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ABSTRACT 

Although genotyping-by-sequencing (GBS) is a well-established marker technology in diploids, 

the development of best practices for tetraploid species is a topic of current research. We 

determined the theoretical relationship between read depth and expected genotype quality (EGQ) 

for tetraploid vs. diploidized genotype calls. If the GBS method has 1% error, then 17 reads are 

needed to classify tetraploid samples as heterozygous vs. homozygous with 95% accuracy, 

compared with 63 reads to determine allele dosage. We developed an R script to convert 

tetraploid GBS data in Variant Call Format (VCF) into diploidized genotype calls and applied it 

to 267 interspecific hybrids of the tetraploid forage grass Urochloa (syn. Brachiaria). When 

reads were aligned to a mock reference genome created from GBS data of the U. brizantha 

cultivar ‘Marandu’, 25,678 bi-allelic SNPs were discovered, compared to approximately 3000 

SNPs when aligning to the closest true reference genomes, Setaria viridis and S. italica. Cross-

validation revealed that missing genotypes were imputed by the Random Forest method with a 

median accuracy of 0.85, regardless of heterozygote frequency. Using the Urochloa spp. hybrids, 

we illustrated how filtering samples based only on GQ creates genotype bias; a depth threshold 

with corresponding EGQ equal to the GQ threshold is also needed, regardless of whether 

genotypes are called using a diploidized or allele dosage model. 
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INTRODUCTION 

Urochloa is the most cultivated genus as pasture on tropical livestock farms due to its 

tolerance to acidic soils, good carrying capacity, insect resistance, and nutritional value (Jank et 

al., 2014; Pessoa-Filho et al., 2017). The most economically important species are U. decumbens 

(syn. Brachiaria decumbens) and U. brizantha (syn. B. brizantha), which are both tetraploid (2n 

= 4x = 36). Apomixis is the normal mode of reproduction in these species, and for many years 

genetic improvement in South America was based on screening new introductions from Africa 

(Miles, 2007; Jank et al., 2011). To facilitate breeding by sexual hybridization, Swenne et al. 

(1981) utilized colchicine-induced tetraploids of the diploid species U. ruziziensis (2n = 2x = 18) 

as female parents to cross with apomictic tetraploids. This interspecific hybridization scheme has 

become the foundation of the Urochloa spp. breeding programs at CIAT and EMBRAPA (Lutts 

et al., 1991; Miles et al., 2006; Monteiro et al., 2016).  

As in other crops, genome-wide markers can provide significant value for Urochloa spp. 

breeding programs. Several previous studies have utilized microsatellite markers to study 

population structure in Urochloa (Jungmann et al., 2010; Vigna et al., 2011; Silva et al., 2013), 

but the ubiquity and cost-effectiveness of SNPs are advantageous for discovering genetic 

variants and predicting complex traits. Arrays and genotyping-by-sequencing (GBS) of 

multiplexed, reduced-representation libraries have been utilized to generate large, bi-allelic SNP 

datasets in heterozygous tetraploids, including potato (Felcher et al., 2012; Uitdewilligen et al., 

2013), alfalfa (Li et al., 2014), rose (Koning-Boucoiran et al., 2015), kiwi (Melo et al., 2016), 

and Urochloa spp. (Worthington et al. 2016; Ferreira et al. 2018). Both arrays and GBS generate 

a signal for each allele that can be used to predict allele dosage, i.e., the tetraploid genotype. For 

the SNP array, signal intensity is not necessarily proportional to allele dosage, and therefore 

different classification algorithms have been explored (Voorrips et al., 2011; Serang et al., 2012; 

Schmitz Carley et al., 2017).  

For GBS data, the allele signal intensity is the read count, which can be analyzed using the 

aforementioned classifiers, but the focus of this manuscript is genotype calling based on a 

binomial model. The binomial model is central to the well-established software packages GATK 

(McKenna et al., 2010; Depristo et al., 2011) and FreeBayes (Garrison and Marth, 2012), as well 

as more recent tools developed specifically for polyploids (Blischak et al. 2018; Clark et al. 

