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ABSTRACT 18	

Signal detection analyses are used to assess whether there is any evidence of signal 19	

within a large collection of hypotheses.  For example, we may wish to assess whether 20	

there is any evidence of association with disease among a set of biologically related 21	

genes. Such an analysis typically treats all genes within the sets similarly, even though 22	

there is substantial information concerning the likely importance of each gene within 23	

each set. For example, deleterious variants within genes that show evidence of purifying 24	

selection are more likely to substantially affect the phenotype than genes that are not 25	

under purifying selection, at least for traits that are themselves subject to purifying 26	

selection. Here we improve such analyses by incorporating prior information into a 27	

higher-criticism-based signal detection analysis. We show that when this prior 28	

information is predictive of whether a gene is associated with disease, our approach can 29	

lead to a significant increase in power. We illustrate our approach with a gene-set 30	

analysis of amyotrophic lateral sclerosis (ALS), which implicates a number of gene-sets 31	

containing SOD1 and NEK1 as well as showing enrichment of small p-values for gene-32	

sets containing known ALS genes.  33	

 34	
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INTRODUCTION 41	

High-throughput sequencing (HTS) studies, both whole exome studies (WES) and, 42	

more recently, whole genome studies (WGS), have emerged as the primary approach 43	

to identifying genetic variation that may be associated with disease. Unlike genome-44	

wide association studies which depend on linkage disequilibrium between tag SNPs and 45	

pathogenic variation, WES and WGS studies are able to assay pathogenic variation 46	

directly, and as a result, are able to directly interrogate the role of rare variation in 47	

disease. When the disease phenotype impacts the fitness of an individual, variants with 48	

a large effect on the phenotype will tend to be rare, as they will tend to be pruned out of 49	

the population before reaching appreciable frequency by purifying selection. This has 50	

been seen empirically (Park et al., 2011), and rare-variant focused disease mapping 51	

studies have successfully implicated a number of newly discovered disease genes, 52	

including studies in predominantly later onset diseases such as amyotrophic lateral 53	

sclerosis (ALS, Poppe et al, 2014; Cirulli et al. 2015) and idiopathic pulmonary fibrosis 54	

(IPF, Palmer et al, 2018). As each individual variant is rare, single-variant analyses are 55	

likely underpowered for detecting disease association. Therefore, rare-variant analyses 56	

usually integrate the effects of many variants across a gene or other genetic region. In 57	

these analyses, variants are often filtered by surrogates of the variant’s likely 58	

deleteriousness including the variant’s frequency in the general population as well as 59	

annotations of the variant’s likely functional impact on the ultimate protein product.  60	

Further, when such an analysis is restricted to rare variation, a gene that demonstrates 61	

an excess of deleterious variants in cases over controls provides strong evidence for 62	
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the direct involvement of that gene in disease etiology as any indirect effects such as 63	

linkage disequilibrium are minimized. 	64	

 65	

A primary goal of such studies is signal identification, i.e., identifying individual genes 66	

that show significant differences in the burden of qualifying variants between cases and 67	

controls. For example, in the whole exome ALS sequencing study (Gelfman et al. 2018), 68	

the exomes of 18536 genes were sequenced across 3093 ALS cases and 8186 69	

neurologically normal controls and tested for differences in the burden of rare variation, 70	

identifying SOD1 [MIM: 147450], NEK1[MIM: 604588], and TARDBP[MIM:605078] as 71	

being involved in ALS (Gelfman et al. 2018). Though these findings are undoubtedly an 72	

advance for ALS genetics, there is likely signal in this dataset that is below the 73	

identification threshold and, thus, remains latent. Our goal here is to enhance our 74	

understanding of disease etiology by uncovering this latent signal.   75	

 76	

An alternate to signal identification is signal detection, i.e., the detection of whether any 77	

genes within a set of genes participating in a biologic process show significant 78	

differences in the burden of qualifying variants between cases and controls. Signal 79	

detection does not attempt to identify which genes in the set are non-null, just that there 80	

exists some subset of the genes within the gene-set that show signal. As a result, the 81	

signal detection problem can be addressed by a goodness of fit test that assesses 82	

whether the distribution of p-values, for the individual gene-level tests within the gene-83	

set, follow a uniform distribution (i.e., all tests in the gene-set are null). Rejecting such a 84	

test implies that at least some of the genes in the gene-set have differences in the 85	
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burden of qualifying variants between cases and controls. If the gene sets are chosen 86	

carefully, signal detection within the set can provide mechanistic insight into disease 87	

etiology, for example by emphasizing the importance of specific pathways or otherwise 88	

related gene sets.  Higher Criticism (HC) is one such approach. Donoho and Jin 89	

