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1. ABSTRACT 28 

Domestication of Atlantic salmon started approximately forty years ago, using both 29 

artificial and natural selection strategies. Such selection methods are likely to have imposed 30 

distinctive selection signatures on the salmon genome. Therefore, identifying differences in 31 

selection signatures may give insights into the mechanism of selection and candidate genes 32 

of biological and productive interest. Here, we used two complementary haplotype-based 33 

statistics, the within-population integrated Haplotype Score test (|iHS|) and the cross-34 

population Extended Haplotype Homozygosity test (XP-EHH) to compare selection 35 

signatures in four populations of Atlantic salmon with a common genetic origin. Using 36 

|iHS| we found 24, 14, 16 and 26 genomic regions under selection in Pop-A, Pop-B, Pop-C, 37 

and Pop-D, respectively. While using the XP-EHH test we identified 27, 25 and 15 38 

potential selection regions in Pop-A/Pop-B, Pop-A/Pop-C and Pop-A/Pop-D, respectively. 39 

These genomic regions harbor important genes such igf1r and sh3rf1 which have been 40 

associated with growth related traits in other species. Our results contribute to the detection 41 

of candidate genes of interest and help to understand the evolutionary and biological 42 

mechanisms for controlling complex traits under selection in Atlantic salmon.  43 

 44 
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2. BACKGROUND 57 

Atlantic salmon (Salmo salar L) were first farmed in Norway during the 1960s, and have 58 

now become one of the most important aquaculture species (FAO 2016). Despite a 59 

generation interval of three to four years, breeding programs have achieved rapid 60 

improvement of economically important traits such as growth, sexual maturation and 61 

disease resistance (GJEDREM et al. 2012). One of the first farmed populations named Mowi 62 

strain, was established with fish from west coast rivers in Norway, with major contributions 63 

from River Bolstad in the Vosso watercourse, River Årøy and possibly from the 64 

Maurangerfjord area (VERSPOOR et al. 2007). Salmon from the Vosso and Årøy rivers are 65 

characterized by large size and late maturity (VERSPOOR et al. 2007).  Phenotypic selection 66 

for growth, late maturation and fillet quality was the focus in this population until 1999 67 

(GLOVER et al. 2009). Ova from this population were imported into Fanad Peninsula, 68 

Ireland between 1982 and 1986 to establish an Irish-farmed population (NORRIS 1999). 69 

Similarly, ova from this Irish farmed population were introduced to Chile in the early 70 

1990s. These stocks were subsequently adapted to the biotic and abiotic factors present in 71 

southern hemisphere conditions. Artificial selection and adaptation to captive environments 72 

has left detectable genomic patterns in farmed Atlantic salmon populations, as evidenced 73 

by differences between wild and farmed populations for several traits, such as growth rate 74 

(THODESEN et al. 1999; GLOVER et al. 2009; SOLBERG et al. 2012), predator awareness 75 

(EINUM AND FLEMING 1997) and gene transcription patterns (ROBERGE et al. 2006; BICSKEI 76 

et al. 2014; CHRISTIE et al. 2016). 77 

 78 

Domestication processes are likely to have exerted selection pressures on certain genomic 79 

regions that underlie traits of human interest or other traits involved in adaptation to captive 80 

environments. Accordingly, positive selection pressures will cause the frequency of alleles 81 

underlying favorable traits to increase rapidly in these domesticated populations. Linkage 82 

disequilibrium between favorable mutations and neighboring loci will increase and spread, 83 

given there is little opportunity for recombination over the brief time since the onset of 84 

intense selection (SABETI et al. 2002). Analyses of these selection signatures in domestic 85 

animals can provide further insights into the genetic basis of adaptation to diverse 86 

environments and genotype/phenotype relationships (OLEKSYK et al. 2010; ANDERSSON 87 
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2012). Access to genomic data through next-generation sequencing and high-throughput 88 

genotyping technologies have made the comparison of genomic patterns of SNP variation 89 

between different livestock breeds possible, allowing for the identification of putative 90 

genomic regions and genes under selection in various species including cattle (FLORI et al. 91 

2009), horses (PETERSEN et al. 2013; FRISCHKNECHT et al. 2016), sheep (KIJAS et al. 2012; 92 

FARIELLO et al. 2014), pigs (AMARAL et al. 2011), Atlantic salmon (VASEMÄGI et al. 2005; 93 