2018; Gerard et al. 2018). It is generally recognized that higher read depth is needed to estimate 

allele dosage in polyploids, but precise guidelines are lacking. Uitdewilligen et al. (2013) 
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developed KASP assays for 270 GBS markers in potato and compared the genotype calls from 

the two methods; the results under different filtering criteria led the authors to conclude that 

“~60-80X can be used as a lower boundary for reliable assessment of allele copy number….” 

Bastien et al. (2018) used a threshold of 53 reads for determining allele dosage in potato because 

it was deemed “sufficient to distinguish between the five expected genotypic classes based on a 

chi-square distribution.”  

Our first objective was to use probability theory to clarify the relationship between read 

depth and genotype quality (GQ) in tetraploids. GQ is a standard metric in the FORMAT field of 

the VCF file and defined as −10	log()(𝑞), where 𝑞 is the probability that the genotype call is 

erroneous (Danecek et al., 2011). Theoretical results were used to guide the analysis of GBS data 

for a panel of 267 U. ruziziensis x U. brizantha hybrids. Because few markers had sufficient read 

depth to determine allele dosage with reasonable accuracy, genotype calls were made using a 

diploid approximation, in which the three heterozygotes were not distinguished. This 

approximation is common for GBS in heterozygous tetraploids, and typically a threshold of 11 

reads is used to ensure the probability of misclassifying a heterozygote as homozygous is less 

than 5% (Li et al., 2014). However, this threshold is based on the assumption of no error in the 

GBS method, and our theoretical treatment elucidates how the threshold increases with error. 

Even with a diploid approximation, the Urochloa dataset contained missing data. 

Imputation of missing genotypes in GBS datasets has been studied extensively in inbred lines 

and heterozygous diploids, with Hidden Markov Models being the preferred method when a 

genetic or physical map for the markers is available (Hickey et al., 2012; Swarts et al., 2014; 

Fragoso et al., 2015). When a map is not available, as was the case for the Urochloa spp. 

hybrids, the Random Forest algorithm (Breiman, 2001) can still be used and has performed well 

in other species (Rutkoski et al., 2013; Money et al., 2015). Our objectives were to evaluate 

different filtering criteria, references genomes, and imputation accuracy in the tetraploid 

Urochloa dataset. 
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MATERIALS AND METHODS 

Expected Genotype Quality 

A binomial model was used to determine the statistical relationship between read depth 

and expected genotype quality (EGQ) for a particular genotypic class, such as ‘simplex’ for 

tetraploid genotypes or ‘heterozygous’ for diploidized genotypes. Let 𝑓(𝑘, 𝑁, 𝜌) denote the 

probability mass function for the binomial distribution with k successes out of N trials and 

success probability 𝜌. The likelihood of observing k reads of the alternate allele given N total 

reads for tetraploid genotype x Î {0,1,2,3,4} was modeled as	𝑓2 ≡ 𝑓 4𝑘, 𝑁, 𝜌2 =
2
6
[1 − 𝜀] +

;1 − 2
6
< 𝜀= , where the error rate 𝜀 is the probability that a read is generated by one allele but 

counted toward the other (e.g., due to errors during PCR or sequencing). Under a uniform prior, 

the maximum a posteriori (MAP) tetraploid genotype call for the observed result (k,N) is the 

value of x that maximizes fx. For some values of k, the MAP solution does not equal the true 

value. Summing f over these values of k, and expressing the result on the phred scale, leads to the 

following expression for EGQtet: 

EGQABA(𝑥, 𝑁, 𝜀) = −10 log()D𝑓(𝑘,𝑁, 𝜌2)[1 − 𝛿(𝑥,MAPABA)]
I

JK)

 [1] 

The symbol 𝛿 in Eq. 1 is the Kronecker delta function, which equals 1 when its two arguments 

are equal and 0 when they are unequal. (While this manuscript was in preparation, Gerard et al. 

