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Data driven analysis reveals shared transcriptome response and immune cell fractions 

across different aetiologies of critical illness. 

 

Abstract 

Sepsis and trauma are frequent and challenging health problems in critical care. The 

diversity of patient response to these conditions complicates both disease management and 

outcome prediction. Whole blood transcriptomics allows the analysis of response in the 

critically ill at a molecular level. Prior results in this field demonstrate robust and diverse 

genomic response in the acute phase and others have shown shared biological mechanisms 

across wide disease aetiologies. We hypothesize that specific biological mechanisms, 

particularly those related to immune processes, are shared between sepsis and trauma 

cohorts. These may serve as universal markers for patients vulnerable to a complicated 

clinical course and/or mortality. We present a systems level analysis of gene expression for 

a total of 317 patients with abdominal sepsis (51), pulmonary sepsis (108) or trauma (158) 

and compare them to healthy controls (68). Our results confirm that immune processes are 

shared across disease aetiologies in critical illnesses. We identify two consistent and distinct  

subgroups of critical illness: 1) increased dendritic cell and CD4 T helper fractions but 

suppressed neutrophils and 2) high neutrophils and otherwise suppressed leukocyte 

fractions. These subgroups validate in an independent cohort of 181 paediatric patients 

suffering from septic shock of diverse aetiologies. Furthermore, we found immune and 

inflammatory processes derived from gene co-expression networks were downregulated in 

subgroup 1. This paralleled prior results which find similar leukocyte configuration by 

deconvolving whole blood transcriptomics, and this leukocyte configuration associates with 

greater susceptibility to multi organ failure. We are the first to identify a patient subgroup 
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with a preserved leukocyte configuration across aetiologies of critical illness,  which may 

serve as a universal predictor of complicated clinical course/poor outcome. 
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Introduction 

Host responses to critical illness such as infection or trauma are highly variable between 

patients (1–3). Specific examples of this complexity include the reprioritization patterns in 

gene expression (2,4,5) and the coexistence of proinflammatory and immunosuppressed 

states (1–3,6,7) in critically ill patients. Understanding this diversity in systemic response is 

highly important to treatment planning and recovery prediction. Analysis of whole blood 

transcriptomics (WBT) may facilitate this by identifying individual patient response to a 

variety of stresses leading to marker discovery and improved outcome prediction. It can also 

give valuable insight into biological processes and mechanisms of disease. WBT involves 

rapid isolation of total blood leukocytes followed by purification of total RNA and high 

throughput quantification of gene expression levels (1,2). WBT analysis has been applied to 

predict outcome in trauma (5), identify clinically relevant subgroups in sepsis (6) and explain 

diverse response to vaccination (8). Physiological processes such as aging have also been 

associated with a transcriptomics pattern to establish the “molecular age” of patients (9).  

 “Systems level analysis” of transcriptomics data can associate gene expression patterns 

with molecular processes and ultimately biological/clinical phenotypes. Two well-

established and widely used methods in systems biology are gene expression networks 

(10,11) and the deconvolution of cellular fractions in bulk tissue (12). Gene expression 

networks are able to identify mechanisms relevant to physiological and pathological states 

by detecting clusters of highly co-expressed transcripts (13–15). An additional advantage of 

this approach is the ability to capture low and additive gene expression signals which may 

otherwise be overlooked by conventional differential gene expression analysis. This 

network-based technique has been successfully applied in exploring complex biological 

phenotypes like Huntington’s disease (16), peripheral nerve regeneration (13), malignant 
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primary brain tumors (17) or weight gain (11). Deconvolution of bulk transcriptomics data 

uses cell-specific markers to estimate the fraction of corresponding cellular types present in 

a tissue sample (12). This technique has provided insight into the immune landscape of 

cancer (18), the tumor microenvironment in glioblastoma multiforme (19) and the immune 

cell composition of sera in a variety of diseases (20). 

