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Cancer is the most complex genetic disease known, with mutations in more than 

250 genes contributing to different forms of the disease1,2,3. Most human driver mutations 

are specific to particular types of cancer, at least in part due to differences in expression 

pattern between cell types, and the diversity of mutational mechanisms across different 

human tissues4. However, the fact that many apparently oncogenic mutations fail to 

transform fibroblastic cells in culture suggests that different cell types could be 

susceptible to transformation by different sets of oncogenes. Here we show that 

reprogramming human fibroblasts to induced hepatocytes (iHeps) makes the cells 

sensitive to transformation by a combination of oncogenes that is characteristic of liver 

cancer (CTNNB1, TERT and MYC). The transformed iHeps are highly proliferative, 

tumorigenic in nude mice, and bear gene expression signatures of liver cancer. Temporal 

analysis of the tumorigenic program using single-cell RNA-seq and RNA velocity analysis 

revealed that the cells progress along a common path to transformation, invariably 

acquiring liver cell identity prior to expressing markers characteristic of liver tumor cells.  

These results, together with analysis of chromatin accessibility using ATAC-seq and 

NaNoMe-seq indicate that lineage-determining factors act by defining a chromatin state 

that is permissive for transformation. Taken together, our results indicate that cell 

identity is a key determinant in transformation, and establish a paradigm for defining 

the molecular states of distinct types of human cancer. 

Cancer genetics and genomics have identified a large number of genes implicated in 

human cancer1,2,3. Although some genes such as p53 and PTEN are commonly mutated in 

many different types of cancer, most cancer genes are lineage-specific. It is well established 

that human cells are harder to transform than rodent cells5,6,7,8,9,10,11, which can be 

transformed using only MYC and RAS oncogenes12,13,14. Seminal experiments by Hahn and 

Weinberg established already 20 years ago that different human cell types can be transformed 
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using a set of oncogenes that includes the powerful viral large-T and small-T oncoproteins 

from the SV40 virus15. Despite this early major advance, determining which specific 

mutations found in human patients lead to tumorigenesis has proven to be exceptionally 

difficult. This is because although viral oncoproteins are linked to several cancer types16, 

most major forms of human cancer result from mutations affecting tumor-type specific sets of 

endogenous proto-oncogenes and tumor-suppressors. The fact that the combinations of 

oncogenes are distinct between tumor types suggests that cell lineage-specific factors could 

somehow interact with oncogenes to drive most cases of human cancer, confounding 

mechanistic studies utilizing simple model cell types. This prompted us to systematically 

investigate the factors required for transformation of human cells using a combination of cell 

fate conversion and oncogene activation. 

Many human cell types can be converted to other cell types via a pluripotent state17. 

However, as pluripotent cells are tumorigenic in nude mice, we chose to use direct lineage 

conversion18,19,20 in combination with oncogene expression to identify the set of factors that 

define a particular type of human cancer cell. For this purpose, we developed a cellular 

transformation assay protocol, in which human fibroblasts (HF) are converted to induced 

hepatocytes (iHeps) using lentiviral overexpression of a combination of lineage-specific 

transcription factors (TF), followed by ectopic expression of liver cancer-specific oncogenes 

(Fig. 1a). Transdifferentiation of fibroblasts to iHeps has previously been reported by several 

groups20,21,22,23. To identify an optimal protocol for generating iHeps from HFs (from human 

foreskin), we tested the previously reported combinations of TFs in parallel 

transdifferentiation experiments and analyzed the efficiency of iHep conversion by 

measuring the mRNA levels for liver markers21,22,23 such as ALBUMIN, TRANSFERRIN, and 

SERPINA1 at different time points (Fig. 1b, Extended Data Fig. 1). The combination of 

three TFs, HNF1A, HNF4A and FOXA322 resulted in the most efficient iHep generation, 

based on the observation that out of all combinations tested, this combination resulted in the 
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highest expression level of liver-specific genes at two, three, and four weeks after iHep 

induction (Fig. 1b). This protocol also resulted in most efficient lineage conversion based on 

the analysis of cell morphology; by two weeks after iHep induction, the cells lost their 

fibroblast phenotype and formed iHep colonies, from which the iHeps migrated and matured 

by six to seven weeks after induction (Fig. 1c and Extended Data Fig. 2).  