(2018) independently published a result similar to Eq. 1 called the “oracle misclassification error 

rate.” ) 

For diploidized genotype calls, the three possible genotypic states are denoted {𝐴, 𝐻, 𝐵}, 

where the heterozygous state H = dosages 1, 2, or 3, and the homozygous states A = dosage 0 

and B = dosage 4. The corresponding 3-vector of posterior probabilities is proportional to 

(𝑝R, 𝑝S, 𝑝T) ≡ (𝑓), 𝑓( + 𝑓U + 𝑓V, 𝑓6), and the MAP solution for the observed result (k,N) is the 

value of j that maximizes pj. For some values of k, the MAP solution does not equal the 

diploidized genotype y corresponding to the true tetraploid state x. Summing f over these values 

of k, and expressing the result on the phred scale, leads to the following expression for EGQdip: 

EGQWXY(𝑥, 𝑁, 𝜀) = −10 log()D𝑓(𝑘,𝑁, 𝜌2)Z1 − 𝛿(𝑦,MAPWXY)\
I

JK)

 [2] 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525618doi: bioRxiv preprint 

https://doi.org/10.1101/525618


5 
 

Although Eq. 1 and 2 tend to increase with read depth, they are not monotone functions of N. 

Our results for EGQ correspond to the monotone extension 

𝜙(𝑥, 𝑁, 𝜀) = min
abI

EGQ(𝑥,𝑀, 𝜀) [3] 

which has the property 𝜙(𝑥, 𝑁, 𝜀) ≥ 𝜙(𝑥,𝑀, 𝜀) for N > M. Using the R programming language 

(R Development Core Team, 2017), a function was created (Supplemental File S1) to calculate 

𝜙(𝑥, 𝑁, 𝜀). 

 

GBS of Urochloa spp. 

 Genomic DNA was extracted using the Qiagen DNeasy kit for 267 tetraploid U. ruziziensis 

x U. brizantha hybrids from Embrapa Beef Cattle, as well as for the U. brizantha cultivar 

‘Marandu’. GBS libraries were prepared according to Elshire et al. (2011), using the ApeKI 

enzyme and sequenced on five lanes of the Illumina Hi-Seq 2500 platform with 1x100 bp reads. 

Reads were demultiplexed and trimmed using Cutadapt (Martin, 2011) and then aligned to five 

different Poaceae genomes with bwa-mem (Li, 2013): Setaria viridis (DOE-JGI, 2018a), Setaria 

italica (Bennetzen et al., 2012), Sorghum bicolor (DOE-JGI, 2018b), Oryza sativa (Ouyang et 

al., 2006), and Zea mays (Schnable et al., 2009). The alignment percentage for each reference 

was evaluated with Bowtie2 (Langmead and Salzberg, 2012). Reads were also aligned to a U. 

brizantha mock reference genome generated from the reads for ‘Marandu’ with the GBS-SNP-

CROP pipeline (Melo et al., 2016). The Genome Analysis Toolkit (GATK, McKenna et al., 

2010; Depristo et al., 2011) HaplotypeCaller was used for SNP discovery, followed by removal 

of SNPs that did not meet the recommended thresholds (GATK, 2016): FS (Fisher Strand Bias) £ 

60.0, MQ (RMS Mapping Quality) ³ 40.0, MQRankSum (Rank Sum Test for Mapping Quality) 

³ -12.5, ReadPosRankSum (Rank Sum Test for Read Position) ³ -8.0.  

Using the R programming language, a function was created (readVCF, Supplemental File 

S2) to process the VCF file and perform additional filtering. Only bi-allelic SNPs were retained. 

The VCF file includes variants relative to the reference genome, regardless of whether they are 

polymorphic in the genotyped population. To identify polymorphic markers, the total number of 

reads for the minor allele, or minor allele depth (MAD), was calculated for each marker based on 

the AD field, and variants with MAD < 2 were removed. GATK calculates allele frequency 

based on the dosage of called genotypes, which was deemed unreliable due to low read depth. A 

suitable proxy for filtering that does not require allele dosage information is the frequency of 

genotypes homozygous for the major allele (HMA), which was capped at 0.99. For each sample, 
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GATK provides the phred-scaled likelihood (PL) for each of the 5 tetraploid genotypes, which 

was converted into a posterior probability pi for genotype i Î {0,1,2,3,4} (assuming a uniform 

prior) by 

𝑝e =
10fghi/()

∑ 10fghi/()6
eK)

		. 

The tetraploid genotype call corresponds to the largest probability, and GQABA = −10 log() 41 −

max
e
𝑝e=. 