 Studies have shown shared transcriptomics responses across different aetiologies of 

sepsis (6) and a large scale comparison of different diseases also suggested substantial 

overlap in WBT signal (4). However, the characteristics of these shared mechanisms and 

their relevance remains less explored. We firstly hypothesize that transcriptomics response 

to a variety of critical illnesses organizes into biological processes and an immune profile 

which are shared across aetiologies. We further hypothesize responses that are more 

predictive of good outcome than others. In the first part of our study we applied gene co-

expression networks to open source transcriptomics data (2,21) and explore biological 

mechanisms in critical illness: abdominal sepsis, pulmonary sepsis and trauma. Our research 

is novel in the following: 1) contemporary studies largely rely on differential gene expression 

analysis to explore underlying mechanisms in critical illness, while our study uses co-

expression network to identify relevant genes. This approach is rooted in biological reality, 

and may capture additive biological signal which could otherwise be overlooked by 

conventional techniques; 2) Our study is the first to explore the heterogeneity of patient 

response across critical illness with different aetiologies (sepsis due to community acquired 

pneumonia/abdominal source and trauma). We confirm that immune processes are shared 

across these conditions and we further explore the immune cell composition to identify 

consistently homogenous patient subgroups in critical illness. 
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 Methods 

 Database 

 We used open source datasets from the open source genetic repository Gene Expression 

Omnibus (GEO) (22): GSE11375 (5) for trauma  and GSE65682 (MARS Consortium) for 

abdominal (23) and pulmonary (24) sepsis. Demographics for the cohort are summarized in 

Table 1. For verification of our results we use a paediatric cohort of 181 patients (GSE66099) 

suffering from septic shock (25). 

 

Table 1: Study demographics.  A: control, B: trauma, C: CAP, D: abdominal sepsis, E: Septic 

shock (unknown aetiology) *Of available data. 
#
Validation cohort 

 

 

Systems level analysis of whole blood gene expression data  

The trauma cohort consisted of 158 adult patients under the age of 55 who suffered severe 

blunt trauma. Blood samples were taken within 12 hours of the injury and processed for 

gene expression analysis as described by Xiao et al (2). The cohort of patients suffering from 

sepsis (GSE65682) was divided into two groups based on the admitting: sepsis due to 

community acquired pneumonia (CAP) and abdominal sepsis (AS). Blood samples were 

taken within 24 hours of admission to critical care (23,24). To demonstrate the 

generalizability of our findings, we chose a large dataset of 276 paediatric patients, the 

Genomics of Pediatric SIRS and Septic Shock Investigators (GPSSSI)(25). In our verification 

subgroup, we had 181 unique patients who have been admitted with a diagnosis of septic 

GEO entry N  

 

Mean age 

(SD) 

Sex  

(M:F) 

Patient distribution 

A         B        C        D       E     

Mortality 

(%) 

GSE11375 184 33.1 (11.1) 115:69 26    158       0        0       0 7/184 (3.8) 

GSE65682 201 58.1 (17.3) 114:87 42       0      108     51      0 31/201 (15.4) 

GSE66099
#
 228 N/A N/A 47        0         0        0    181 N/A 

Overall* 613 46.2 (19.2) 229:156 68    158      108     51  181 38/385 (9.9) 
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shock from a variety of infectious sources and blood sample drawn on the first day of 

admission.  

Gene co-expression patterns were identified using the well-established “Weighted Gene 

Correlation Network Analysis” (WGCNA) to detect “modules” (clusters) of strongly co-

expressed genes (10). Per these previously described techniques, we first computed an 

“adjacency matrix”, a symmetrical matrix carrying soft-thresholded Pearson correlations 

between each gene pair. Computation of the similarity measures is detailed by Langfelder et 

al  (10). This was then converted into a biologically-inspired topological overlap map (TOM), 

wherein pairwise gene similarities were derived from comparing their connectivity profiles 

(26). Hierarchical clustering with subsequent “dynamic” tree-cut (27) ultimately yielded 

gene modules, whose biological functions were annotated with the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) (28), an open-source 

bioinformatics resource. Additionally, representative module “meta-genes” for each sample 

were computed as the first principal component of their constituent genes’ expression 

values, a well-established approach. We demonstrated associations between gene modules 

(thereby biological mechanisms) and external traits  by correlating module meta genes with 

trait labels (for example as healthy vs septic) as described previously (10). Shared 

mechanisms as annotated by DAVID were identified based on ontological similarities using 

the GoSemSim package (29). This method determines similarities between Gene Ontology 

(GO) terms based on graph-based measures, wherein mechanisms are associated based on 

evolutionary and biological relationships and similarity is computed based on graph 

topology structure. Methods are described further in ref (29). 