VASEMÄGI et al. 2012; MÄKINEN et al. 2014; GUTIERREZ et al. 2015; LÓPEZ et al. 2018)  94 

and tilapia (HONG XIA et al. 2015).  95 

 96 

There are several approaches for detecting selection signatures in the genome, one of which 97 

relies on the length or variability of haplotypes. Directional selection acting on a new 98 

beneficial mutation results in the haplotype harboring the mutation to increase in frequency 99 

and to be longer than average. In order to exploit this, Sabeti et al (2002), proposed the 100 

extended haplotype homozygosity (EHH) statistic to detect of positive selection in a 101 

population, which is specifically the probability that two randomly selected haplotypes are 102 

identical-by-descent over their entire length around a core SNP (Sabeti et al 2002). This 103 

concept forms the basis for other haplotype homozygosity based metrics, such as the 104 

relative EHH (REHH) (SABETI et al. 2002) and the widely-used integrated Haplotype Score 105 

(|iHS|) (VOIGHT et al. 2006). |iHS| compares EHH between derived and ancestral alleles 106 

within a population and has the most power to detect selection when the selected allele is at 107 

intermediate frequencies in the population (SABETI et al. 2006; VOIGHT et al. 2006). To 108 

detect selection signatures between populations, the cross-population Extended Haplotype 109 

Homozygosity test (XP-EHH) compares the integrated EHH profiles between two 110 

populations at the same SNP. It was designed to detect ongoing or nearly fixed sites 111 

harboring selection in one population (SABETI et al. 2007).  112 

Although previous studies have already been carried out to detect selection signatures in 113 

Atlantic salmon (MÄKINEN et al. 2014; GUTIERREZ et al. 2015; LIU et al. 2016; LÓPEZ et al. 114 

2018) exploration of selection signatures in additional populations will illuminate how 115 

genetic variation among the different strains, adapted to different culture conditions, across 116 

hemispheres has not been assessed yet. Herein we used an Affymetrix 200K SNP array 117 

dataset to investigate selection signatures in farmed Atlantic salmon populations from the 118 
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same origin, cultivated in Ireland and Chile. We identified several selection signatures 119 

using two haplotype-based approaches (|iHS| and XPEHH) at the whole genome level in 120 

four Atlantic salmon populations. These findings are important as they highlight regions of 121 

the genome that might benefit economically relevant attributes, such as growth, resistance 122 

to local diseases and adaptation to specific environmental conditions. 123 

 124 

3. MATERIALS AND METHODS 125 

Samples, genotyping and quality control.  126 

 127 

We used a total of 270 individuals from four farmed Atlantic salmon populations of 128 

Norwegian origin (Pop-A, n = 40; Pop-B, n = 71; Pop-C, n = 85; Pop-D, n = 74). Pop-A 129 

fish are from the Irish strain (Fanad) originating from the west coast Rivers of Norway, as 130 

described in the Introduction section. Artificial selection for improving growth, maturity 131 

and fillet quality was applied from the beginning in this population (GLOVER et al. 2009). 132 

We estimated that this population had been under artificial selection for at least ten 133 

generations. Pop-B and Pop-C are two different Chilean populations, established with fish 134 

from two different year classes of the same Irish strain (Fanad) in the 1990s. Pop-B and 135 

Pop-C have been farmed and adapted to the Los Lagos Region, Chile (42°S 72°O). Pop-D 136 

is another Chilean population founded with fish from the same Irish farmed strain but 137 

adapted to the XIInd Region, Magallanes, Chile (53°S 70°O). Pop-B, Pop-C and Pop-D 138 

populations experienced four generations of selective breeding for growth in Chilean 139 

farming conditions at the time of sampling.   140 

 141 

Genotyping of all populations was performed using Affymetrix’s Atlantic salmon 200K 142 

SNP Chip described in YÁÑEZ et al. (2016). We assessed SNP quality control using Axiom 143 

Genotyping Console (GTC, Affymetrix) and SNPolisher (an R package developed by 144 

Affymetrix) i) removing SNPs that did not match with high quality clustering patterns, 145 

according to the best practices recommended by Affymetrix, ii) removing SNPs with call 146 

rate lower than 95% and iii) we discarded individuals with genotyping call rate under 90%. 147 

