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Abstract 

The student's t-test has been a workhorse of statistical testing and is used to determine if two 

sets of sampled data are significantly different from one another, in a statistical sense. The 

samples of the data may be individual samples or the means – or some overall summary statistic 

– of independently acquired subsets of data (e.g. data from individual observers, neurons, or 

baseball games). The various subsets of data acquired that go into computing the t-statistic are 

likely to be of differing reliability on account of either different variances or of different numbers 

of subsamples corresponding to each subset; while all data are given equal weight in a standard 

t-test, the variation in data reliability across subsets of data needs to be accounted for. Solutions 

based on mixed model methods and Monte Carlo simulations exist, which do factor data 

reliability in computing statistics. However, no such extension exists for the ubiquitous 

student's t-test. Our proposal is a novel variant of the student's t-test that incorporates these 

issues and adopts a simple but effective alteration in the design that accounts for differing levels 

of data reliability.  Specifically, we weighted each data subset by the inverse of the variance of 

the data contained therein, a measure that has been used in studies of Bayesian cue combination, 

or, in the absence of information about variance, by the relative proportion of the overall data 

contained in the subset. The changes proposed here extend the applicability of the student's t-

test to a wider array of data sets. 
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Introduction 

Data acquisition is a process in which the best-planned experiments can often get waylaid by 

random events, which affect the underlying reliability of the data. One way around this issue is 

to simply discard data  that are not of the highest reliability and work with limited data that we 

know are of extremely high reliability. However, one might argue that data acquisition is a 

process that is inherently noise-ridden and unreliable, working with data that are not perfectly 

reliable is a fact of life, discarding data that are at least partly reliable reduces the effect size and 

statistical power, and data that are at least partly reliable also provide some useful information 

and must not be discarded.  

 

Consider the following example from signal processing. A voltmeter measures the voltage in an 

electrical circuit, and the requirement is for the voltage to be above a prescribed value. The 

signal is measured multiple (albeit limited) number of times to get a more accurate value of 

signal voltage; each time the analog signal is digitized by one of a bank of analog to digital 

converters (ADC); the resolution, i.e. number of bits N, of each ADC differs. The signal to noise 

ratio (SNR) of the quantized digital signal varies linearly as a function of N. The average digital 

voltage computed needs to account for the differences in resolution among the different ADCs 

before being statistically compared with the prescribed threshold.  

 

Moreover, some experiments are natural, "real world" experiments that cannot be controlled and 

inevitably generate data that have different amounts of reliability. Here are two examples from 

education and neuroscience (one can think of analogous examples from other areas).  
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Suppose the state introduces a new standardized test and a school has recently instructed its 

teachers to teach to the test, whereas a second neighboring school within the same district has 

done no such thing. In order to find out how well the teachers have succeeded in teaching to the 

test, one needs to compare mean test scores of the students in the teachers' classes in each of the 

two districts. Classes can be and are usually of different sizes – and this is not typically under 

the teacher's control; the reliability of the mean test score obtained from a class size of 10 

students versus a class size of 50 students has to be accounted for.  

 

A second example is from neuroscience. Researchers want to examine the relationship between 

consolidation of overnight learning and power contained in the delta band of frequencies during 

slow-wave sleep (SWS). In order to find out delta power in SWS, one computes the power 

contained in every single 30 second long epoch of SWS and then take the average across all such 

epochs (alternatively, one can combine all the 30 second epochs of SWS across all sleep cycles 

and then compute the power). Here, different individuals have different amounts of SWS and 

the variation in SWS amounts can be large and is not under the experimenter's control. This 

variation in SWS amounts across individuals is a factor that has to be accounted for in 

developing statistical tests. Thus, when acquired under different conditions with different levels 

of reliability or averaged over different numbers of repetitions, data are not equally reliable and 

the differing levels of reliability is an important factor that must be taken into consideration in 

conducting statistical tests.    

 

Therefore, a reasonable alternative is to retain the partly reliable data and weigh the reliability of 

the data relative to the reliability of other data in statistical tests. There are several avenues 

available including mixed model statistics and Monte Carlo methods.  
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The student's t-test is arguably the most commonly used test of statistical significance, and 

clearly the first one taught in AP statistics classes in the country. However, as it stands, the t-

test cannot account for the real world differences in reliability. Here, we offer a modification to 

the t-test that takes into account the reliability of disparate data. 

