cystein/leakoriene type 1 receptor - SimulationGSE75603ST Array [transcript (gene) weision]GPL6244Leakoriene tai responseMast cells9In vitro26830450GGR3, NFKBIDGood validation23Neutrophil and PBMC gene expression data from Job's Syndrome - NeutrophilsGSE807Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Job's syndromeNeutrophils90In vitro17881745CDL51, CLC12A, ColGA2Good validation24Neutrophil and PBMC gene expression data from Job's Syndrome - PBMCGSE8507Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Job's syndromePBMC51In vitro17881745CDL51, CLC12A, ColGA2Good validation25Novel mediators of eicosanoid and epithelial nitri, oxde production in sthmaGSE1378Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570AsthmaSputum22Ex vivo20052409THS1, CD24Good validation26Progressive activation of Th2/Th22 characterizes acute and chronic atopic dermatitisGSE1374Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570AllergyMast cells5In vitro1954720CCL1, CCL2, CL4Good validation27The effect of a dexamethasone and a FK506 on th relational profiling of 1) nasal ployb derivedGSE1374Affymetrix Human Genome U133 Plus 2.0 ArrayGPL575AllergyMast cells5In vitro1954720CCL1, CCL2, CL4Good validation28The effect of a dexa		human cysteinyl leukotriene type 1 receptor - Cell	GSE75603	, ST Array [transcript (gene)	GPL6244		Mast cells	6	In vitro	26830450			Validated with stimulation
13Job's Syndrome - NeutrophilsGSEBS07U133 Plus 2.0 ArrayGPLS70Job's SyndromeNeutrophils90In vitro17881745Coll Si, LEC12A, CoL6A2CODISI, LEC12A, 		human cysteinyl leukotriene type 1 receptor -		ST Array [transcript (gene)	GPL6244		Mast cells	9	In vitro	26830450		GGR3,	Good validaton
24Neturn primePBMC51In vitro17881745CLEC12A, CoL6A2Good validation25Novel mediators of eicosanoid and epithelial nitri oxide production in asttmaGSE13785Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570AsthmaSputum22Ex vivo20052409TGM2, THS1, CD24Good validaton26Progressive activation of Th2/Th22 characterizes acute and chronic atopic dermatitisGSE13785Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Atopic dermatitisSputum22Ex vivo20052409TGM2, THS1, CD24Good validaton27The effect of a dexamethasone and a FKS06 on the induction of chemokines in human mast cellsGSE13785Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570AllergyMast cells5In vitro19454720CCL1, CCL2, CCL4Good validaton28Transcriptional profiling of egg allergy and human LT7RB positive and negative T-helper cellsGSE13785Illumina HumanHT-12 V4.0GPL10558Egg allergyPBMC132In vitro1778149CEAC, CML1, CCL4Good validaton29Transcriptione profiling of 1) nasal poly derived human LT7RB positive and negative T-helper cellsGSE70898Illumina HumanHT-12 V4.0GPL10558Chronic rhinosinustis polyposisIn vitro1788174CEAC, CML1, CCL4Good validaton29Upper airway gne expression is an effective is the deriver alvaeGSE41861Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Allergic asthmaFre	23		GSE8507		GPL570	Job's syndrome	Neutrophils	90	In vitro	17881745			Validated with PBMC