 

Deconvolution of leukocyte cell factions 
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We used the well-established technique of CIBERSORT (12) to estimate the immune cell 

composition of whole blood. This method relies upon a previously derived reference gene 

expression matrix generated from a collection of pure lymphocyte fractions. The signature 

matrix was truncated to the genes detectable in all 3 cohorts (514 genes out of 547 genes in 

the original signature matrix). Within this signature matrix, each cell type is assigned a series 

of markers, which are then incorporated into nu-support vector regression to derive cell 

fractions. The method is further described in ref (12). The CIBERSORT technique is 

implemented from R package epiDISH. 

 

Patient subgroup discovery and validation 

We used k-means clustering to identify patient subclasses based on immune cell landscape. 

This is a widely used technique in computational biology which initiates with a specified 

number of clusters (k) and assigns data points to each cluster based on a distance measure 

(30). During an iterative process, the position of the cluster centres in the data space are 

adjusted based on the cluster memberships as points are being added. Data points are 

reassigned as the cluster centre is being adjusted. The process continues until there is 

further adjustment required to the cluster centres (clusters are deemed stable). The optimal 

class numbers were estimated using the “elbow” method, where the number of clusters are 

weighed against the percent of variance explained by the clusters (31,32).  

To validate the distinct composition of each cluster we first optimized a logistic regression 

model using backward elimination then trained the optimized model on the trauma cohort. 

We then validated on the two datasets with sepsis (abdominal and respiratory source). We 

also tested internal validation on the trauma dataset using k-fold cross-validation. Model 

performance was assessed using area under the receiver operator curve (33,34). 
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Results 

Overlapping biological processes in critical care patients.  

Gene co-expression analysis, performed separately on each disease etiology with respective 

controls included, identified multiple expression modules which predominantly enrich in 

processes relating to inflammation and cell division (Figure 1).  

 

Figure 1: Shared transcriptome response across aetiologies of critical illness. Dendrogram 

summaries of gene co-expression networks derived from WBT in Trauma (A), Abdominal 

sepsis (B) and Community-acquired pneumonia (C). Color-coded bar graph under each 

dendrogram depicts co-expression modules, with grey representing unclassified genes. Only 

modules significantly different between disease and heathy controls are labeled (Mann 

Whitney p<0.05). Panel D shows heatmap summaries of ontological similarities between 

modules in sepsis vs trauma. Note the overlap for inflammation and immune processes 
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across different aetiologies of critical illness. Panel D bottom right: GO terms enriching in 

each co-expression module. CAP: community acquired pneumonia, AS: Abdominal sepsis 

 

Processes with the greatest degree of similarity between all disease types in GOSemSim 

analysis mapped largely to immune/inflammatory processes. This approach yielded a 

similarity metric greater than 0.75 between all modules which significantly differed between 

disease and controls. 

 

Distinct patterns of leukocyte compositions preserved across different aetiologies of critically 

illness 

Motivated by the overlap in immunological and inflammatory processes we analyzed the 

immune cell composition from WBT of all 317 patients with critical illness. We applied the 

deconvolution technique CIBERSORT to compute relative fractions of 22 leukocyte subtypes 

from whole blood transcriptomics. This technique uses cell-specific marker transcripts to 