We used only SNPs that mapped to chromosomes in the newest version of the Atlantic 148 
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salmon reference genome, ICSAG_v2 (GenBank: GCA_000233375.4). After quality 149 

control filtering, 146,102 SNPs remained for downstream analyses.  150 

 151 

Genetic diversity and population structure 152 

 153 

We evaluated genetic diversity in terms of the observed heterozygosity (HO) and expected 154 

heterozygosity (HE) calculated with PLINK v1.07 (PURCELL et al. 2007). To investigate 155 

population structure based on individual ancestry proportions, we performed model-based 156 

clustering assuming no prior knowledge about strain origins in ADMIXTURE 1.2.2 157 

(ALEXANDER et al. 2009). We performed 10 separate randomly seeded runs for each 158 

number K of ancestral populations (1<K<20) and selected the optimum K according to the 159 

lowest value of the cross-validation error. The aforementioned analyses were conducted 160 

using a total of 20,000 SNPs after retaining only those with linkage disequilibrium (LD) 161 

values of at most 0.2 to minimize possible confounding effects of LD on the underlying 162 

patterns of genetic structure.  163 

 164 

Selection signatures, gene annotation and functional analyses 165 

 166 

To detect potentially regions harboring selection signatures, two complementary haplotype-167 

based detection methods, iHS and XPEHH, were used for within and between population 168 

analyses, respectively. 169 

Detection of within-population selection signatures using iHS. The iHS score is based 170 

on the ratio of extended haplotype homozygosity (EHH) for haplotypes anchored with the 171 

ancestral versus derived allele. The ancestral allele state for salmon is unknown and so to 172 

avoid losing SNPs by trying to polarize them from publicly available outgroup references, 173 

we assumed that the major allele represented the ancestral state as used by Bahbahani et al 174 

(2015). We phased the haplotypes using Beagle (BROWNING AND BROWNING 2009). Single-175 

site iHS values were calculated across the genome for each population. |iHS| scores were 176 

calculated using the REHH package (GAUTIER AND VITALIS 2012) and a score threshold of 177 

3.0 was used to infer candidate genomic regions under selection. 178 

 179 
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Detection of between-population selection signatures using XP-EHH.  The XP-EHH 180 

statistic compares the integrated EHH between two populations at the same SNP, in order 181 

to identify selection based on overrepresented haplotypes in one of the populations, 182 

detecting entirely or approximately fixed sites (SABETI et al. 2007). The direction of 183 

selection can be determined from the sign of XP-EHH scores, whereby negative XP-EHH 184 

scores suggest selection in the ‘reference’ population, whereas positive scores suggest 185 

selection in the ‘observed’ population. Pop-A was used as the reference population to the 186 

other three populations, hence there were three pairs of comparisons. 187 

 188 

Gene functional annotation  189 

Genomic regions harboring SNPs showing evidence of selection were annotated based on 190 

the ICSAG_v2 reference genome (LIEN et al. 2016) using SnpEff (CINGOLANI et al. 2012). 191 

Gene transcripts from these candidate regions were aligned (using blastx) (ALTSCHUL et al. 192 

1990) to the zebra fish (Danio rerio) peptide reference database (downloaded from 193 

http://www.ensembl.org/) to determine gene identify. As evidence of homology we used an 194 

e-value � 0 and then retrieved the zebra fish gene identifiers and gene ontology (GO) 195 

information from the ensembl biomart database (http://www.ensembl.org/biomart).  196 

 197 

4. RESULTS 198 

Genetic diversity and structure. 199 

 200 

We investigated genetic diversity within each population using SNPs filtered for missing 201 

data per individual (max 10%), missing data per marker (max 5%) and allele frequency 202 

(min 5%) as described in the Materials and Methods section. A total of 146,103 SNPs were 203 

retained for analyses after these quality control steps. Observed heterozygosity levels were 204 

similar across the four domestic populations. And was slightly higher than expected for 205 

populations A, B and C, and even higher in population D (See Table 1).  206 

Admixture analysis was used to determine the composition of ancestral lineages among 207 

individuals to offer insight into the observed genetic variation. We found K=12 ancestral 208 

lineages to be optimal in describing the ancestry of the individuals across the 4 populations 209 

(Figure 1). 210 

 211 
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Candidate regions under selection - |iHS| 212 

We used the haplotype-based |iHS| test to look for selection within populations. For each 213 

population we defined candidate selection regions using the thresholds of |iHS| > 3 (Figure 214 

2 and Table 2). Candidate regions were retained if two SNPs separated by ≤ 500 Kb passed 215 

this threshold and were annotated using the positions of the first and last SNP as 216 

boundaries, extending 500 Kb to each side. In Pop-A we identified 120 markers putatively 217 

under selection among ten chromosomes, Ssa02 and Ssa10 combined had approximately 60 218 