To determine whether the iHeps could be transformed to liver cancer-like cells, we 

first plated the iHeps on collagen-coated dishes and maintained them in hepatocyte culture 

media (HCM). The proliferation of iHeps under such conditions is arrested22 and the cells 

undergo apoptosis after two to three passages (Fig. 1d). To confer iHeps with unlimited 

proliferation potential and to drive them towards tumorigenesis, we transduced iHeps with a 

set of the most common driver genes for liver cancer using lentiviral constructs. For this 

purpose, we chose the five oncogenic drivers with the highest number of recurrent genetic 

alterations reported for liver cancer or hepatocellular carcinoma (HCC; from COSMIC, 

https://cancer.sanger.ac.uk/cosmic); these included four oncogenes, telomerase (TERT), b-

catenin (CTNNB1), PI3 kinase (PIK3CA), and the transcription factor NRF2 (NFE2L2), as 

well as one tumor suppressor, p53 (TP53). In addition, we included the oncogene MYC, 

which is under tight control in normal cells24, but overexpressed in many cancer types, 

including HCC25. Lentiviral expression of the fluorescent reporter mCherry with the 

oncogenic drivers in different combinations revealed that the pool of three oncogenes, i.e. 

constitutively active b-catenin (CTNNB1T41A), MYC and TERT, together with TP53 

inactivation by CRISPR-Cas9 (CMT+sgTP53) resulted in highly proliferative iHeps with 

apparently unlimited proliferative potential (> 50 passages over more than one year; Fig. 1d). 

Importantly, expression of the three oncogenes CTNNB1T41A, MYC and TERT (CMT) alone 

also resulted in similar iHeps with long-term proliferative potential (Fig. 1d). By contrast, 

ectopic expression of these oncogenic drivers in HFs failed to yield transformed, proliferating 

fibroblasts (Fig. 1d). This is the first instance to our knowledge where HFs can be directly 
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transformed using this minimal combination of defined factors, indicating that lineage-

specific TFs are the missing link for human cellular transformation using oncogenic drivers. 

To test for the tumorigenicity of the proliferative iHeps, we performed xenograft 

experiments. Subcutaneous injection of the CMT+sgTP53 transformed iHeps into nude mice 

resulted in tumor formation (Fig. 2a). The process was reproducible in subsequent 

experiments; in addition, the effect was not specific to the fibroblast line used, as we also 

successfully reprogrammed another HF cell line (human fetal lung fibroblast) using the same 

lineage-specific TFs and oncogenic drivers.  The xenograft tumors from the CMT+sgTP53 

transformed iHeps derived from either fibroblast line can be detected by in vivo fluorescent 

imaging as early as 11-12 weeks (Fig. 2b). Similarly, the CMT-transformed iHeps without 

TP53 inactivation also resulted in tumor formation in nude mice 12 weeks post-injection 

(Fig. 2b). These results demonstrate that both CMT and CMT+sgTP53 transformed iHeps are 

tumorigenic, and indicate that ectopic expression of defined lineage-specific TFs and 

oncogenes can reprogram and transform HFs into cells that can robustly initiate tumors in 

nude mice. 

Cancer genomes harbor large-scale chromosomal aberrations and are characterized by 

aneuploidy26,27. To understand the gross chromosomal aberrations in the transformed 

tumorigenic CMT and CMT+sgTP53 iHeps compared to normal HFs, we performed spectral 

karyotyping, which showed a normal diploid male (46, XY) in HFs and aneuploid karyotypes 

in transformed iHeps (Fig. 2c). The aneuploid transformed iHeps with CMT+sgTP53 at early 

passage were characterized by two different populations with two distinct modal 

chromosome numbers (Fig. 2c). The modal chromosome number of the first population was 

45, XY, whereas the second population was pseudotetraploid, with a modal chromosome 

number between 67-92, XY; this pseudotetraploid state was consistently observed in late 

passage transformed iHeps. The major chromosomal aberrations that were similar between 

the two populations were missing copies of chromosomes 4 and 13, a derivative of 
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chromosome 19 containing a small portion of chromosome 3 [t3:19], an extra copy of Y and 

a loss of most of the p arm of chromosome 2. In comparison, the most common chromosomal 

aberrations reported in HCC are the gains of 1q (suggested target genes include WNT14, 

FASL) and 8q (MYC, WISP1) and the loss of 17p (TP53, HIC1), followed by losses of 4q 

(LEF1, CCNA) and 13q (RB1, BRCA3)28,29 (Fig. 2d). The first three chromosomal aberrations 

are expected not to be present in our case, as the transformation protocol leads to activation 

of the Wnt pathway and MYC expression, and loss of p53. Consistently with this, we did not 

observe lesions in 1q, 8q or 17p in our cells. However, other common aberrations found in 

HCC cells, loss of chromosomes 4 and 13 were detected in our transformed CMT+sgTP53 

iHep cells (Fig. 2c-d). However, these chromosomal aberrations appeared not to be necessary 

for formation of tumors, as in the absence of targeted loss of p53 in CMT iHep cells, we did 

not observe these lesions (Fig. 2c). However, both CMT+sgTP53 and CMT iHeps displayed 

pseudotetraploidy, similar to what is commonly observed in HCC (Fig. 2c-d). These results 

indicate that the transformed iHeps have similar chromosomal aberrations to those reported 

earlier in liver cancer, consistent with their identity as HCC-like cells.  