Due to the low read depth per sample in the Urochloa dataset, diploidized genotype calls 

were made in which the three heterozygous genotypes were not differentiated. This corresponds 

to defining a new vector of posterior probabilities, 𝐩p = (𝑝), 𝑝( + 𝑝U + 𝑝V, 𝑝6), in which the 

probability of the heterozygous state is the sum of the probabilities for the simplex, duplex, and 

triplex genotypes. The diploidized genotype call corresponds to the largest probability, and 

GQWXY = −10 log() 41 − maxe 𝑝qe=. 

Missing genotypes were imputed with the R package randomForest (Liaw and Wiener, 

2002; Supplemental File S3), which is based on the algorithms in Breiman (2001). For each 

marker, a training set of 100 clones was randomly selected from the clones with genotypes, and 

all other clones with genotype data were used for validation. Because each marker had no more 

than 50% missing data, this ensured at least 33 clones were available for validation. 300 

classification trees were used for prediction, and all markers with r2 ≥ 0.1 were used as m 

potential predictors. We used the default setting of randomly sampling √𝑚 predictors at each 

split. Classification accuracy is the proportion of clones in the validation set for which the 

predicted genotype is correct.  
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RESULTS 

Expected Genotype Quality 

A binomial model was used to determine the statistical relationship between read depth 

and expected genotype quality (EGQ) for a particular genotypic class, such as ‘simplex’ for 

tetraploid genotypes or ‘heterozygous’ for diploidized genotypes. EGQ involves the expectation 

over all possible allele counts at a particular depth, whereas GQ corresponds to a particular allele 

count. In addition to read depth, the other key parameter affecting EGQ is the error rate, defined 

as the probability that a read is generated by one allele but counted toward the other (e.g., due to 

errors during PCR or sequencing). Since EGQ is reported on the phred scale, a score of 13 

corresponds to 95% accuracy, and a score of 20 corresponds to 99% accuracy.  

 

 
Figure 1. Expected Genotype Quality (EGQ) as a function of read depth, for two different allele error 
rates.  

 
 

Figure 1 shows how EGQ differs for simplex vs. duplex genotypes, as well as when allelic 

dosage is estimated (blue) vs. diploidized calls (green). Higher accuracy is achieved for simplex 
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compared to duplex samples when allelic dosage is determined, but under diploidized genotype 

calling the reverse is true. The intuitive reason for this result is that a duplex genotype can appear 

as either simplex or triplex due to sampling variation, but comparable uncertainty for the simplex 

genotype exists only in the direction of higher dosage (i.e., with the duplex). If dosage is not 

determined, however, then simplex genotypes are more readily confounded with nulliplex 

homozygotes than duplex samples are with either homozygote. In the absence of error (solid 

lines), 11 reads are needed to make diploidized genotype calls with 95% accuracy, compared 

with 61 reads for tetraploid genotypes. As Figure 1 shows, allelic errors have a greater effect on 

EGQdip than EGQtet. With 1% error (dashed lines), the minimum depth needed to achieve 95% 

accuracy for diploidized genotypes increases to 17 reads, while the minimum depth for tetraploid 

genotypes increases to 63 reads.  

 

GBS of Urochloa spp. hybrids 

As no reference genome for the Urochloa spp. hybrids was available, the reference 

genomes of five other Poaceae species were evaluated for alignment. Figure 2 shows the number 

and percentage of aligned reads from the ApeKI-reduced representation of the U. brizantha 

cultivar ‘Marandu.’ The percentage of reads aligned was low for all genomes, ranging from 

1.92% for Oryza sativa to 7.88% for Setaria italica. For both Setaria species and Sorghum 

bicolor, over 3/4 of the aligned reads mapped to a unique location. For Oryza sativa and Zea 

mays, this proportion decreased to 1/2. The same five genomes were compared with respect to 

variant discovery in a panel of 267 tetraploid U. ruziziensis x U. brizantha hybrids. After 

removing variants with median depth < 8, the two Setaria species generated the most bi-allelic 

SNPs, in the range 2809–3203 (Table 1).  

 
Table 1. Number of bi-allelic SNPs with < 50% missing data based on a minimum sample depth of 8. 

 Reference # SNPs 

U. brizantha  25,678 
S. viridis 3,203 
S. italica 2,809 
S. bicolor 1,331 
Z. mays 763 
O. sativa 571 
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Figure 2. Number and percentage of reads from the U. brizantha cultivar ‘Marandu’ that aligned to five 
Poaceae reference genomes.   
 