25Novel mediators of elcosando and epithelial nitric oxide production in asthmaGSE13788Affymetrix Human Genome U133 Plus 2.0 ArraySputum22Ex vivo20052409THBS1, CD24Good validation26Progressive activation of Th2/Th22 characterizes acute and chronic atopic dermatitisGSE13788Affymetrix Human Genome U133 Plus 2.0 ArrayAtopic dermatitisSkin39Ex vivo22951056RRS100A7Stong validation27The effect of a dexamethasone and a FKS06 on the induction of chemokines in human mast cellsGSE15174Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570AllergyMast cells5In vitro19454720CC1, LC2Good validation28Transcriptional profiling of egg allergy and relationship to disease phenotypeGSE8876Illumina HumanHT-12 V4.0GPL10558Egg allergyPBMC132In vitro27788149CEACAM1, CL, CCL17Good validation29Mast cells relationship to disease phenotypeGSE87698Illumina HumanHT-12 V4.0GPL10558Chronic thinosinusitis with nasal polyposisT cells24In vitro26684290PCID2, VPS13C, GPR87Strong validation30Upper airway gene expression is an effective is turbe qaveGSE4186Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Allergic asthmaIlluman atal mosing in polyposisT cells24In vitro26684290PCID2, VPS13C, GPR87Strong validation	24		GSE8507		GPL570	Job's syndrome	РВМС	51	In vitro	17881745		CLEC12A,	Good validaton
26 acute and chronic atopic dermatitisGSE 36842U133 Plus 2.0 ArrayGPL570dermatitisSkin39Ex vivo22951056S100A7Strong validation27The effect of a dexamethasone and a FK506 on the induction of chemokines in human mast cellsGSE 15174Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570AllergyMast cells5In vitro19454720CCL1, CCL2, CCL4Good validation28Transcriptional profiling of egg allergy and relationship to disease phenotypeGSE 88796Illumina HumanHT-12 V4.0GPL10558Egg allergyPBMC132In vitro27788149CEACAM1, CLC, CCL17Good validaton29human IL17RB positive and negative T-helper cells and 2) T-helper cells from normal nasal mucosa and matched peripheral bloodGSE 70990Illumina HumanHT-12 V4.0GPL10558Chronic rhinosinusitis with nasal polyposisT cells24In vitro26684290PCID2, VPS13C, GPR87Strong validation30Upper airway gene expression is an effective is thowayGSE 41861Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Allergic asthma Bronchial138Ex vivoN/AImage: Strong validation30Upper airway gene expression is an effective is thowayGSE 41861Affymetrix Human Genome U133 Plus 2.0 ArrayGPL570Allergic asthma Bronchial138Ex vivoN/AImage: Strong validation	25		GSE13785			Asthma	Sputum	22	Ex vivo	20052409		THBS1,	Good validaton