To understand the gene expression dynamics and to map the early events of lineage 

conversion and oncogenic transformation, we performed single cell RNA-sequencing 

(scRNA-seq) of HFs, iHeps after one, two, and three weeks after induction, and from CMT-

iHeps (one-week iHeps transduced with CMT and harvested two weeks later). The cells were 

clustered according to their expression profiles using Seurat30 (version 2.3.4); a total of ten 

separate clusters of cells were identified during the course of the transdifferentiation and 

reprogramming and visualized by t-distributed stochastic neighbor embedding (t-SNE) plots31 

(Fig. 3a-b). Importantly, the scRNA-seq indicated that the CMT-transformed iHeps are a 

clearly distinct population of cells compared to the iHeps (Fig. 3b).  

To determine the trajectory of differentiation of the cells, we performed RNA velocity 

analysis32, which determines the direction of differentiation of individual cells based on 
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comparison of levels of spliced mRNAs (current state) with nascent unspliced mRNAs 

(representative of future state). This analysis confirmed that the cell populations analyzed 

were differentiating along the fibroblasts–iHep–transformed iHep axis (Fig. 3c). We next 

identified marker genes for each cell cluster (see Methods). This analysis revealed that 

CMT-iHeps have a distinct gene expression signature and that they have lost the fibroblast 

gene expression program during the course of the reprogramming. These results indicate that 

the iHep conversion and transformation have led to generation of liver-cell like transformed 

cells (Fig. 3d).  

To further analyze gene expression changes during reprogramming and 

transformation, we performed pseudo-temporal ordering analysis of the scRNA-seq. 

Consistently with the RNA velocity analysis, the pseudotime analysis showed transition from 

fibroblasts to iHeps and subsequently to CMT-transformed iHeps (Extended Data Fig. 3). 

The scRNA-seq analyses allow detection of the precise early events that occur during iHep 

formation and the origin of HCC by mapping the gene expression changes in the cells across 

the pseudotime.  During iHep differentiation, the expression of non-canonical Wnt pathway 

components, including Wnt5a ligand and the Frizzled 5 receptor, are upregulated (Fig. 3e). 

By contrast, during transformation, the exogenous CTNNB1T41A activates the canonical Wnt 

pathway, suppressing expression of the non-canonical ligand Wnt5a. We also observe 

activation of the NOTCH pathway early during tumorigenesis; expression of NOTCH1, 

NOTCH3 and their ligand JAG1 (Fig. 3e, top) are strongly upregulated, together with the 

canonical NOTCH target gene HES133 and the liver specific target NR4A234. These results 

are consistent with the proposed role of the NOTCH pathway in liver tumorigenesis34,35.  

To determine whether the gene expression signatures observed in transformed iHeps 

were similar to those observed in human liver tumors, we compared the scRNA-seq results to 

the published liver cancer data sets 28. Majority of the CMT-iHep-specific marker genes (Fig. 

3d) overlapped with the genes with genetic alterations in the TCGA HCC pan-cancer dataset 
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(74% of 372 cancer cases) and showed larger overlap with HCC when compared to cancers 

of pancreas and prostate, suggesting the specificity of this set of genes for liver tumorigenesis 

(Extended Data Fig. 4). We also analyzed the expression of the CMT-iHep marker genes 

that show genetic alterations in TCGA liver cancer data across the pseudotime in our scRNA-

seq data. The expression of this subset of the CMT-iHep marker genes was also clearly 

increased, lending further credence to the fact that upregulation of this set of genes is an early 

event in liver tumorigenesis (Extended Data Fig. 5).  

To determine the changes in gene expression and chromatin accessibility in the 

proliferative iHeps, we first performed bulk RNA-seq analysis from the tumorigenic CMT 

and CMT+sgTP53 iHeps that were used for the xenograft implantation, as well as cells 

derived from the resulting tumors. Importantly, the genes that were differentially expressed in 

both CMT- and CMT+sgTP53-transformed iHeps compared to fibroblasts showed a clear 

and significant positive enrichment for the previously reported “subclass 2” liver cancer 

signature36, associated with proliferation and activation of the MYC and AKT signaling 

pathways (Fig. 3f). The effect was specific to liver cancer, as we did not observe significant 

enrichment of gene expression signatures of other cancer types (Extended Data Fig. 6). 

During the reprogramming, we observed a clear up-regulation of common liver marker genes 

such as ALB, APOA2, SERPINA1, and TF, and down-regulation of fibroblast markers such as 

MMP3, FGF7, THY1, and FAP, in proliferative and tumorigenic iHeps. Importantly, the 

xenograft tumor from the CMT+sgTP53 cells retained similar liver-specific gene expression 

profile (Fig. 4a). We also detected a clear up-regulation of several liver cancer marker genes 

such as AFP, GPC3, SAA1, and VIL1 in transformed iHeps and in CMT+sgTP53 tumors 

compared to control fibroblasts (Fig. 4a); AFP was also found among the most enriched 

genes (Extended Data Fig. 7) in both CMT+sgTP53- and CMT-transformed iHeps. 