“deconvolve” lymphocyte cell fractions from bulk gene expression (12). Such deconvolution 

techniques are well established and have reshaped our understanding of the cell 

composition of “bulk tissue”. They have been applied in a number of studies to estimate not 

only leukocyte composition but also the immune landscape (18), microenvironment (19), 

and purity (35) of tumours. Deconvolution of leukocyte fractions showed complex but 

consistent patterns across trauma and sepsis caused by community acquired pneumonia or 

abdominal source (Figure 2A-C).  
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Figure 2: Shared immune cell configurations across aetiologies of critical illness. A-C: Heat 

map summaries of leukocyte composition in trauma (A), sepsis due to community acquired 

pneumonia (B) and sepsis due to an abdominal source (C). Sidebar indicates cluster 

assignment: black-subgroup 1, red-subgroup 2. Patients are presented in rows and cell types 

in columns. D-F: Bargraph summaries of differential leukocyte fractions showing suppressed 

neutrophils, elevated dendritic cells and CD4 memory T cells dominating subgroup 1 (top) 

and elevated neutrophils with otherwise suppressed leukocyte levels seen in subgroup 2 

(bottom). Note the pattern remains consistent across the three independent aetiologies. 

Red bars indicate significant differences (t-test, p<0.05).  

 

The broad characteristics of these distinct groups were as follows: subgroup 1: a higher 

fraction of neutrophils with relative suppression of leukocyte fractions, subgroup 2: a higher 

proportion of activated CD4 memory cells associated with resting/activated dendritic cells. 

We will be referring to these as subgroup 1 and subgroup 2 from here onwards. 

Comparative analysis of cell fraction for the two consistent subgroups is summarized in 

Figure 2D-F. Comparative analysis of patient subgroups did not reveal any differences in the 

clinical/demographics labels (age, gender or mortality) available in the data repositories 

(Table 1). We have further validated the distinct leukocyte composition of these two 

subgroups by training a logistic regression model on the trauma cohort, with subgroup as a 
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binary response variable and cell fractions as regressors, to independently validate the 

model on the septic cohorts. Area under the ROC curve was over 0.98 for all groups, 

demonstrating that the two subgroups were highly distinct from one another and consistent 

in all 3 cohorts (Supplementary figure 1). For further verification, we demonstrated the 

generalizability of our results in a robust pediatrics dataset consisting of 181 patients with 

admitting diagnosis of sepsis from a variety of sources. Cluster detection using the same 

method as the discovery cohorts gave subgroup with similar characteristics: one group with 

CD4 helper/dendritic cell dominant (corresponding to subgroup 1) and a second neutrophil 

dominant corresponding to subgroup 2 (Supplementary figure 2).  

 

Suppressed immune and inflammatory mechanisms in distinct subgroup of critically ill 

We finally analysed correlation between the patient subgroups and biological mechanisms 

in critical illness (Figure 3). This was done by correlating module meta genes (Figure 1) with 

group labels of individual patients (healthy, subgroup 1, subgroup 2). We found that 

modules that enrich in inflammatory/immune mechanisms were of highest significance. The 

expression of these modules (meta-genes) were higher in the subgroup 2 (neutrophil-

dominated) and lower in subgroup 1 (CD4 T helpers/dendritic cell dominated). Analysis of 

our validation cohort paralleled these results: module meta genes from the pediatric cohort 

suffering from septic shock of diverse aetiologies correlated well with subgroup labels: 

subgroup 2 showed significantly higher correlation with innate immune mechanisms 

compared to subgroup 2 (Supplementary figure 3).  
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Figure 3: Boxplot summary of module meta-gene correlation with patient subgroup 

phenotypes: H: healthy, subgroup 1: CD4 T helper, dendritic cell predominant and 

neutrophil depleted, subgroup 2: Neutrophil predominant. Note the lower relative 

expression level of module eigengenes for subgroup 1 versus subgroup 2. All modules 

plotted as significantly different between subgroups 1 and 2 (MW p<0.05). 

 

Discussion 

 Our results are the first to show two groups of patients characterized by different patterns 

of immune response to severe community acquired pneumonia, abdominal sepsis and 

trauma. One consistent patient subgroup consists depleted neutrophils, high memory CD4 

T and dendritic cells counts (subgroup 1) and a second  is characterized by high neutrophil 

counts (subgroup 2). Our results are the first to show that patterns of leukocyte 

composition are preserved across these different critical illnesses and may give basis for a 

“pan-disease” marker for patients with a complicated clinical course. In addition, our study 

confirms the consistent but diverse activation of host immune mechanisms in both sepsis 

and trauma (1, 2–4). (1).  