27 induction of chemokines in human mast cells GSE131/4 U133 Plus 2.0 Array GPL570 Allergy Mast Cells 5 III vitro 1344720 CCL4 Good validation 28 Transcriptional profiling of egg allergy and relationship to disease phenotype GSE88796 IIIlumina HumanHT-12 V4.0 GPL10558 Egg allergy PBMC 132 In vitro 27788149 CEACAM1, CLC, CL17 Good validation 29 In mascriptione profiling of 1) nasal polyp derived human IL17RB positive and negative T-helper cells and 2) T-helper cells from normal nasal mucosa and matched peripheral blood GSE70900 Illumina HumanHT-12 V4.0 GPL10558 Chronic rhinosinusitis with nasal polyposis T cells 24 In vitro 26684290 PCID2, VPS13C, GPR87 Strong validation 30 surrogate biomarker for Th2-driven inflammation in the lower airway GSE41861 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 Allergic asthma Human nasal epithelium/ Bronchial 138 Ex vivo N/A Image Strong No associated publication	26		GSE36842		GPL570		Skin	39	Ex vivo	22951056			Strong validation
28 relationship to disease phenotype GSE88796 Illumina HumanHT-12 V4.0 GPL10558 Egg allergy PBMC 132 In vitro 27788149 CLC, CL17 Good validation 29 relationship to disease phenotype GSE88796 Illumina HumanHT-12 V4.0 GPL10558 Egg allergy PBMC 132 In vitro 27788149 CLC, CL17 Good validation 29 ranscriptome profiling of 1) nasal polyp derived human IL17RB positive and negative T-helper cells and 2) T-helper cells from normal nasal mucosa and matched peripheral blood GSE70900 Illumina HumanHT-12 V4.0 GPL10558 Chronic rhinosinusitis with nasal polyposis T cells 24 In vitro 26684290 PCID2, VPS13C, GPR87 Strong validation 30 Surrogate biomarker for Th2-driven inflammation in the lower airway GSE41861 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 Allergic asthma Human nasal epithelium/ Bronchial 138 Ex vivo N/A No associated publication	27				GPL570	Allergy	Mast cells	5	In vitro	19454720			Good validaton
29 human IL17RB positive and negative T-helper cells and 2) T-helper cells from normal nasal mucosa and matched peripheral blood GSE70900 Illumina HumanHT-12 V4.0 GPL10558 rhinosinusitis with nasal polyposis T cells 24 In vitro 26684290 VPS13C, GPR87 Strong validation 30 Surrogate biomarker for Th2-driven inflammation in the lower airway GSE41861 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 Allergic asthma Human nasal epithelium/ Bronchial 138 Ex vivo N/A No associated publication	28		GSE88796	Illumina HumanHT-12 V4.0	GPL10558	Egg allergy	РВМС	132	In vitro	27788149		,	Good validaton
Upper airway gene expression is an effective 30 surrogate biomarker for Th2-driven inflammation in the lower airway		human IL17RB positive and negative T-helper cells and 2) T-helper cells from normal nasal mucosa		Illumina HumanHT-12 V4.0	GPL10558	rhinosinusitis with nasal	T cells	24	In vitro	26684290		VPS13C,	Strong validation
* N/A = Not available		surrogate biomarker for Th2-driven inflammation in the lower airway	GSE41861		GPL570	Allergic asthma	epithelium/ Bronchial	138	Ex vivo	N/A			No associated publication