SNPs. The highest score (-log(p-value) = 5.04) was found in Ssa05 in a region of 6,7 Kb, 219 

associated with the CR762469.1 gene; other high scores were found in Ssa10 and Ssa01, 220 

nearby to mipol1, furinb, csnk1g2a and rs17. Other candidate genes undergoing selection 221 

for this population are shown in Supplementary Table S1. 222 

 223 

In Pop-B fourteen regions passed the threshold, distributed among eight chromosomes 224 

(Ssa1, 6, 10, 12, 13, 14, 16, and 27). The highest score was in Ssa06, harboring the SASH1 225 

gene. Ssa01 and Ssa13 encompassed 4 and 3 regions under selection, respectively, 226 

spanning from 11 Kb to 228 Kb. A total of 24 genes were located in these regions 227 

(Supplementary Table S1). 228 

 229 

In Pop-C |iHS| detected 121 SNPs passing the threshold and we annotated sixteen genomic 230 

regions. Ssa22 showed the highest scores and larger regions under selection, harboring 231 

genes such kcnkf, sc61a, mapk3, f264 and cdh2. Ssa16 and Ssa19 also exhibited high |iHS| 232 

scores spanning regions 3 Kb to 1788 Kb.  233 

 234 

Finally, Pop-D presented the highest number of SNPs (134 SNPs) above the threshold 235 

compared with other populations, distributed across 11 chromosomes. We defined 25 236 

genomic regions under selection, most of them located in Ssa26, where the highest |iHS| 237 

scores were also found. Genes such as uqcrfs1, neto1, itfg1 and phkb were found in these 238 

regions. Ssa24 also presented higher |iHS| values in one of its regions associated with tchp, 239 

ube3b and myo1ha among others. Details of genes and regions can be found in 240 

Supplementary Table S1. 241 

 242 
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Candidate regions under selection – XPEHH 243 

We also looked for selection signatures using the XPEHH test between the following 244 

populations pairs: A/B; A/C and A/D (Figure 3). We detected, 437 (A/B), 764 (A/C) and 245 

262 (A/D) XPEHH scores outlier SNPs indicative of selection (Table 3). We considered 246 

potential genomic regions under selection as those containing two or more consecutive 247 

SNPs less than 500 Kb apart and that had XPEHH score > 3. After merging overlapping 248 

regions 27, 25 and 15 candidate regions were identified for A/B, A/C and A/D comparisons 249 

respectively. The total length of the candidate regions was 10.13 Mb for A/B, 12.11 Mb for 250 

A/C and 4.05 Mb for A/D. Comparison between A/C yielded negative results in 251 

chromosome Ssa14 and Ssa16, furthermore comparison A/D yielded negative results in 252 

Ssa14, Ssa24 and Ssa26, suggesting selection in the reference population (A). The gene 253 

annotation revealed in A/B the plecb gene on Ssa02 and myo1cb, slc43a2a and ywhae1 254 

genes on Ssa09, associated with the highest values of XPEHH. In A/C the chromosome 255 

Ssa10 presented a large number of SNPs and regions putatively under selection. Also this 256 

chromosome presented the highest scores; genes such as fnbp1l, bcar3, slc5a9 and fryl were 257 

associated with these values. The highest values for A/D were also located on Ssa10 with 258 

lhx4, shr3rf1 and ftr33 genes. The negative values of XPEHH harboring genes such agla, 259 

kcmf1, cds1 and tshz3b suggest selection on population A. 260 

 261 

Gene ontology for candidate genes under selection.  262 

To further explore the functions of the candidate genes nearby markers showing evidence 263 

of selection signatures, we annotated the candidate genes detected by both methods using 264 

DAVID browser (https://david-d.ncifcrf.gov). These candidate genes were enriched in 14 265 

gene ontology terms. None of these categories were common across all four populations, 266 

but Developmental process and Multicellular organismal process were common on Pop B-267 

C and D. Regulation of biological process was shared for Pop A –B and D; Single-268 

organism process was common for Pop A –B and C; Biological regulation was found in 269 

Pop-B and Pop-D; and Growth and Locomotion were common for Pop-B and Pop-C. 270 

Anatomical structure development, Biosynthetic process, Cell growth and Single-271 

multicellular organism process were present only in Pop-A; while Localization and 272 

Signaling were found only in Pop-B (4). 273 
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5. DISCUSSION 274 