(Donoho & Jin, 2004) showed that the HC statistic obtains the optimal detection limit for 90	

“rare-weak” alternatives where a small proportion of hypotheses weakly deviate from 91	

the null.   92	

 93	

A limitation of such an approach is that it treats all genes within the focal gene-set 94	

equally, even though there is substantial external prior information about the relative 95	

importance of a gene within a gene-set. Genic intolerance (Petrovski et al, 2013), 96	

network centrality (Barabási & Albert, 1999; White & Smyth, 2003) and gene expression 97	

in disease relevant tissues are examples of sources of prior information that can be 98	

used to quantify the relative importance of genes within gene-sets. We discuss these 99	

sources of prior information in detail in the materials and methods section below. 100	

 101	

Here we develop a novel HC statistic that incorporates prior information concerning the 102	

relative importance of genes within a gene-set into the analysis. We develop an 103	

asymptotic theory for the null distribution of our statistics and describe permutation 104	

procedures that can be used when the asymptotic approximation is likely to be poor. We 105	

conduct extensive simulation studies and show that when the prior information is 106	

correlated with those genes that are involved in disease our approach leads to a 107	
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substantial increase in power. We illustrate our approach with a gene-set analysis of a 108	

whole exome sequencing study of amyotrophic lateral sclerosis.  109	

 110	

MATERIALS AND METHODS 111	

Overview of our approach 112	

We develop a self-contained gene-set test based on a higher criticism statistic that 113	

explicitly weights the contribution of each gene in the set by prior information reflecting a 114	

genes likelihood of being involved in disease pathology. The higher criticism statistic our 115	

approach is based on can be thought of as a goodness of fit test. Specifically, consider 116	

a set of 𝑛  statistics, 𝑋!,𝑋!,… ,𝑋!  and empirical distribution function 𝐹(𝑥) . In our 117	

application, these statistics represent tests of gene/phenotype association for each of 118	

the 𝑛 genes in a gene-set selected on the basis of biological relationships. The higher 119	

criticism test assesses whether the observed distribution, 𝐹(𝑥), is consistent with 𝐹! 𝑥 , 120	

the distribution of the test statistics under the global null. In most cases, the statistics we 121	

are working with are the p-values associated with each gene in the set. Therefore, as 122	

these p-values will be uniform under the null, we have that 𝐹! 𝑥 = 𝑥 and we could 123	

assess whether the observed distribution of p-values is consistent with the global null 124	

using the Kolomorgorov-Smirnov (KS) test statistic, 125	

𝐾𝑆 = sup
!
𝐹(𝑥)− 𝑥 . 

However, Donoho and Jin (2004) showed that the power to detect small shifts in the 126	

distribution function due to a small number of weak signals can be improved by scaling 127	
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the KS test by 𝑉𝑎𝑟!! 𝐹 𝑥 = 𝐹! 𝑥 (1− 𝐹! 𝑥 )/𝑛 = 𝑥(1− 𝑥)/𝑛  and restricting the 128	

domain over which the supremum is taken to the tail. These modifications of the KS test 129	

give rise to the higher-criticism (HC) test, 130	

𝐻𝐶 = sup
!!!

𝐹(𝑥)− 𝑥
𝑥(1− 𝑥)/𝑛 . 