Furthermore, we observed a negative correlation between the CMT+sgTP53 and CMT iHep 

specific genes and the genes positively associated with liver cancer survival (Extended Data 
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Fig. 8), lending further credence to liver cancer-identity of the CMT+sgTP53 and CMT 

transformed iHeps.   

ATAC-seq analysis of the fibroblasts and CMT+sgTP53 cells revealed that the 

changes in marker gene expression were accompanied with robust changes in chromatin 

accessibility at the corresponding loci (Fig. 4b). To assess chromatin accessibility and DNA 

methylation at a single-allele level, we performed NaNoMe-seq (see Methods), where 

accessible chromatin is methylated at GpC dinucleotides using the bacterial methylase 

M.CviPI37. Sequencing of the genome of the treated cells using single-molecule Nanopore 

sequencer then allows both detection of chromatin accessibility (based on the presence of 

methylated cytosines at GC dinucleotides) and DNA methylation at CG dinucleotides. This 

analysis confirmed the changes in DNA accessibility detected using ATAC-seq (Fig. 4c). 

Changes in DNA methylation at promoters of the differentially expressed genes were 

relatively minor (Fig. 4c), suggesting that the mechanism of reprogramming does not 

critically depend on changes in CpG methylation at the marker loci. Taken together, these 

results indicate that our novel cell transformation assay using lineage-specific TFs and 

cancer-specific oncogenes can reprogram fibroblasts to lineage-specific cancer that bears a 

gene expression signature similar to that observed in HCC. 

  To identify the necessary and sufficient factors that define lineage-specific cancer 

types we have here developed a novel cellular transformation protocol, and, for the first time, 

report direct conversion of HFs to liver cancer cells. First, lentiviral overexpression of three 

lineage-specific TFs reprograms HFs to iHeps, and subsequent ectopic expression of liver 

cancer-specific oncogenic factors transforms iHeps to a highly proliferative and tumorigenic 

phenotype with chromosomal aberrations and gene expression signature patterns similar to 

HCC. Importantly, lineage-conversion by specific TFs is required for the transformation 

process since the same oncogenic drivers alone do not transform HFs (Fig. 4d). After lineage 

conversion by the defined TFs, oncogenes alone (MYC, CTNNB1 and TERT) are sufficient 
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to drive the transformation with or without inactivation of the tumor suppressor TP53. These 

results establish a paradigm for testing the tumorigenicity of combinations of cancer genes, 

and their interactions with cellular lineage (Fig 4d). In addition, reprogramming normal cells 

to cancer cells allow “live” analysis of the early stages of the tumorigenic program, 

facilitating approaches towards early molecular detection and prevention of cancer. 

In the past half-century, a very large number of genetic and genomic studies have 

been conducted using increasingly powerful technologies, resulting in identification of more 

than 250 genes that are recurrently mutated in cancer. However, in most cases, the evidence 

that the mutations in the genes actually cause cancer is correlative in nature, and requires 

assumptions about background mutation frequency and rates of clonal selection in normal 

tissues38. Furthermore, cancer genes are known to act in combination, and determining 

candidate sets of genes that are sufficient to cause cancer using genetic data alone would 

require astronomical sample sizes. Mechanistic studies are thus critical for conclusively 

determining that a particular gene is essential for cancer formation, and for identification of 

sets of genes that are sufficient for tumorigenesis. In principle, individual driver genes and 

their combinations could be identified and validated using particular primary cell types. 

Previously using primary cells, particular combinations of oncogenes that can transform 

specific types of human cells including colon, pancreatic, prostate and lung epithelial cells 

have been identified39,40,41. Our approach allows more precise control of cell identity, 

facilitating analysis of interactions between lineage-determining factors and oncogenes. In 

addition, approaches using primary cells are severely limited by the fact that for most tissues, 

sufficient amounts of live human tissue material are hard to obtain. Furthermore, the cell type 

of origin for most cancer types is not known, and it is commonly assumed that tumors 

originate from rare and hard-to-isolate subpopulations of cells (e.g. stem cells, or transient 

progenitor cells in the case of pediatric tumors). Our results using the novel cellular 

transformation assay show that HFs can be directly converted to lineage-specific cancer. 
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Using this assay, we were able to determine the minimum events necessary for making 

human liver cancer in culture. By using lineage-specific TFs to generate the cell type of 

interest for transformation studies, our molecular approach can be generalized for identifying 

minimal determinants of any cancer type, paving the way towards elucidating the exact 

molecular mechanisms by which specific combinations of mutations cause particular types of 

human cancer. 