In this study two complementary tests were used to detect genome wide selection 275 

signatures within and between four Atlantic salmon populations with Norwegian origin.  276 

We used |iHS| test to evaluate selection signatures within populations and XPEHH to 277 

evaluate across populations. We used the oldest population as the reference population 278 

when using XPEHH to evaluate the effect of domestication and artificial selection in three 279 

different locations in Chile.  280 

Structure and diversity 281 

To examine genetic population structure and relationships among the major groups of 282 

salmon, we conducted an ADMIXTURE analyses based on high-quality SNP data. This 283 

analysis revealed twelve clusters, which was expected considering the admixed origin of 284 

these populations (VERSPOOR et al. 2007). The four populations used in this study come 285 

from the Mowi strain, which was created, using samples from several rivers along the west 286 

coast of Norway (NORRIS et al. 1999). The population with the lowest level of admixture 287 

was Pop-A, which was also the population with the lowest genetic diversity, a condition 288 

that could reflect a higher intensity of artificial selection in this population. Intense artificial 289 

selection causes loss of genetic variation as a consequence of the mating of related 290 

individuals (GJEDREM 2005). Pop-B and Pop-C showed very similar patterns of 291 

heterozygosity and admixture level, which was expected due to the similar breeding 292 

practices and environmental conditions to which they have been subjected. Pop-D, 293 

however, showed the highest level of heterozygosity and a more complex pattern of 294 

admixture, likely produced by a lower pressure of artificial selection on this population. 295 

Recent genetic introgression cannot be discarded for Pop-D given the potential of crosses 296 

with a different strain for management issues. The results presented here also reinforce the 297 

notion that a few generations (at least four in this particular case) are sufficient to generate 298 

large changes in terms of genetic structure in farmed Atlantic salmon populations, with the 299 

same genetic origin, which have been subjected to different management and 300 

environmental conditions. Estimates of inbreeding coefficient (FIS) showed the lowest 301 

value in Pop-D, which is consistent with the heterozygosity level in this population. Pop-A 302 

presented the second lowest value, despite the fact that this population has been subjected 303 
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to the most intense selection pressure probably due to a better inbreeding management with 304 

the use of DNA fingerprinting technology to know relatedness among individuals in order 305 

to avoid inbreeding. 306 

 307 

Selection signatures  308 

As expected the highest |iHS| scores were found in Pop-A because this population has been 309 

subjected to more intense artificial selection pressures for a longer time. The number of 310 

SNPs under selection detected by this method was similar in Pop-A, Pop-C and Pop-D, but 311 

lower in Pop-B. We suggest that this difference is due to the fact that the |iHS| test has little 312 

power to detect signals near fixation (SABETI et al. 2007; SIMIANER et al. 2010). XPEHH, 313 

which is more powerful at detecting selection signatures at or near fixation (Sabeti 2007), 314 

detected a similar number of regions putatively under selection in Pop-B and Pop-C, but 315 

lower in Pop-D. Conversely, |iHS| detected more SNP in this population, suggesting loci 316 

under selection in Pop-D have experienced weaker pressure of artificial selection and a 317 

greater impact of natural selection, which has prevented allele fixation. Overlaps among 318 

regions detected by |iHS| method, were found only when using pairs of populations, that is, 319 

a common region was found between Pop-A/B, Pop-A/C, Pop-A/D, Pop-B/C, Pop-B/D and 320 

Pop-C/D. No overlap was found among four populations or when using any combination of 321 

three. XPEHH detected a higher number of shared regions among populations, specifically 322 

in Ssa02, which was common to all 3 tested populations. In addition, shared regions were 323 

found in population pairs B/C and Pop-D/C. A greater number of shared regions detected 324 

by XPEHH could be explained by a greater power to detect regions that have experienced 325 

older selection events (SABETI et al. 2007; KLIMENTIDIS et al. 2011) than those detectable 326 

by |iHS|. Therefore, these regions may be explaining selection signatures that originated 327 

before these populations were brought to Chile.  328 

Domestication traits in salmon  329 

Selection signatures found in this study may be involved in some desirable economic traits 330 

in salmon production as well as traits that are typically under the effect of domestication. 331 

All populations used in this study have been subjected to artificial selection to improve 332 

growth rate. According to the functional annotations of the candidate genes, several 333 
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biological processes were found to be involved with growth and development, such as the 334 