Incorporating prior information into higher-criticism statistics. To incorporate prior 131	

information into the HC framework, we assume that for the 𝑖!! gene (𝑖!! hypothesis 132	

being tested) there is affiliated a weight, 𝑤! ≥ 0, such that 𝑤!  quantifies the relative 133	

importance of a gene within the gene-set. Let 𝑤 = (𝑤!,𝑤!,… ,𝑤!).  Let 𝑥! be 𝑖!! gene’s 134	

p-value and let 𝑥!∗ = 𝑤!𝑥!. Define 135	

𝐻𝐶∗ = sup
!∗!!

𝐹(𝑥∗)− 𝐹! 𝑥∗;𝑤 
𝐹! 𝑥∗;𝑤 (1− 𝐹! 𝑥∗;𝑤 )/𝑛 , 

where 𝐹(𝑥∗)  is the empirical distribution function of the 𝑥∗s and 𝐹! 𝑥∗  is cumulative 136	

distribution function of 𝑥∗ under the global null hypothesis. We can show that 137	

𝐹! 𝑥∗;𝑤 = !
!

𝐼 𝑥∗ ≥ 𝑤! + !∗

!!
𝐼(𝑥∗ < 𝑤!)!

!!! . 138	

It is not difficult to see that 𝐻𝐶∗ is of the same form as the unweighted HC statistic 139	

studied by (Jaeschke, 1979) which was shown to converge in distribution to the Gumbel 140	

distribution as 𝑛 goes to infinity. However, as noted by Barrett and Lin (2014), this 141	

convergence is extremely slow and unlikely to yield a good approximation in most cases. 142	

As a result, we use permutation to approximate the null distribution of 𝐻𝐶∗. When testing 143	

across a large number of gene-sets, we use the algorithm proposed by Ge, Dudoit, & 144	

Speed (2003) to account for testing multiple, potentially correlated, hypotheses. 145	

 146	
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Choosing the weights 147	

The weights summarize prior information concerning the relative importance of a gene 148	

within a gene-set. We consider three main sources of this information: 1) Genic 149	

intolerance; 2) Network centrality; and 3) Gene expression in disease relevant tissues.  150	

 151	

Genic Intolerance. Genic Intolerance quantifies the amount of purifying selection 152	

affecting a gene relative to a genome-wide average. Specifically, using standing human 153	

variation in large, publicly available, databases such as gnomAD (Lek et al, 2016), the 154	

number of common functional variants within a gene is regressed against the total 155	

number of variants within that gene. The Residual Variance Intolerance Score (RVIS) is 156	

the gene-level residual from that regression (Petrovski, Wang, Heinzen, Allen, & 157	

Goldstein, 2013). Thus, if a gene has less functional variation than expected given the 158	

total amount of variation within the gene, it will have a negative RVIS score. If it has 159	

more functional variation than expected, it will tend to have a positive score. RVIS has 160	

been shown to be strongly predictive of Mendelian disease genes, especially those that 161	

lead to early-onset severe disease phenotypes (Petrovski, Wang, Heinzen, Allen, & 162	

Goldstein, 2013). 163	

 164	

Here, we calculate a gene’s intolerance-based weight, 𝑤!", as the gene’s intolerance 165	

percentile among all 18536 scored genes, scaled to be between 0 and 2. By rescaling, 166	

we ensure that those genes that have intolerance scores that are less than the mean, 167	

and hence are more likely to be important in disease etiology, are given more 168	

importance in the overall gene-set, by decreasing their p-values. 169	
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 170	

Connectivity of genes within biologic gene sets. Interactions between genes in a genetic 171	

gene set can be represented by a network. In such a representation, nodes denote 172	

genes and the edges connecting them represent gene-gene interactions. It is quite 173	

common in biologic networks for a few genes to have a much larger number of 174	

connections than other genes. These highly connected genes are referred to as "hub" 175	

genes, and it is reasonable to hypothesize that deleterious mutations within such genes 176	

might be more disruptive of the biologic process represented by the network than 177	

mutations falling within less connected, more distal, genes.  178	

 179	

The connectivity of a node is captured in the graph theory concept of "centrality" (White 180	

& Smyth, 2003; Borgatti, 2005), which can be quantified in a number of ways. Here, we 181	

investigate 3 measures of network centrality: degree centrality (White & Smyth, 2003; 182	