 

Methods 

Plasmids and lentiviral production 

Full-length coding sequences for the TFs and oncogenes were obtained from 

GenScript and cloned into the lentiviral expression vector pLenti6/V5-DEST using the 

Gateway recombination system (Thermo Fisher Scientific). Expression construct for 

mCherry (#36084), lentiviral Cas9 expression construct LentiCas9-Blast (#52962) and a 

cloning backbone lentiGuide-Puro (#52963) were obtained from Addgene, and the six pairs 

of single-stranded oligos corresponding to the guide sequences targeting the TP53 gene in the 

GeCKO library were ordered from IDT, annealed, and ligated into lentiGuide-Puro 

backbone42. For virus production, the plasmids were co-transfected with the packaging 

plasmids psPAX2 and pMD2.G (Addgene #12260 and #12259, respectively) into 293FT cells 

(Thermo Fisher Scientific) with Lipofectamine 2000 (Thermo Fisher Scientific). Fresh 

culture medium was replenished on the following day, and the virus-containing medium was 

collected after 48 h. The lentiviral stocks were concentrated using Lenti-X concentrator 

(Clontech) and stored as single-use aliquots. 

 

Cell lines and generation of iHeps 

Human foreskin fibroblasts (HFF, CCD-1112Sk) and human fetal lung (HFL) 

fibroblasts were obtained from ATCC (#CRL-2429 and #CCL-153, respectively) and 
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cultured in fibroblast medium (DMEM supplemented with 10% FBS and antibiotics, Thermo 

Fisher Scientific). LentiCas9-Blast virus was transduced to early-passage fibroblasts (MOI = 

1) with 8 µg/ml polybrene. Blasticidin selection 4 µg/ml was started two days after 

transduction and continued for two weeks. Early passage blasticidin-resistant cells were used 

in the reprogramming experiments by transducing cells with constructs for TF expression in 

combinations reported earlier by Morris et al. (FOXA1, HNF4A, KLF5)23, Du et al. (HNF4A, 

HNF1A, HNF6, ATF5, PROX1, CEBPA)21 and Huang et al. (FOXA3, HNF4A, HNF1A)22 

with MOI = 0.5 for each factor and 8 µg/ml polybrene (day 1). The medium was changed to 

fresh fibroblast medium containing β-mercaptoethanol on day 2 and to a defined hepatocyte 

growth medium (HCM, Lonza) on day 3. On day 6, the cells were passaged on plates coated 

with type I collagen (Sigma) in several technical replicates, and thereafter, the HCM was 

replenished every two–three days.  

 

Generation of HCC-like cells 

The iHeps generated using the three TFs (FOXA3, HNF4A, HNF1A) were passaged 

on type I collagen-coated plates on day 19 after iHep induction (p2) in HCM and transduced 

with different combinations of lentiviral constructs encoding the oncogenes (CTNNB1, 

MYC, TERT) on day 21 (MOI = 1 for each factor with 8 µg/ml polybrene). For 

CMT+sgTP53 condition, the oncogenes were transduced along with a pool of six sgRNAs 

targeting the TP53 gene. Fresh HCM was replenished on the day following the transduction, 

cells were maintained in HCM, and passaged when close to confluent. From fifth passaging 

onwards after oncogene induction, cells were maintained in HCM supplemented with 1% 

defined FBS (Thermo Fisher Scientific). For single-cell RNA-sequencing experiments, the 

iHeps were transduced with CMT oncogenes (MOI = 1 with 8 µg/ml polybrene) on day 8 

with fresh HCM replenished on day 9, and the cells were harvested for single-cell RNA-
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sequencing at the indicated time points from replicate culture wells. In all experiments, viral 

construct for mCherry expression was co-transduced with the oncogenes. 

 

 

Xenografts 

Oncogene-induced CMT and CMT+sgTP53 cells were harvested at p20, 107 cells 

were resuspended in HCM supplemented with 1% defined FBS and mixed with equal volume 

of Matrigel (growth factor reduced basement membrane matrix, Corning #356231) and 

injected subcutaneously into the flank of a 6-week old immunodeficient BALB/c nude male 

mice (Scanbur). In vivo imaging of the tumors was performed for the mice under isoflurane 

anesthesia using the Lago system (Spectral Instruments Imaging). Photon counts from the 

mCherry were detected with fluorescence filters 570/630 nm and superimposed on a 

photographic image of the mice. Tumors were harvested 23-25 weeks after injection. All the 

experiments were performed according to the guidelines for animal experiments at the 

University of Helsinki and under license from appropriate Finnish Review Board for Animal 

Experiments. 

 

SKY analysis 

Spectral karyotype analysis was performed at Roswell Park Cancer Institute 

Pathology Resource Network.  Cells were treated for 3 hours with 0.06 µg/ml of colcemid, 

harvested and fixed with 3:1 methanol and acetic acid.  Metaphase spreads from fixed cells 

were hybridized with SKY probe (Applied Spectral Imaging) for 36 hours at 37 degrees 
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Celsius.  Slides were prepared for imaging using CAD antibody kit (Applied Spectral 

Imaging) and counterstained with DAPI. Twenty metaphase spreads for each cell line were 

captured and analyzed using HiSKY software (Applied Spectral Imaging). 