Development process and Regulation of Biological/metabolic processes.  Additionally, 335 

some of the genes identified have been associated with growth traits in other species; such 336 

sh3rf1 in chicken and cattle (HANOTTE et al. 2003; RUBIN et al. 2010) or igf1r, which was 337 

previously found to be a size locus of large effect in dogs (SUTTER et al. 2007; HOOPES et 338 

al. 2012). We suggest that these genes may be under selection for improving growth related 339 

traits in salmon. On the other hand, we also identified genes such scaper, clstn3 and pex5 340 

related to mental disorders in humans (GLATT et al. 2005; PETTEM et al. 2013). Other genes 341 

related to behavioral traits have be found in other Atlantic salmon strains, as well (Lopez et 342 

al, 2018), suggesting that artificial selection acts on behavioral traits in salmon as in other 343 

domestic animals (Clutton-Brock 1999). 344 

 345 

6. CONCLUSIONS 346 

In the present study, several candidate genomic regions with selection signatures were 347 

identified using two haplotype based methods, |iHS| and XPEHH in four populations of 348 

Atlantic salmon. These genomic regions harbored important genes that enriched G terms 349 

including growth, developmental processes, and have been associated with growth and 350 

behavior in other species. These finding improve our understanding of genomic variants 351 

undergoing selection in domestic populations of Atlantic salmon.  352 

 353 
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Table 1. Mean genetic diversity (Observed heterozygosity and 
expected heterozygosity) of four Atlantic salmon populations 

Population Ho He 
Pop-A 0.38±0.16 0.37±0.15 
Pop-B 0.40±0.15 0.39±0.14 
Pop-C 0.40±0.14 0.39±0.13 
Pop-D 0.46±0.22 0.37±0.16 
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Table 2.  Number of SNPs identified by |iHS| among populations and chromosomes.  
 Pop-A Pop-B Pop-C Pop-D 

Ssa01 14 11 2 15 
Ssa02 31 
Ssa03 9 
Ssa04 1 
Ssa05 2 1 5 
Ssa06 1 6 
Ssa07 3 
Ssa08 
Ssa09 6 2 
Ssa10 43 3 6 14 
Ssa11 2 
Ssa12 3 7 1 
Ssa13 4 16 3 2 
Ssa14 4 3 4 4 
Ssa15 6 2 1 
Ssa16 1 5 32 
Ssa17 1 
Ssa18 
Ssa19 2 15 
Ssa20 18 
Ssa21 
Ssa22 2 49 
Ssa23 
Ssa24 15 
Ssa25 
Ssa26 54 
Ssa27 2 
Ssa28 
Ssa29 
Total 120 58 121 134 
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Table 3.  SNPs and regions under selection identified by XPEHH among population pairs 
and chromosomes. 

 Pop-A/Pop-B Pop-A/Pop-C Pop-A/Pop-D 
 SNPs Regions SNPs Regions SNPs Regions 

Ssa01       
Ssa02 68 3 82 5 17 2 
Ssa03       
Ssa04       
Ssa05 11 1   26 3 
Ssa06       
Ssa07       
Ssa08       
Ssa09 289 17 71 3 6 1 
Ssa10 16 2 571 13 154 4 
Ssa11     10 2 
Ssa12       
Ssa13       
Ssa14   1  8 1 
Ssa15   7 1   
Ssa16   25 1   
Ssa17       
Ssa18       
Ssa19       
Ssa20       
Ssa21       
Ssa22       
Ssa23       
Ssa24 53 4   8 1 
Ssa25       
Ssa26     32 1 
Ssa27       
Ssa28       
Ssa29   7 2 1  
Total 437 27 764 25 262 15 
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Figure legends 632 

 633 

Figure 1. Individual assignment probabilities generated with ADMIXTURE (1•K•12). Each 634 

color represents a cluster, and the ratio of vertical lines is proportional to assignment 635 

probability of and individual to each cluster.  636 

 637 

 638 

Figure 2. Genome-wide distribution of -log10(p-value) of standardized Integrated Haplotype 639 

Score |iHS| among Atlantic salmon populations.  640 

 641 

Figure 3. Genome-wide distribution of -log10(p-value) of standardized cross-population 642 

extended haplotype homozygosity (XP-EHH) scores in pairwise Atlantic salmon populations.  643 

 644 

 645 

Figure 4. GO enrichment analysis of genes with evidence of selection in Atlantic salmon. GO 646 

functional classification was performed using the DAVID browser.  647 
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Figure 1 679 
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Figure 3 713 
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