Borgatti, 2005), Eigenvector centrality (Freeman, 1979; Stephenson and Zelen, 1989; 183	

Wasserman and Faust, 1994; White & Smyth, 2003) and PageRank centrality (Page et 184	

al, 1998, White & Smyth, 2003). Degree centrality is simply the number of edges from a 185	

given node, i.e., the number of genes that interact with a given gene. Eigenvector 186	

centrality of a node is a measure of the importance of the nodes it is connected to, i.e. a 187	

node is important if it is connected to other important nodes. (Freeman, 1979; 188	

Stephenson and Zelen, 1989; Wasserman and Faust, 1994; White & Smyth, 2003).  189	

PageRank centrality is defined by the pageRank algorithm used in web searches by 190	

Google (Page et al, 1998, White & Smyth, 2003). pageRank assumes that a web page 191	

(node) is more important if it receives more links (directed connections) from other high 192	
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pageRank scored web pages (Page et al, 1998, White & Smyth, 2003). Unlike degree 193	

centrality and eigenvector centrality, pageRank considers the directionality of the 194	

connection.  195	

 196	

For a given centrality measure, Let 𝑐!  be the centrality for the 𝑖!!  gene. In order to 197	

generate weights that result in smaller p-values for more highly connected genes, we 198	

take 𝑤!" = 𝜆 𝑎𝑐! + 𝑏𝑐 !!, where 𝑐 is the mean centrality across the gene set, 𝑎 and 𝑏 199	

are user-defined constants (here we take 𝑎 = 0.95 and 𝑏 = 0.05), and 𝜆 is a scaling 200	

factor so that the mean of the weights is one. 201	

. 202	

Gene expression in disease-related tissues. Genes that are important in disease 203	

etiology are more likely to be expressed in disease-related tissues during the 204	

developmental period leading to the disease. Therefore, for the 𝑖!! gene we define a 205	

weight 𝑤!" = 𝜆 𝑎𝑒! + 𝑏𝑒 !!, where 𝑒! is the expression level (appropriately normalized) 206	

in a disease-related tissue, 𝑒 is the mean expression across all genes in the gene set, 𝑎 207	

and 𝑏  are user-defined constants (here we take 𝑎 = 0.95  and 𝑏 = 0.05), and 𝜆  is a 208	

scaling factor so that the mean of the weights is one.  209	

 210	

Simulation study 211	

We conduct a simple simulation study to evaluate the utility of our approach. For each 212	

scenario, we simulate 1e+4 datasets. For each simulated dataset we generate 𝑛 213	

independent statistics 𝑋! , 𝑖 = 1,… ,𝑛 , associated with 𝑛  hypotheses. Let 𝜋  be the 214	

proportion of the 𝑋!!! that are generated under the alternative. We assume 𝑋! ∼ 𝑁(𝜇, 1) 215	
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under the alternative and  𝑋! ∼ 𝑁(0,1) under the null. Thus, marginally, 𝑋! ∼ 𝜋𝑁 𝜇, 1 +216	

1− 𝜋 𝑁 0,1 . Note that 𝜋 characterizes the sparsity of the alternatives among all the 217	

hypotheses tested while 𝜇 controls the location shift from null to alternative. Thus, in our 218	

simulations, we evaluate the power of our approach as 𝜋  and 𝜇  vary and choose 219	

configurations that explore the detection boundary outlined by Donoho & Jin, 2014. 220	

Each 𝑋!  is converted to a p-value via 𝑝! = Φ(−|𝑋!|). Weights are generated from a 221	

truncated exponential distribution and then scaled to have mean one. We consider three 222	

different scenarios: 1) weights are randomly assigned to genes; 2) weights are 223	

negatively correlated with disease-associated genes so that their p-values in the 𝐻𝐶∗ 224	

statistic are decreased, increasing their influence on the statistic; and 3) weights are 225	

positively correlated with disease-associated genes so that these genes will have less 226	

influence on the 𝐻𝐶∗  statistic while the influence of genes that are not disease-227	

associated will be increased. We generate a large number of simulated datasets under 228	

the global null (i.e., 𝜋 = 0) and use these to calculate a rejection threshold for each 229	

scenario. Specifically, we take the top 5th percentile of 𝐻𝐶  and the 𝐻𝐶∗  statistics 230	