 

RNA isolation, qPCR and bulk RNA-sequencing 

Total RNA was isolated from the control fibroblasts, iHeps harvested at day 5 and at 

weeks two, three, and four, CMT and CMT+sgTP53 cells harvested at p20, and from tumor 

tissues stored in RNALater (Qiagen), using RNeasy Mini kit (Qiagen) with on-column 

DNase I treatment. For qRT-PCR analysis, cDNA synthesis from two biological replicates 

was performed using the Transcriptor High-fidelity cDNA synthesis kit (Roche) and real-

time PCR using SYBR green (Roche) with primers specific for each transcript (Extended 

Data Table 1). The Ct values for the target genes were normalized to those of GAPDH, and 

the mean values of sample replicates were shown for different conditions at the indicated 

time points. RNA-sequencing was performed from three biological replicate samples for each 

condition, using 400 ng of total RNA from each sample for poly(A) mRNA capture followed 

by stranded mRNA-seq library construction using KAPA stranded mRNA-seq kit for 

Illumina (Roche) as per manufacturer’s instruction. Final libraries with different sample 

indices were pooled in equimolar ratios based on quantification using KAPA library 

quantification kit for Illumina platforms (Roche) and size analysis on Fragment Analyzer 

(AATI) and sequenced on HiSeq 4000 (Illumina). 

For preprocessing and analysis of the RNA-Seq reads the SePIA pipeline43 based on 

the Anduril framework44 was used. Quality metrics from the raw reads were estimated with 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and Trimmomatic45 

clipped adaptors and low-quality bases. After trimming, reads shorter than 20bp were 

discarded. Kallisto (v0.44.0) with Ensembl v8546 was used for quantification followed by 

tximport47 and DESeq248 (v1.18.1) for differential expression calculating log2(fold change) 
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and standard error from triplicate samples. Gene set enrichment analysis49 was performed 

using GSEAPY (version 0.9.8) by ranking differentially expressed genes based on their -

log10(p-value)*sign(fold-change) as metric. The gene signatures analysed for enrichment 

were collected from Molecular Signatures Database (MSigDB, version 6.2). 

 

Single-cell RNA-sequencing 

For single cell RNA-sequencing (scRNA-seq), iHeps at different time points were 

harvested, washed with PBS containing 0.04% bovine serum albumin (BSA), resuspended in 

PBS containing 0.04% BSA at the cell density of 1000 cells / µl and passed through 35 µm 

cell strainer. Library preparation for Single Cell 3’RNA-seq run on Chromium platform (10x 

Genomics) for 4000 cells was performed according to manufacturer’s instructions and the 

libraries were paired-end sequenced (R1:27, i7-index:8, R2:98) on HiSeq 4000 (Illumina). 

Preprocessing of scRNA-seq data, including demultiplexing, alignment, filtering, barcode 

counting, and unique molecular identifier (UMI) counting was performed using CellRanger.  

To filter low quality cells, cells with fewer than 50,000 mapped reads, cells 

expressing fewer than 4000 genes or cells with greater than 6% UMI originating from 

mitochondrial genes were excluded. All genes that were not detected in at least 5 cells were 

discarded. From each sample, 500 cells were down-sampled for further analysis. The data 

was normalized and log-transformed using Seurat30 (version 2.3.4). A cell cycle phase-

specific score was generated for each cell, across five phases (G1/S, S, G2/M, M and M/G1) 

based on Macosko et al.50 using averaged normalized expression levels of the markers for 

each phase. The cell cycle phase scores together with nUMI and percentage of UMIs 

mapping to mitochondrial genes per cell were regressed out using a negative binomial model. 

The graph-based method from Seurat was used to cluster the cells. The first 30 PCs were 

used in construction of SNN graph, and 10 clusters were detected with a resolution of 0.8. 

Markers specific to each cluster were identified using the “negbinom” model. Pseudotime 
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trajectories were constructed with URD51 (version 1.0.2). The RNA velocity analysis was 

performed using velocyto32 (version 0.17). 

 

Oil-Red-O- and PAS-staining 

Oil-Red-O and Periodic Acid-Schiff (PAS) staining were performed according to the 

manufacturer’s recommendation (Sigma). Briefly, for Oil-Red-O-staining, cells were fixed 

with paraformaldehyde (4%) for 30 mins, washed with PBS, incubated with 60% isopropanol 

for 5 mins and Oil-Red-O working solution for 10 mins, and washed twice with 70% ethanol. 

For PAS-staining, cells were fixed with alcoholic formalin (3.7%) for 1 min, incubated with 

PAS solution for 5 mins and Schiff’s reagent for 15 mins with several washes with water 

between each step, and counter-stained with hematoxylin. 