* N/A = Not available.

FIGURE 1

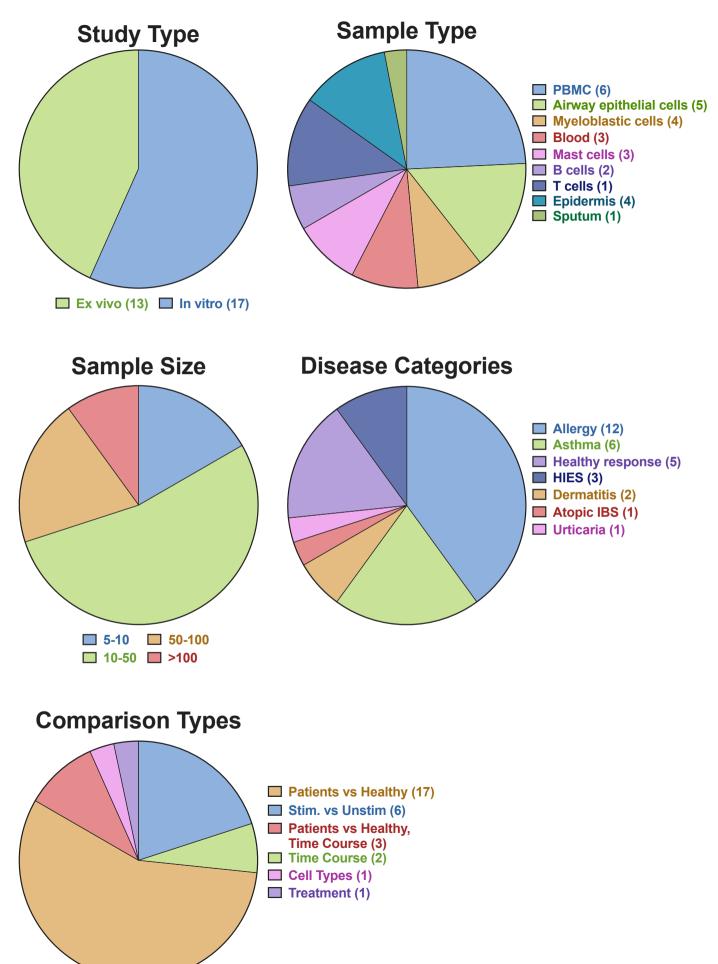
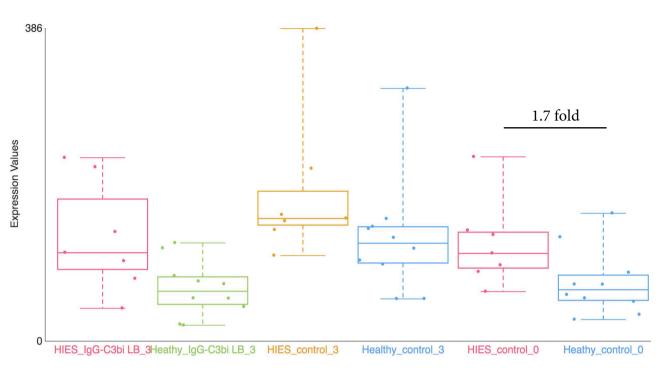
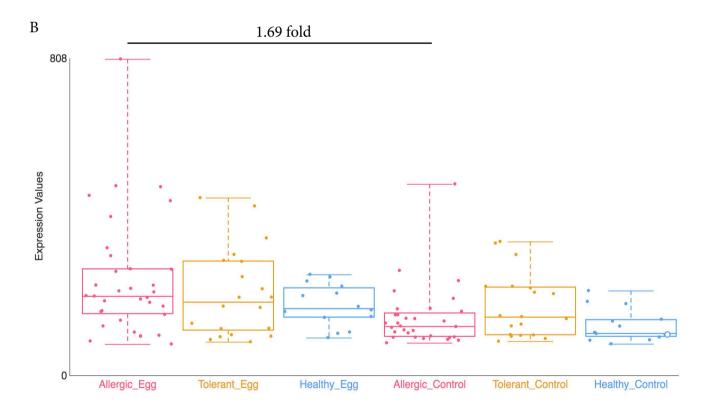