(corresponding to the weighting scenarios) calculated using the global null simulated 231	

datasets and use them as rejection thresholds for the corresponding statistics under the 232	

various alternative hypotheses. Please see supplementary materials for complete 233	

details. 234	

 235	

Amyotrophic lateral sclerosis whole exome study 236	

 We illustrate our approach through an analysis of data from a whole exome sequencing 237	

study comprised of 3093 ALS patients and 8186 controls of European ancestry 238	
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(Gelfman et al, 2018). The sample information is available online (alsdb.org). The 18536 239	

genes were sequenced and captured with the standard approach of Gelfman et al, 2018. 240	

Gene-level qualifying variant collapsing analyses were conducted according to two 241	

definitions of qualifying variants (table 1). Specifically, for a given qualifying variant 242	

definition and a given gene, we create an indicator variable of whether a given subject 243	

has a qualifying variant in that gene. We then test for association between the presence 244	

of a qualifying variant in the gene and case-control status using the Cochran–Mantel–245	

Haenszel test, where strata are defined by the stratification score (Epstein et al, 2007).  246	

This results in two p-values per gene (corresponding to two definitions of qualifying 247	

variant); we take the minimum of the two to get a single gene-level p-value. 248	

 249	

We analyzed 4436 candidate gene sets extracted from the hallmark, GO biological 250	

process collections  (c5.bp, version 6.1, Subramanian et al., 2005, Liberzon et al., 251	

2015). Gene sets containing less than 10 genes were not analyzed. 252	

 253	

We consider three different sources of prior information in developing gene-level 254	

weights: genetic networks from bioGRID (BioGRID Version 3.4.147, Stark et al., 2006, 255	

Chatraryamontri et al., 2017), genic intolerance (Petrovski, Wang, Heinzen, Allen, & 256	

Goldstein, 2013), and gene expression levels in disease-relevant tissue (brain) from 257	

GTex (GTEx Consortium, 2015). We used three different metrics for summarizing a 258	

genes importance within a genetic network: degree centrality (White & Smyth, 2003), 259	

eigenvector centrality (Freeman, 1979; Stephenson and Zelen, 1989; Wasserman and 260	
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Faust, 1994; White & Smyth, 2003), and pageRank centrality (Page et al, 1998, White & 261	

Smyth, 2003).  262	

 263	

For each gene-set, we conducted both weighted (denoted by w), using the weighting 264	

schemes highlighted above, and unweighted (denoted by u) analyses. Since we are 265	

interested in whether gene set analyses can help uncover specific gene sets that 266	

disease genes participate in, we also removed two genes that were found to be 267	

significantly associated with ALS: SOD1 (raw p-value: 4.1e-15, Bonferroni adjusted p-268	

value: 7.6e-11) and NEK1 (raw p-value: 6.74e-10, Bonferroni adjusted p-value: 1.25e-269	

05) from the gene set analyses. These analyses are denoted by wr and ur for weighted 270	

and unweighted analyses, respectively. 271	

 272	

We obtained empirical null distributions of our statistics by randomly permuting 273	

case/control status (each distribution was generated using 2e+6 permutations). 274	

Because genes may participate in multiple gene sets, leading to correlation between 275	

tests, we used the step-down minP algorithm (Box 4: Ge, Dudoit, & Speed, 2003) to 276	

obtain multiplicity adjusted p-values across all the gene sets analyzed.  277	

 278	

RESULTS 279	

Simulation study.  280	

As expected, when the effect size, 𝜇, is fixed, power increases with an increasing 281	

proportion of non-null hypotheses, 𝜋 (figure 1). Similarly, when  𝜋  is fixed, power 282	

increases with  𝜇.   More interestingly, we can see that weighting can substantially 283	
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increase the power of the HC analysis if the values of weights are negatively correlated 284	

with non-null hypotheses, i.e. the weights tend to make p-values affiliated with non-null 285	

hypotheses smaller, so that those hypotheses have more influence on the final HC 286	

statistics (orange dashed lines). Further, the power is very similar to an unweighted 287	

analysis (solid black lines) when the weights are uncorrelated, i.e., are random noise 288	