 

Methods 

The t-statistic is defined by t = Z /s where Z and s are functions of the data; Z is a measure of the 

difference in the means in units of standard deviation of the sample; s is the standard error of the 

mean. More generally, 𝑡𝑡 =  (𝑋𝑋 �−𝜇𝜇)
𝜎𝜎 √𝑁𝑁⁄  where 𝑋𝑋�is the sample mean of a sample 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑁𝑁 of size N, 

𝜇𝜇 is the population mean, and 𝜎𝜎 is the population standard deviation of the data. Samples 

𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑁𝑁 can be individual samples or may themselves be means of independent samples of 

the data, i.e. each 𝑋𝑋𝑖𝑖 is the mean of samples 𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … .𝑋𝑋𝑖𝑖𝑛𝑛𝑖𝑖 , where 𝑛𝑛𝑖𝑖 is the number of samples. 

The formula for the population standard deviation is as follows 

𝜎𝜎 =  �
1

𝑁𝑁 − 1
�(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2
𝑁𝑁

𝑖𝑖=1

 

a) In the latter case, the reliabilities of the individual samples are likely to differ, which is 

otherwise ignored in the conventional formula for the t-statistic. We can define reliability 𝑟𝑟𝑖𝑖 of 

the ith sample as the inverse of the variance 𝜎𝜎𝑖𝑖2 of the ith sample data, i.e.  

𝑟𝑟𝑖𝑖 =  1 𝜎𝜎𝑖𝑖2⁄ . 

Note that [1-3] have used a similar Bayesian formula for weighting the relative reliabilities of 
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sources. We define a new reweighted mean 𝑋𝑋�, which is defined as the following: 

 𝑋𝑋� =  𝑊𝑊���⃗ . 𝑋⃗𝑋 = �𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

where 

𝑊𝑊���⃗ = [𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑁𝑁], 

𝑋⃗𝑋 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁], 

𝑤𝑤𝑖𝑖 =  𝑟𝑟𝑖𝑖
∑ 𝑟𝑟𝑗𝑗𝑁𝑁
𝑗𝑗=1

. 

Note that  

�𝑤𝑤𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖=1

 

The revised weighted population standard deviation 𝜎𝜎� is as follows 

𝜎𝜎� =  �
𝑁𝑁

𝑁𝑁 − 1
�𝑤𝑤𝑖𝑖(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2
𝑁𝑁

𝑖𝑖=1

 

The newly revised t- statistic 𝑡̃𝑡 is now given by  

𝑡̃𝑡 =  
�𝑋𝑋� − 𝜇𝜇�
𝜎𝜎� √𝑁𝑁⁄

 

b) In cases where the individual data points  𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … .𝑋𝑋𝑖𝑖𝑛𝑛𝑖𝑖  are not recorded or available for 

some reason, we designed a minor variant in which the reliability of each datum 𝑋𝑋𝑖𝑖 is 

(proportional to) the number of the number of data points 𝑛𝑛𝑖𝑖  that went into the calculaStion of 

𝑋𝑋𝑖𝑖 , i.e.  

𝑟𝑟𝑖𝑖 =  𝑛𝑛𝑖𝑖 

The remaining calculations for 𝑤𝑤𝑖𝑖, 𝑋𝑋�,𝜎𝜎�, 𝑡̃𝑡 are identical to a). 
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Results 

Here, we analyze data inspired by research and demonstrate a numerical application of the t-test 

variant to the data. Liu and Sheth [4] studied the response of the brain to pure tones (1 kHz) of 

varying intensity (53/58/63 dB SPL) in wake and in stage II sleep. In particular, the study 

focused on the P200 component of the electroencephalography (EEG) response, and asked if the 

amplitude of the P200 differed between the two states for different sound intensities. Six 

subjects participated in the experiment. For each individual subject, the mean P200 amplitude 

was computed for each state by averaging data from 300 trials / state. The difference in mean 

P200 amplitudes in wake and SII sleep (P200wake – P200SII) across all six subjects can be 

compared with zero difference in a classical paired t-test paradigm.  