FIGURE 2

А

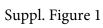

response underlying profiles subjects responses profiling dominant study asthma pollen identified Leukotriene Syndrome induced airways CCL type inflammation pathways atopic onset experiments susceptibility med new stimulation immune MRP samples serum both phenotypes two acute allergic samples serum epithelium differentially Job's inflammatory respiratory LTE epithelial during CSU specific patients using lower results analysis studies involved latex identify associated significantly activation dexamethasone mast nasal blood factors tissue CysLT _ role lesions bronchial IgE LUVA microarray receptor mechanisms between asthmatics healthy induction disease expressed olive increased novel molecular clinical cell human chronic airway pathogenesis microarrays

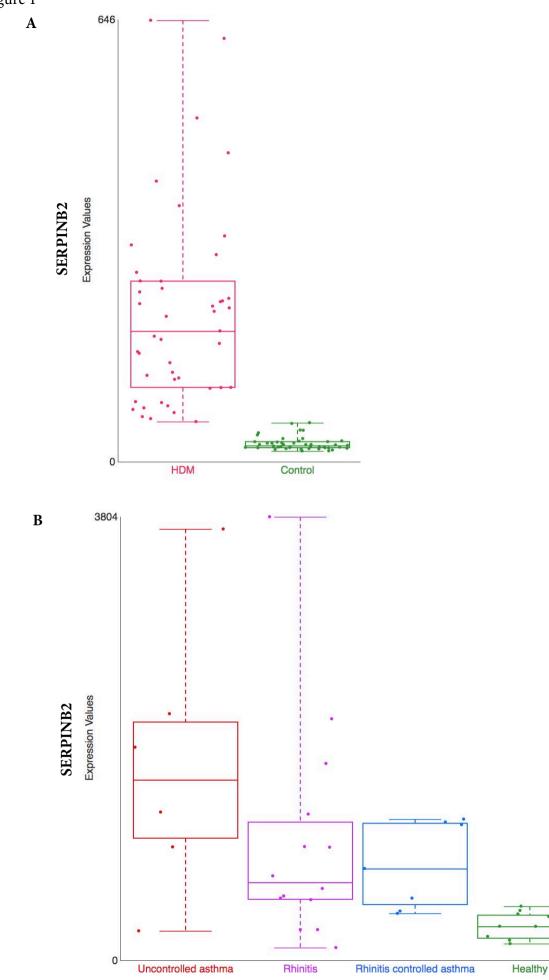

В

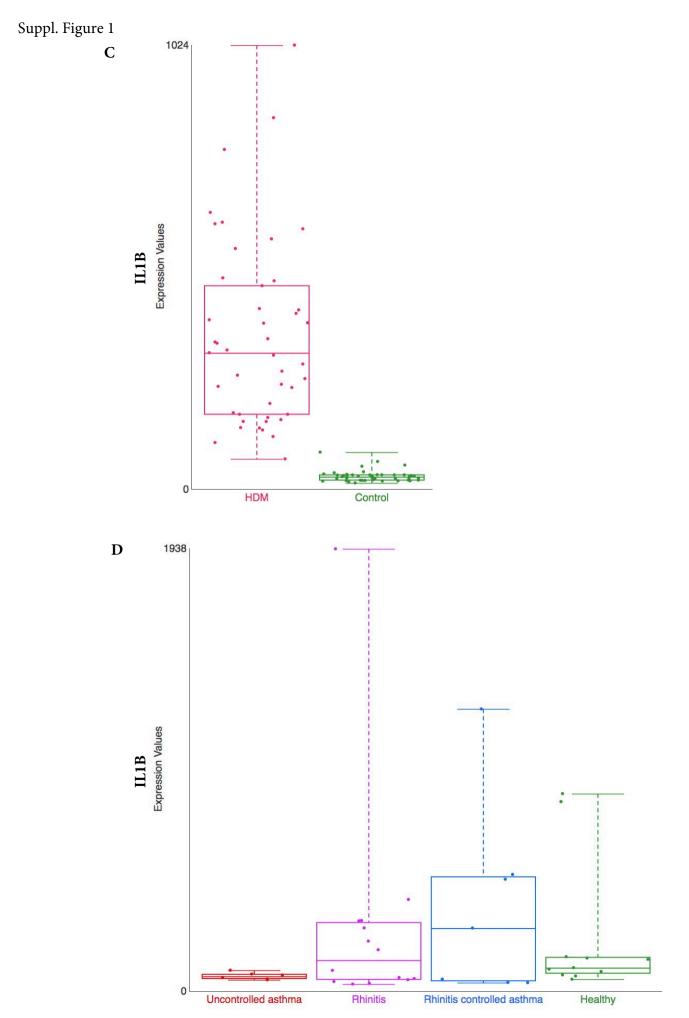
cytokines gene-expression IgE signaling cell adult^{lymphocytes} STAT3 antigen skin CD40 dose phleum mucosa genetic macrophages sinusitis blood olea bronchi line allergy ligand IgG C nasal inhalation junctions chronic urticaria polymorphism desensitization intradermal asthma food myelocytes basophiles rhinitis dermatitis inflammation pollen eicosanoids monocytes hypersensitivity B-lymphocytes chemokines immunotherapy

FIGURE 3

A






bioRxiv preprint doi: https://dGSE707601101/525477; this version posted January 20, 2019. The cop@Sg1191910der for this preprint (which was not Symbol Name certified by peer review) is the authpolitionarge review review is the authpolitionarge review. Fold-Change