(blue lines). It is only when the weights are positively correlated with the non-null 289	

hypotheses, so that null hypothesis are given more influence on the HC statistic, that we 290	

see a substantial negative effect on power when using weighting (red dash lines). 291	

However, in real applications one would expect that most weighting schemes would be 292	

somewhat informative of which genes would be disease-related. Thus, these results 293	

suggest that there is little downside to weighting individual hypotheses in HC analyses. 294	

  295	

ALS data analysis.  296	

We found that marginally associated genes, had a strong effect on all HC analyses 297	

(weighted or not). For example, all gene-sets containing SOD1 (260) and NEK1 (21) are 298	

significantly associated with ALS after multiplicity adjustment, regardless of the HC 299	

statistic used (table 2). GSEA (Subramanian et al., 2005) fails to detect any significant 300	

gene sets. To investigate whether there is residual signal in gene sets after the 301	

marginally significant genes are removed, we conducted gene set analyses that 302	

excluded SOD1 and NEK1 from inclusion in any gene set. This analysis did not detect 303	

any significant gene sets after multiplicity adjustment, regardless of the method used.  304	

 305	
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We then investigated whether there were enrichment differences between methods for 306	

gene sets involving 51 known ALS disease genes highlighted in Cirulli et al. 2015 (Table 307	

S1). The results of these analyses are presented in table 3 and one can see that 308	

weighting based on pageRank centralities performs well. Since many of these gene sets 309	

are likely devoid of any signal, we repeated this analysis while further restricting the 310	

gene sets considered to those where there was at least one gene-set analysis approach 311	

yielding a marginally significant result (p<=0.05) (table 4).  Once again, we find that 312	

pageRank centrality does well and that HC outperforms GSEA. 313	

	314	

DISCUSSION 315	

We have presented a new gene-set based analysis that incorporates prior information 316	

into the analysis using a higher criticism approach. In both simulation studies and real 317	

data analyses, we showed that such an approach can lead to higher power. However, 318	

the choice of weights is important and consideration should be made for what 319	

information is most likely to be predictive of truly associated disease genes. For 320	

example, in our p-value enrichment analyses of known ALS genes, we found little 321	

enrichment when we used genic intolerance measures as our weights. As genic 322	

intolerance is indicative of purifying selection, this choice of weights may be less 323	

informative in a late-onset disorder such as ALS. Results would likely be different for 324	

earlier-onset disorders such as autism spectrum disorder, epilepsy, or schizophrenia. 325	

Further applications across a spectrum of diseases are needed before general 326	

recommendations can be made with respect to weighting schemes. 327	

 328	
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The higher criticism analysis can be thought of as a goodness of fit test that focuses on 329	

extreme deviations (by taking a max) from expectation under a global null that none of 330	

the genes within the gene set are associated with the disease. Though this approach 331	

has been shown to be optimal in detecting sparse signals within a large collection of 332	

hypotheses, it may be less sensitive to detecting signal that is more diffuse. In such a 333	

case, there may be an advantage in integrating over the tail of the distribution of 334	

deviations rather than taking a max. We are currently investigating this approach and 335	

plan to highlight it in a future manuscript.  336	

 337	

 338	

DESCRIPTION OF SUPPLEMEMTAL DATA 339	

Supplemental Data include two tables and 4 series of figures. Table S1 lists the ALS-340	

related genes according to Cirulli et al, 2015. Table S2 describes the simulation 341	

procedure. The text describes profiling details in the simulation study. The 4 series of 342	

figures provides the complete results of the simulation under various condition settings. 343	

 344	

 345	
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FIGURE TITLES AND LEGENDS 530	

 531	

Figure 1 Selected Theoretical Simulation Results 532	

Figure 1 shows the selected simulation results of the power of weighted HC (mu=1.44, pi=0.447). The black lines 533	