Table 1: P200 ERP amplitudes in response to different sound intensities 

Sound 
intensity 

53 dB  58 dB  63 dB 

Subject Wake 
(µV) 

SII 
(µV) 

Wake 
(µV) 

SII 
(µV) 

Wake 
(µV) 

SII 
(µV) 

S1 6.67 2.81 6.57 7.38 11.87 7.38 
S2 6.61 3.55 9.64 2.94 7.42 11.95 
S3 5.06 2.85 5.20 5.15 11.17 5.82 
S4 6.22 3.01 7.16 4.83 10.94 8.24 
S5 4.09 5.22 6.88 6.29 6.36 4.67 
S6 6.44 4.82 8.75 6.75 5.96 9.88 

 
Using a classic paired t-test paradigm, for the 53 dB sound intensity, the calculations yielded the 

following results summarized in Table 2: 

Table 2: Calculations in classic paired t-test paradigm 

Sound intensity 53 dB 58 dB 63 dB 
 𝑋𝑋�Wake-SII = 2.14 µV 𝑋𝑋�Wake-SII = 1.81 µV 𝑋𝑋�Wake-SII = 0.96 µV 

𝜎𝜎Wake-SII = 1.78 µV 𝜎𝜎Wake-SII = 2.67 µV 𝜎𝜎Wake-SII = 4.22 µV 

𝑡𝑡(5) = 2.14
1.78/√6

 = 2.94 𝑡𝑡(5) = 1.81
2.67/√6

 = 1.66 𝑡𝑡(5) = 0.96
4.22/√6

 = 0.56 
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p = 0.032 p = 0.158 p = 0.602 
The above calculations did not take into account the variable reliabilities of the individual 

subject data. The numbers of trials during which the individual is awake and is in SII sleep are 

given below in Table 3. As can be seen, the numbers of trials vary across subjects.  

Number 
of trials 

53 dB  58 dB  63 dB 

Subject Wake SII Wake SII SII Wake 
S1 620 715 611 565 309 323 
S2 524 389 405 312 731 497 
S3 320 509 529 416 420 334 
S4 458 334      334  377 331 302 
S5 371 409 312 459 571 402 
S6 315 402 354 423 317 503 

The variant proposed here takes the variation in numbers of trials (or variance, for that matter, 

not shown here) into account in a new t-test paradigm. The results of the calculations are given 

in Table 4 below. 

Table 4: Calculations in new paired t-test paradigm 

Sound intensity 53 dB 58 dB 63 dB 
 𝑋𝑋�Wake-SII = 2.35 µV 𝑋𝑋�Wake-SII = 1.49 µV 𝑋𝑋�Wake-SII = 0.29 µV 

𝜎𝜎�Wake-SII = 1.76 µV 𝜎𝜎�Wake-SII = 2.61 µV 𝜎𝜎�Wake-SII = 4.34 µV 

𝑡̃𝑡(5) = 2.35
1.76/√6

 = 3.26 𝑡̃𝑡(5) = 1.49
2.61/√6

 = 1.39 𝑡̃𝑡(5) = 0.29
4.34/√6

 = 0.16 

p = 0.022 p = 0.222 p = 0.878 
 

Here, the re-weighting of data according to relative reliability changed the t-statistics and p-

values slightly – t statistic changed from 2.94 to 3.26, 1.66 to 1.39, and 0.56 to 0.16 for53 dB, 58 

dB, and 63 dB sound intensities respectively. The changes were small but more in line with the 

underlying data and the data acquisition process that produced them. 

 

Our proposed variant can also be used in an unpaired setting as well. For this, we assume, for 

illustrative purposes, that the data for wake and SII were acquired from different subjects, 
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which calls for an unpaired t-test for statistical testing. The t-statistic used for an independent 

two-samples test when both distributions have the same variance – here, the sample size is 

small enough that the equal variance assumption is not violated – is known to be given by the 

following formula 𝑡𝑡 =  𝑋𝑋1�− 𝑋𝑋2�

𝑠𝑠𝑝𝑝.� 1
𝑁𝑁1
+ 1
𝑁𝑁2

, where 𝑠𝑠𝑝𝑝 is the pooled standard deviation of the two samples 

and 𝑠𝑠𝑝𝑝 =  �(𝑁𝑁1−1)𝜎𝜎�1
2+(𝑁𝑁2−1)𝜎𝜎�2

2

𝑁𝑁1+𝑁𝑁2−2
,  N1 is the size of the first sample (wake data, in the present 

case), and N2 is the size of the second sample (SII data, here)[5]. The calculations are given in 

Table 5 below. 