Symbol	Name certified by peer review) is the auti	Pold Change
IL1B	interleukin 1, beta	FC: 8.55
	serpin peptidase inhibitor, clade B (ovalbumin),	
SERPINB2	member 2	FC: 5.57
CXCL5	chemokine (C-X-C motif) ligand 5	FC: 4.90
		FC: 4.89
CCL2	chemokine (C-C motif) ligand 2	FC: 4.79
DACT1	dapper, antagonist of beta-catenin, homolog 1	FC: 4.65
	(Xenopus laevis)	
IL2RA	interleukin 2 receptor, alpha	FC: 4.26
CICLI	a tabian indusible CU2 containing anotain	FC: 2.00
CISH	cytokine inducible SH2-containing protein	FC: 3.98
IL4R	interleukin 4 receptor	FC: 3.96
GPNMB	glycoprotein (transmembrane) nmb	FC: 3.65
PLBD1	phospholipase B domain containing 1	FC: 3.55
FGL2	fibrinogen-like 2	FC: 3.51
ME1	malic enzyme 1, NADP(+)-dependent, cytosolic	FC: 3.42
TGFBI	transforming growth factor bota induced 68kDa	EC: 2 27
Ібгы	transforming growth factor, beta-induced, 68kDa	FC. 5.57
IFITM3	interferon induced transmembrane protein 3	FC: 3.27
RNASE1	ribonuclease, RNase A family, 1 (pancreatic)	FC: 3.15
MAJEI	hoonaciease, invase A family, i (paneleatie)	10. 5.15
LYZ	lysozyme	FC: 3.02
CD36	CD36 molecule (thrombospondin receptor)	FC: 3
CXCL1	chemokine (C-X-C motif) ligand 1 (melanoma	FC: 2.99
CACLI	growth stimulating activity, alpha)	1 C. 2.99
FPR3	formyl peptide receptor 3	FC: 2.93
CCL22	chemokine (C-C motif) ligand 22	FC: 2.93
RAB27B	RAB27B, member RAS oncogene family	FC: 2.87
CLEC4E	C-type lectin domain family 4, member E	FC: 2.81
RNASE6	ribonuclease, RNase A family, k6	FC: 2.76
RAB19	RAB19, member RAS oncogene family	FC: 2.71
PTGER2	prostaglandin E receptor 2 (subtype EP2), 53kDa	FC: 2.67
FIGLKZ	prostagianum E receptor 2 (subtype EF2), 55kba	FC. 2.07
	pro-platelet basic protein (chemokine (C-X-C	
PPBP	motif) ligand 7)	FC: 2.62
NDFIP2	Nedd4 family interacting protein 2	FC: 2.55
TFPI2	tissue factor pathway inhibitor 2	FC: 2.52
C3	complement component 3	FC: 2.52
PLA2G7	phospholipase A2, group VII (platelet-activating	FC: 2.51
PLAZG7	factor acetylhydrolase, plasma)	FC. 2.51
LRRK2	leucine-rich repeat kinase 2	FC: 2.48
	solute carrier family 37 (glycerol-3-phosphate	
SLC37A3		FC: 2.48
	transporter), member 3	
PDK4	pyruvate dehydrogenase kinase, isozyme 4	FC: 2.46
CXCL10	chemokine (C-X-C motif) ligand 10	FC: 2.44
CAMK2D	calcium/calmodulin-dependent protein kinase II	FC: 2.39
CAIVINZD	delta	FC. 2.59
SOCS3	suppressor of cytokine signaling 3	FC: 2.35
IL13RA1	interleukin 13 receptor, alpha 1	FC: 2.32
MAL	mal, T-cell differentiation protein	FC: 2.31
	metallothionein 1G	
MT1G		FC: 2.3
GZMB	granzyme B (granzyme 2, cytotoxic T-lymphocyte-	FC: 2.29
	associated serine esterase 1)	
RCBTB2	regulator of chromosome condensation (RCC1)	FC: 2.26
ICD I DZ	and BTB (POZ) domain containing protein 2	1 C. 2.20
	TAF4b RNA polymerase II, TATA box binding	
TAF4B	protein (TBP)-associated factor, 105kDa	FC: 2.21
	leucine rich repeat and fibronectin type III	
LRFN2		FC: 2.21
CD180	domain containing 2	FC: 2.2
CD180	CD180 molecule	FC: 2.2
TLR4	toll-like receptor 4	FC: 2.19
L		
ACRE	acid phosphatase 5, tartrate resistant	FC: 2.18
ACP5	acid phosphatase 5, tartrate resistant	1 C. 2.10
ADAM28	ADAM metallopeptidase domain 28	FC: 2.16
CD9	CD9 molecule	FC: 2.16
303		. 0. 2.10
LGALS2	lectin, galactoside-binding, soluble, 2	FC: 2.11
SLC11A1	solute carrier family 11 (proton-coupled divalent	FC: 2.09
	metal ion transporters), member 1	