 
 

To better utilize the GBS reads, a mock reference genome was built by clustering the 

trimmed reads from ‘Marandu’ into 1,309,910 non-redundant, consensus sequences, or 

“centroids” (Melo et al., 2016). A highly repetitive sequence was detected in the centroids, for 

which the first 50 bp are  

GAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCC.  

The entire 50 bp was present in 3.3% of the centroids, and when truncated to the first 40 or 30 

bp, the frequency increased to 8.5% and 14.9%, respectively. The repetitive sequence was also 

detected in all 267 hybrids. A nucleotide BLAST search of the 50 bp sequence against the NCBI 

database returned highly significant matches to a diverse set of species, including Larimichthys 

crocea and Cyprinus carpio (100% identity across 49 bp), Triticum aestivum and Solanum 

pennellii (98% identity across 50 bp).  

When the GBS reads for the 267 hybrids were aligned to the centroids, the number of bi-

allelic SNPs with median depth ≥ 8 increased to 25,678 (Table 1). According to the binomial 
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model, a depth threshold of 8 reads corresponds to EGQdip = 10 for simplex genotypes (assuming 

no GBS error). Figure 3 is a histogram of the GQ scores for all 153,589 genotypes (sample x 

marker combinations) with depth = 8 in the filtered dataset. The peak at GQdip = 10 for 

homozygous genotypes illustrates how EGQdip of the simplex (or triplex) genotype constrains 

GQ for homozygotes. By contrast, the heterozygous genotype calls with depth = 8 have GQ 

scores over 30. According to the binomial model, a depth threshold of 42 is needed for EGQtet ≥ 

10 (assuming no GBS error). As only 2,338 SNPs had median depth ≥ 42, tetraploid genotype 

calls were not pursued.  

 
 

 
Figure 3. Distribution of genotype quality (GQdip) scores for diploidized genotypes with sample depth = 8 
in a filtered set of 25,678 SNPs, discovered using the U. brizantha mock reference genome for alignment. 

Heterozygous samples (“Het”) are shown in light gray, and homozygous samples (“Hom”) are shown in 
dark gray. 
 
 

The cumulative distribution in Figure 4 reveals the SNP dataset is dominated by rare 

alleles. The x-axis of Fig. 4 is the genotype frequency of clones homozygous for the major allele 

(HMA), and the y-axis is the proportion of SNPs for which the HMA frequency is less than or 

equal to the x-axis value. The SNP counts in Table 1 are based on an upper limit of 0.99 for 

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30+
GQ

Fr
eq
ue
nc
y

Het
Hom

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525618doi: bioRxiv preprint 

https://doi.org/10.1101/525618


11 
 

HMA, and 51% of the SNPs discovered with the mock reference genome had HMA genotype 

frequencies between 0.95 and 0.99.  

 
 

 
 
Figure 4. Cumulative distribution for the genotype frequency of clones homozygous for the major allele 
(HMA), based on 25,678 bi-allelic SNPs discovered using the U. brizantha mock reference genome for 
alignment. The y-axis is the proportion of SNPs for which the HMA frequency is less than or equal to the 
x-axis value. 

 

 

Genotype Imputation 

The success of genotype imputation depends on the amount of linkage disequilibrium (LD) 

between markers, which is often quantified by the physical distance at which r2 (the squared 

correlation) drops below some threshold. Since a physical reference genome was unavailable for 

this study, LD was quantified based on the maximum r2 for each SNP. Figure 5A shows the 

distribution of r2max  for the 3,230 SNPs from the filtered dataset that are 25–75% heterozygous, 

to capture a range of difficulty for imputation. The median value of r2max was 0.4–0.5 for 
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heterozygote frequencies below 0.5 but gradually decreased as the proportion of heterozygotes 

increased toward 0.75.  

Cross-validation accuracy was determined with a training set of 100 clones, selected at 

random from all clones with genotype data for a particular marker. The accuracy shown in 

Figure 5B is the proportion of predicted values equal to the masked value. The results are binned 

by heterozygote frequency, with the median accuracy shown by a solid line and the first and 

third quartiles by dashed lines. Imputation with the population mode is a simple baseline method 

that, by definition, has lower accuracy as the frequency of the modal genotype declines. By 

contrast, the Random Forest method was largely unaffected by heterozygote frequency, with a 

median accuracy of approximately 0.85. 