Table 5: Calculations in new unpaired t-test paradigm 

53 dB 58 dB 63 dB 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊�������������⃗  
= [. 24, .20, .12, .18, .14, .12] 
𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆��������⃗     
= [.26, .14, .18, .12, .15, .15] 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊�������������⃗
= [. 24, .16, .21, .13, .12, .13] 
𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆��������⃗     
= [.22, .12, .16, .15, .18, .17] 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊�������������⃗
= [. 12, .27, .16, .12, .21, .12] 
𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆��������⃗     
= [.14, .21, .14, .13, .17, .21] 

𝑋𝑋�Wake = 5.99 µV 
𝑋𝑋�SII     = 3.60 µV 

𝑋𝑋�Wake = 7.19 µV 
𝑋𝑋�SII     = 5.80 µV 

𝑋𝑋�Wake = 8.56 µV 
𝑋𝑋�SII     = 8.30 µV 

𝜎𝜎�Wake = 1.00 µV 
𝜎𝜎�SII     = 1.05 µV 

𝑠𝑠𝑝𝑝= �((6−1)∗1.002+(6−1)∗1.052)
6+6−2

 

    = 1.03 

𝜎𝜎�Wake = 1.63 µV 
𝜎𝜎�SII     = 1.53 µV 

𝑠𝑠𝑝𝑝= �((6−1)∗1.632+(6−1)∗1.532)
6+6−2

 

    = 1.58 

𝜎𝜎�Wake = 2.50 µV 
𝜎𝜎�SII     = 2.81 µV 

𝑠𝑠𝑝𝑝= �((6−1)∗2.502+(6−1)∗2.812)
6+6−2

 

    = 2.66 

𝑡̃𝑡(5) = 5.99−3.60

1.03∗�16+
1
6

 = 4.04 𝑡̃𝑡(5) = 7.19−5.80

1.58∗�16+
1
6

 = 1.53 𝑡̃𝑡(5) = 8.56−8.30

2.66∗�16+
1
6

 = 0.16 

p = 0.010 p = 0.187 p = 0.876 

 

Discussion 

The student's t-test has had a rich history. Since being designed by William Sealy Gossett for 

determining if two sets of data are significantly different from each other [6], it has been 

extended to other important cases such as unpaired (independent) and paired (correlated) two-
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sample t-tests, tests for when the size of the two samples is not equal, Welch's t-tests for when 

the two samples have unequal variance and/or unequal sample size [7], and a multivariate 

Hotelling's test for multiple, often correlated, measures within the same sample [8]. 

 

 
Here, we propose a heteroaxiopistíc (hetero = different, axiopistía = reliability) variant of the 

student's t-test so as to factor the relative reliabilities of the samples in the computation of the t-

statistic. Reliability of data is an important variable and regularly factors into statistical testing 

and with the introduction of said variant here, data reliability can now factor into the popular 

students t-test as well. The methods described above take into account reliability of one set of 

samples, on a one-sample t-test. In the event of a comparison between two sets of samples, such 

as in a two sample t-test, the exact same methods as detailed above can be replicated for a 

second set of samples. 

 

There are alternative powerful solutions to the problem of combining fixed and random effects 

in a mixed model [9]. Hierarchical linear effects models assume that data that are being analyzed 

are drawn from a hierarchy of different populations whose differences relate to that hierarchy 

[10]. Fixed and random effects typically refer to the population average and subject-specific 

effects, respectively and these effects are modeled using a classical matrix notation and fitted 

using an expectation maximization algorithm [11] where the variance components are treated as 

nuisance parameters that one does not care about but has to nonetheless account for. There are 

clear benefits to a mixed model approach, including the fact that it can deal with missed values 

or measurements in the data with remarkable ease – a likely possibility in data acquisition, and 

mixed models have justifiably formed the basis for a large amount of statistical research in recent 
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years. The present approach to designing a heteroaxiopistíc variant of the student's t-test 

provides, under certain conditions, a simpler and yet effective alternative that is more accessible 

to the end-user than more sophisticated mixed model approaches.   
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