_

SUPPL. FIGURE 2

А

SIDRA Systems Immunology Toolkit

Systems Immunology Toolkit

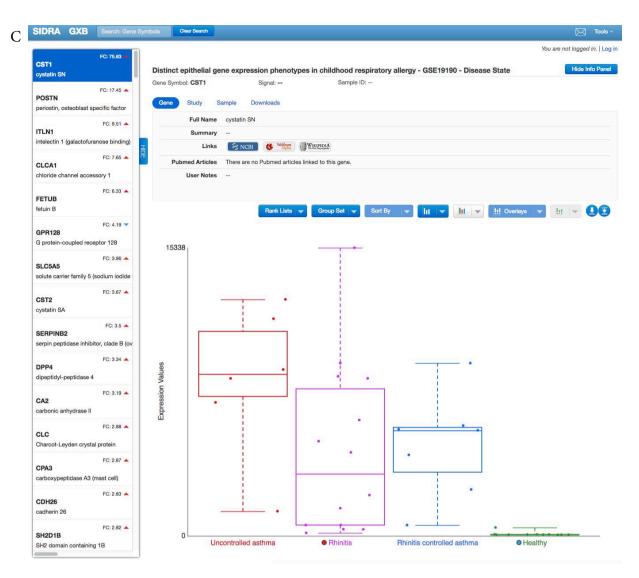
These tools will collectively allow you to upload microarray data, view that data on a gene-by-gene basis, overlay clinical data, analyze your data using a modular framework, compare your data to other datasets and diseases, and get a quick functional interpretation for the genes in your genelist.

Gene Ex	pressior	n Browse	7
			11-1
	Taxas ripland Parlies of TE is book Office	and see	
	And a second second to be per the second sec	ner Menter and an and a second and the same result of a line and have to be an another second another to be another in fulfilling. They little	offeren forth and the first sector and the first sector and
	- EDD & THE Prop	1 17.44	
Television and the second	option .		-
PER-			
	-		
anoecong per 1 mil	1		
Letter 1	ألتله وابترا	din a di	
lataset, overlay	the clinical data	pression level of a associated with t	he samples, and
lataset, overlay	the clinical data		he samples, and
lataset, overlay	the clinical data	associated with t	he samples, and
lataset, overlay he genes, either	the clinical data using pre-defin	associated with t ed lists or dynam	he samples, and
lataset, overlay he genes, either Learn more ting started	the clinical data using pre-defin	associated with t ed lists or dynam	he samples, and
lataset, overlay he genes, either Learn more	the clinical data using pre-defin	associated with t ed lists or dynam	he samples, and