(points) represent HC with no weights, the blue dashed lines(points) represent HC with uncorrelated weights. 534	

The red dashed lines (points) represent HC with weights that negatively correlated with non-null hypotheses 535	

(favors the alternative). The orange dashed lines (points) represent HC with weights that negatively 536	

correlated with non-null hypotheses (favors the null). 1a) gene set size:100, Fixed mu. 1b) gene set size:100, 537	

Fixed pi. 1c) gene set size:100. power vs. correlations between weights and non-null hypothesis. 1d) gene 538	

set size:1000, Fixed mu. 1e) gene set size:1000, Fixed pi. 1f) gene set size:1000. power vs. correlations 539	

between weights and non-null hypothesis. See support information for more results. 540	
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TABLE TITLES AND LEGENDS 541	

 542	

 543	

Table 1.  Different Genetic Models and qualifying criteria 544	

(MAF=Minor Allele Frequency, LoF=Loss-of-function variants, Dom=dominant) 545	

Model  type LOO MAF ExAC MAF Qualifying Variant Effect Criteria 

Damaging rare 

 (coding) 

Dom 0.05% 0.01% LoF, inframe indels and PolyPhen-2 (HumDiv) “probably” 

LoF Dom 0.1% 0.1% LoF 

 546	

 547	

 548	

 549	

Table 2.  The number of significant gene sets by method 550	

(wHC=weighted HC, u=unweighted, w=weighted, GI=genic intolerance, Deg=Degree, Exp=Expression 551	
level, 552	

Eigen= eigenvector centrality, PR = pageRank centrality) 553	

Gene	sets	with	 Total	 Significance		in	HC	(u)	or	wHC(GI,	Exp,	Deg,	Eigen	or	PR)	 Significance		in	GSEA(u	or	w)	
SOD1	 260	 260	 0	
NEK1	 21	 21	 0	

 554	

 555	

 556	

 557	

 558	

 559	
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Table 3.  Method Comparison on ALS-related gene sets (Total gene sets: 899) 560	

(wHC=weighted HC, u=unweighted, w=weighted, GI=genic intolerance, Exp=expression level in brain, 561	

Deg=Degree, Eigen= eigenvector centrality, PR = pageRank centrality) 562	

 563	

 564	

 565	

Table 4.  Method Comparison on core ALS-related gene sets (Total gene sets: 186) 566	

(wHC=weighted HC, u=unweighted, w=weighted, GI=genic intolerance, Exp=expression level in brain, 567	

Deg=Degree, Eigen= eigenvector centrality, PR = pageRank centrality) 568	

 569	

 570	

Method	1	 Method	
2	

Numbers	of	p-values	
Method	 1<=Method	
2	

Numbers	of	p-values	
Method	 1>=Method	
2	

p-values	for		
Method	1	better	than	Method	
2	

wHC(GI)	 HC(u)	 468	 432	 1.22e-1	
wHC(Exp)	 HC(u)	 397	 503	 1.00e-0	
wHC(Deg)	 HC(u)	 490	 409	 3.80e-3	
wHC(Eigen)	 HC(u)	 440	 460	 7.58e-1	
wHC(PR)	 HC(u)	 501	 398	 3.31e-4	
HC(u)	 GSEA(u)	 451	 448	 4.73e-1	
HC(u)	 GSEA(w)	 436	 463	 8.25e-1	
	 	 	 	 	

Method	1	 Method	
2	

Numbers	of	p-values	
Method	 1<=Method	
2	

Numbers	of	p-values	
Method	 1>=Method	
2	

p-values	for		
Method	1	better	than	Method	
2	

wHC(GI)	 HC(u)	 89	 98	 7.68e-1	
wHC(Exp)	 HC(u)	 76	 111	 9.96e-1	
wHC(Deg)	 HC(u)	 116	 70	 4.59e-4	
wHC(Eigen)	 HC(u)	 89	 98	 7.68e-1	
wHC(PR)	 HC(u)	 123	 64	 9.57e-6	
HC(u)	 GSEA(u)	 161	 25	 7.83e-26	
HC(u)	 GSEA(w)	 158	 28	 1.67e-23	
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