 

ATAC-seq 

Fibroblasts and CMT+sgTP53 cells (p20) were harvested and 50,000 cells for each 

condition were processed for ATAC-seq libraries using previously reported protocol52 and 

sequenced PE 2x75 NextSeq 500 (Illumina). The quality metrics of the FASTQ files were 

checked using FASTQC and the adapters were removed using trim_galore. The reads were 

aligned to human genome (hg19) using BWA, and the duplicate reads and the mitochondrial 

reads were removed using PICARD. The filtered and aligned read files were used for peak 

calling using MACS2 and for visualizing the traces using the IGV genome browser. 

 

NaNoME-seq (NOME-seq using Nanopore sequencing) 

To profile chromatin accessibility using GC methylase using NOME-seq protocol37 

and ability of Nanopore sequencing to detect CpG methylation without bisulfite conversion 

and PCR, we adapted the NOME-seq protocol for Nanopore sequencing on Promethion 

(NaNoME-seq). The nuclei isolation and treatment with GC methylase (M.CviPI) was 
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performed as described earlier37. The DNA was isolated from GC methylase treated nuclei by 

phenol chloroform followed by ethanol precipitation. The sequencing library for Promethion 

was prepared using the 1D genomic DNA by ligation kit (SQK-LSK109) as per 

manufacturer’s recommendation and we loaded 50 fmol of final adapter-ligated high 

molecular weight genomic DNA to the flow cells for sequencing. After sequencing and 

basecalling, the Nanopore reads were aligned to GRCh37 reference genome with 

minimap253. Nanopolish54 was modified to call methylation in GC context. In total, 11Gbp of 

aligned read data from PCR amplified and GC methylated sequencing run was used to learn 

emission model for methylated GC sites. The learning process followed 

https://github.com/jts/methylation-analysis/blob/master/pipeline.make with adjustments for 

using human genome data and minimap2. For nuclear extract NaNoMe samples, methylation 

status was separately called for GC and CG sites.  Similar independent method was recently 

described in a preprint by Lee et al  (https://www.biorxiv.org/content/10.1101/504993v2). 

Reads with consecutive stretch of at least 80 GC sites with at least 75% methylated were 

filtered out due to expected cell free DNA contamination during library preparation as in 

Shipony et al. (https://www.biorxiv.org/content/10.1101/504662v1). The per site methylation 

levels in Fig. 4c are mean smoothed with triangular kernel 5 sites wide. Fibroblast and 