Landing page | About the Gene Expression Browser

В

SIDRA GXB Search


Clear All Filters × Gene Expression Browser

Clear Search Hide Filters

Sene Symbol	Sample Set	Platform	Species	Disease	Sample Source	Sample			
2.0 Fold Change					0	Count			
	* NEW Gene Expression Patterns in Peripheral Blood Mononuclear Cells Associated with Asthma Exacerbation Attack - GSE19301	Affymetrix'	Homo sapiens	Asthma	PBMC	685	GED	G (A)	0
isease	Comparison of two sets of microarray experiments to define allergic asthma expression pattern - GSE41649	Affymetrix'	Horno sapiens	Allergy	Bronchial biopsies	8	660	G IM	8
	Distinct epithelial gene expression phenotypes in childhood respiratory allergy - GSE19190 - Disease State	Affymetrix'	Homo sapiens	Allergy	Nasal epithelial tissue	38	GED	G I <u>M</u>	
	Distinct epithelial gene expression phenotypes in childhood respiratory allergy - GSE19190 - Stimulation	Affymetrix'	Homo sapiens	Rhinitis	Nasal epithelial tissue	21	660	G 10	0
	Effect of intradermal immunotherapy (IDIT) injections on gene expression profiles of activated T cells derived from skin biopsy explants - GSE72324	illumina	Homo sapiens	Allergy	T cells	15	660	GIA	9
Bronchial biopsies (3)	Expression data for human epithelium from subjects with atopic dermatitis, psoriasis and nonatopic controls - GSE26952	illumina	Horno sapiens	Atopic dermatitis	Skin	16	660	G 10	
CD4 T cells (1) Jejunal biopsies (1) Macrophages (1)	Expression data from IBS patients before and after treatment - GSE14842	Affymetrix	Homo sapiens	Diarrhea-irritable bowel	Jejunal biopsies	14	660	6	0
Species Homo sapiens (30)	Functional classes of bronchial mucosa genes that are differentially expressed in asthma - GSE15823	Affymetrix'	Homo sapiens	Asthma	Bronchial biopsies	12	660	G (A)	0
	Gene expression analysis related to olive pollen allergy - GSE37157	Affymetrix	Homo sapiens	Allergy	PBMC	28	660	G 1/4	-
and the second second second	Gene expression changes in early phase of venom immunotherapy - GSE92866	Affymetrix	Horno sapiens	Allergy	Whole Blood	59	660	G	1
	Gene expression pattern of alveolar macrophages of allergic asthmatics in comparison with control subjects - GSE22528	Affymetrix	Homo sapiens	Asthma	Macrophages	10	660	g I A	1
	Gene expression patterns in house dust mite stimulated CD4 T cells and IgG to IgE ratios - GSE70760	Affymetrix	Homo sapiens	Allergy	PBMC, T cells (CD4+)	90	660	G 1/4	1
	Gene expression profile of patients with moderate and severe chronic spontaneous urticaria - GSE72542		Homo sapiens	Chronic Spontaneous Urtic 	Whole Blood, Skin	61	660	0 IQ	-
nstitution	Gene expression profiling of patients with allergy to latex and/or vegetable food - GSE13619	Affymetrix'	Homo sapiens	Allergy	PBMC	21	660	G	100
_ GEO (30)	Genome-wide expression analysis demonstrates a dominant role of TLR4 for activation of human phagocytes by the alarmin MRP8 - GSE56681	Affymetrix'	Homo sapiens	Healthy	Monocytes	19	660	G I	1
	Human basophil expression profiles - GSE64639 - Atopic vs Non-atopic	illumina	Horno sapiens	Healthy	Peripheral blood	16	660	G 1/2	-
	Identification of IL-21-induced STAT3 dependent genes in human B cells - GSE51587	Affymetrix	Homo sapiens	Job's Syndrome (Hyper-IgE	B cells	14	660	G I (1)	1
	Illumina Bead expression array data from Human IgE+ and IgG+ B cell subsets - GSE99948	illumina	Homo sapiens	Healthy	B cells, Plasma Blasts	24	660	G	į
	Influence of olive pollen stimuli on the gene- expression profile in healthy controls and allergic patients - GSE54522	Affymetrix'	Homo	Healthy	PBMC	46	GED	G I <u>M</u>	1

You are not logged in. | Log in

SUPPL. FIGURE 2