 

Figure 5. (A) Distribution of the maximum LD (r2) for each marker, binned by heterozygote frequency. 
(B) Imputation accuracy, defined as the proportion of imputed values equal to the masked value.  
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DISCUSSION 

 As mentioned in the introduction, there has been variation in the filtering criteria used in 

previous studies involving GBS of tetraploids. One of the most cited is Uitdewilligen et al. 

(2013), who recommended 60–80X to determine allele dosage. Our theoretical calculations 

indicate this range corresponds to 95–98% genotype accuracy for GBS error rates below 1%. For 

diploidized genotype calling, the threshold of 11 reads in Li et al. (2014) has been commonly 

used by others, which corresponds to 95.8% genotype accuracy in the absence of error but only 

88.1% genotype accuracy when the GBS error is 1%. To achieve 95% genotype accuracy with 

1% GBS error, 17 reads are needed, and 98% genotype accuracy requires 27 reads.  

The need for higher read depth per site to make accurate genotype calls in tetraploids 

underscores the importance of selecting restriction enzymes to optimize the fragment size 

distribution. This study utilized ApeKI, which has a 5 bp recognition sequence, while 

Worthington et al. (2016) and Ferreira et al. (2018) used enzymes with 6 bp recognition 

sequences (HincII and NsiI, respectively) for GBS of Urochloa spp. F1 populations. Future 

research on GBS for Urochloa should explore a two enzyme-system, such as the PstI/MspI 

combination introduced by Poland et al. (2012) for barley and wheat, as a way of generating 

more markers with higher read depth. Bastien et al. (2018) compared ApeKI against PstI/MspI in 

tetraploid potato and obtained tenfold more markers with the two-enzyme system when using a 

minimum sample depth of 53 reads. 

The difference in expected genotype quality for simplex (or triplex) vs. duplex genotypes has 

important implications for filtering GBS data. Setting a minimum GQ value will create bias 

against duplex samples when calling tetraploid genotypes, and against simplex/triplex genotypes 

with diploidized genotypes. Using a depth threshold corresponding to the desired minimum EGQ 

does not introduce this bias, but this does not address the issue of reads with low base or 

mapping quality. A combination of the two approaches seems best, using a depth threshold with 

EGQ equal to the GQ threshold. Supplemental File S1 can be used to calculate EGQ (Eq. 3) for 

any depth and error rate, and Supplemental File S2 can be used to generate matrices (marker ´ 

sample) of tetraploid or diploidized genotype calls and corresponding GQ scores from a VCF 

file. 

The aforementioned considerations are appropriate for genotype calling based on the 

posterior mode. An alternative approach is to estimate allele dosage based on the posterior mean, 

which produces fractional genotype calls (Ashraf et al., 2014; Sverrisdóttir et al., 2017). Such 
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data are suitable when additive models are used in association analysis and genome-wide 

prediction, but a number of genetic analyses require integral estimates of dosage, including 

linkage analysis (Hackett et al., 2013; Zheng et al., 2016), dominance effects (Rosyara et al., 

2016; Endelman et al., 2018), and haplotype inference (Su et al., 2008; Aguiar and Istrail, 2013). 

This study used the traditional approach of setting hard thresholds for genotype calling, 

followed by imputation of the missing data. We used depth and GQ thresholds to achieve 90% 

genotype accuracy and allowed for up to 50% missing data per marker, which were imputed with 

accuracy close to this value (75% of the samples had 80–90% accuracy). We did not explore the 

interplay between GQ threshold and imputation accuracy, but this is an interesting topic for 

future research. It seems appealing to select thresholds to achieve similar accuracy in the samples 

called based on allele counts vs. those that are imputed. Ultimately, the traditional two-step 

approach (threshold then impute) is suboptimal because the read counts for the missing 

genotypes are not utilized during imputation. For ordered markers, this limitation can be 

overcome by using Hidden Markov Models (HMMs) with read counts as the emission states. 

This approach has been used in diploid mapping populations (Fragoso et al., 2015; Bilton et al., 

2018) and can be extended to the HMMs developed for SNP array data in tetraploids (Hackett et 

al., 2013; Zheng et al., 2016). For unordered markers, alternative imputation methods need to be 

explored.  
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