CMT+sgTP53 NaNoMe analyses used 20.3Gbp and 24.8Gbp of aligned data, respectively. 
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Figure 1: Generating proliferative induced hepatocytes using defined transcription 
factors and oncogenic drivers. 
a, Schematic outline of the cell transformation assay for making lineage-specific cancer by 
lentiviral expression of three lineage-specific TFs to convert HFs to induced hepatocytes 
(iHep) and defined oncogenic drivers to transform iHeps to proliferating and tumorigenic 
cells.  
b, Comparison of TF combinations21,22,23 for converting human fibroblasts to iHeps by 
detecting transcript levels for liver marker genes (ALBUMIN, TRANSFERRIN and 
SERPINA1/a-1-antitrypsin) by qRT-PCR at different time points after iHep conversion, 
normalized to GAPDH levels (mean ± standard error).  
c, Phase contrast microscope images showing the phenotype and morphology of the cells in 
the course of conversion of fibroblasts to iHeps at different times points after transduction of 
a cocktail of three TFs HNF1A, HNF4A and FOXA322.  
d, Generation of highly proliferative iHep cells by transducing iHeps with two pools of liver 
cancer-specific oncogenic drivers. CMT pool contains three oncogenes CTNNB1T41A, MYC, 
and TERT, and CMT+sgTP53 pool contains the same oncogenes along with constructs for 
TP53 inactivation by CRISPR-Cas9. Phase contrast microscope images showing the 
phenotype and morphology of the cells. Mutation rates of the oncogenic drivers as reported in 
the COSMIC database for HCC and MYC amplification as reported in28. Oncogenes are co-
transduced with fluorescent reporter mCherry for detection of transduced cells. Oncogene 
transduction to fibroblasts fails to transform the cells, passaging of oncogene-expressing 
fibroblasts as well as iHeps without oncogenes results in apoptosis after few passages. Scale 
bar 1000 µm unless otherwise specified. 
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Figure 2: Tumorigenic properties of the transformed iHeps. 
a, Subcutaneous injection of proliferating iHeps results in xenograft tumors in nude mice 
(tumor size of 1.5 cm ~ 23 weeks after xenotransplantation). Proliferative iHeps transduced 
with defined CMT oncogenes with TP53 inactivation (CMT+sgTP53) or control iHeps 
without oncogenes were used in the injections.  
b, In vivo imaging of xenograft tumors ~12 weeks after implantation. Two biological 
replicate experiments are shown for CMT+sgTP53 cells with iHep conversion and oncogene 
transduction with TP53 inactivation performed in two separate human fibroblast cell lines 
(foreskin fibroblast [left] and fetal lung fibroblast [middle]) as well as proliferative CMT 
iHeps without TP53 inactivation (right).  Fluorescence signal emitted by mCherry co-
transduced with the oncogenes is detected in vivo using the Lago system (scale bar = radiance 
units). Control mice are injected with either fibroblasts or iHeps. 
c, Analysis of chromosomal aberrations in the transformed iHeps by spectral karyotyping. 
CMT+sgTP53 cells were analyzed at passage 18 (early) and p50 (late) and CMT cells at 
passage 18. Fibroblasts have normal diploid karyotype (46, XY, representative spectral image 
on left) and transformed iHeps show aneuploidies as indicated in the figure. Early passage 
CMT+sgTP53 cells show two different populations with two distinct modal chromosome 
numbers (45, XY and 67-92, XY, representative spectral image for 45, XY on middle-left). 
Late passage CMT+sgTP53 cells have modal chromosome number 67-92, XY (middle-right) 
and CMT cells 75, XY (right).   
d, Frequencies of chromosomal alterations reported for human HCC samples (see29). 
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Figure 3: Transformed iHeps show gene expression profile similar to liver cancer. 
a, t-SNE of single cells from fibroblasts, iHeps at one–three weeks after iHep induction, and 
iHeps transduced with CMT oncogenes at one week and harvested for scRNA-seq two weeks 
later. Cells are colored by sample, and sample collection timeline is indicated.  
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b, t-SNE of cells clustered according to their similar gene expression profiles. Each dot 
represents a data point for individual cell and the cells with similar gene expression profiles 
are colored according to the clusters.  
c, Principal component analysis (PCA) projection of single cells shown with velocity field 
with the observed states of the cells shown as circles and the extrapolated future states shown 
with arrows for the first two principal components. Cells are colored by cluster identities 
corresponding to Fig. 3b. 
d, Clustered heatmap showing the relative expression levels of cluster-specific marker genes 
(the expression of a gene in a particular cell relative to the average expression of that gene 
across all cells) from single cell RNA-seq analysis. Color code illustrating sample and cluster 
identities correspond to the colors in Fig. 3a and b, respectively.  
e, Relative expression of the genes from the Notch signaling pathway across pseudotime in 
the single-cell RNA-seq data (the expression of a gene in a particular cell relative to the 
average expression of that gene across all cells). Color code illustrating sample and cluster 
identities correspond to the colors in Fig. 3a and b, respectively. 
f, Gene set enrichment analysis (GSEA) results for CMT-iHeps and CMT+sgTP53-iHeps 
compared to control fibroblasts against liver cancer signature (Subclass 236) from molecular 
signatures database (MSigDB). Positive normalized enrichment score (NES) reflects 
overrepresentation of liver cancer signature genes among the top ranked differentially 
expressed genes in CMT-iHep and CMT+sgTP53-iHep conditions compared to control 
fibroblasts. 
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Figure 4: Direct conversion of human fibroblasts to liver cancer cells. 
a, Differential expression levels [log2(fold change)] of marker genes for fibroblasts, 
hepatocytes, and liver cancer, and fibroblasts in bulk RNA-seq measurements from 
CMT+sgTP53-iHeps, CMT-iHeps and xenograft tumor from CMT+sgTP53 against control 
fibroblasts (±standard error). 
b, IGV snapshots for promoter regions of representative genes from fibroblast markers 
(MMP3), liver markers (SERPINA1/a-1-antitrypsin), and liver cancer markers (SAA1) 
showing ATAC-seq enrichment from fibroblast and CMT+sgTP53-iHeps. 
c, Chromatin accessibility and CpG methylation of DNA measured using NaNoMe-seq. 
Cytosine methylation detected using Nanopore sequencing from CMT+sgTP53-iHeps and 
control fibroblasts is shown for promoter regions of representative genes from fibroblast 
markers (MMP3), liver markers (SERPINA1/a-1-antitrypsin), and liver cancer markers 
(SAA1) using a window of TSS ±1500 bp. GpCpH methylation (all GC sequences where the 
C is not part of a CG sequence also, top) reports on chromatin accessibility, whereas HpCpG 
methylation reports on endogenous methylation of cytosines in the CpG context. 
d, Schematic presentation of the molecular approach for identifying minimal determinants of 
tumorigenesis in specific tissues. Lineage-specific transcription factors are used to reprogram 
human fibroblasts to precise cellular identity (left), whose transformation by specific 
combinations of oncogenes (right) can then be tested. This approach, combined with single-
cell RNA-seq and RNA velocity analyses allows also analysis of which cell type along the 
stem cell to terminally differentiated cell axis (top to bottom) is susceptible for 
transformation. 
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