 

Analysis of serum transcriptomics in critical illness has demonstrated a large scale 

reprioritization of gene expression, also referred to as a “genomic storm”, following burns 
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and trauma (2). Part of this effect is due to the up-regulation of innate immune 

mechanisms, microbial recognition and inflammation, and down-regulation of antigen 

presentation and adaptive immunity. Complicated recovery (ie: prolonged hospital stay, no 

recovery or death) was associated with upregulated cytokines IL-6 and IL-10, transcription 

factors p38, and MAPK signalling cascades, while antigen presentation and T-cell regulation 

is suppressed (2). The current models of the immune/inflammatory paradigm suggest two 

consecutive mechanisms for the initial surge of inflammatory processes (Systemic 

Inflammatory Response Syndrome) followed by a compensatory anti-inflammatory 

mechanism. These recent genome wide results have suggested a new model consisting of 

the parallel upregulation of innate immunity with the suppression of adaptive immunity (2). 

In a longitudinal analysis of gene expression levels and cell factions in the hyperacute phase 

of trauma showed a relatively limited upregulation of transcriptomics (3). Only 4.2%, 21.4% 

and 21.0% of total genes were differentially expressed in samples taken within 2 hours of 

injury, 24 and 72 hours of admission, respectively. Biological processes associated with 

Multi Organ Dysfunction Syndrome (MODS) were cell death and survival pathways rather 

than a pro-inflammatory state suggested by prior concepts. We used co-expression 

networks to detect gene modules in sepsis and trauma patients, yielding processes 

enriching in inflammation, innate immunity and cell division. These results are in line with 

previous findings wherein comparison of transcriptomic responses to fecal peritonitis and 

community acquired pneumonia showed 64% overlap in upregulated genes with trauma (6). 

Multiple configurations in leukocyte fractions have been suggested to associate with 

increased morbidity/mortality in trauma and sepsis (36,37). These configurations were 

proposed to contribute to the dysregulated immune response and immune suppressed 

state seen in critical illness. Studies using flow cytometry have shown higher risk of MODS 
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with leukopenia, increased NK dim cells and reduced δγ low T lymphocytes in septic patients 

(36). Analysis of activation markers CD11b and HLE for neutrophils, and ICAM-1 for 

monocytes showed reduced signals for patients with higher mortality in sepsis (37). 

Neutrophils have a central role in triggering and amplifying innate immunity. One of the 

subgroups identified in our study is dominated by a high fraction of neutrophils while other 

leukocyte fractions are suppressed. We were, however, limited to assessing cell fractions 

and lack information on the biological activity of these fractions. The second subgroup is 

characterized by elevated dendritic cells and memory CD4 T fractions. Memory CD4 T cells 

are derived from activated CD4 T cells (38); while their role is not well defined, they are 

proposed as early effectors of cytokine response, helpers of B/T cell response and effector 

responses as reviewed in ref 36 (39).  However, it has been suggested that the apoptotic 

response in sepsis causes the recovery of an antigen specific cell pool with narrower 

repertoire, translating to a dysregulated immune response (40). Dendritic cells are regarded 

as the link between innate and adaptive immunity as they stimulate the adaptive immune 

system through their antigen presenting and secretory functions (41). In response to 

microbial stimuli, dendritic cells express co-stimulants such as CD40 and CD86 through a 

process termed maturation (42). The depletion of dendritic cells was shown to associate 

with increased frequency of ICU acquired infection for patients with septic shock (7) and in 

burns (43). Beyond just down-regulation, dendritic cells were proposed to contribute to 

immune-suppressed states in sepsis through alterations in their differentiation (44), 

phenotypical changes, and immunological functions (45). Furthermore, an important 

dichotomy in dendritic cell function is the secretion of IL-12 versus IL-10. IL-12 polarizes 

naïve Th to Th 1 promoting immune response by linking innate to adaptive immunity (46). 

Conversely, IL-10 promotes regulatory T cells and suppresses Th 1 priming, NKs and 
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macrophages, hence promoting an immune-suppressed state (47). Given that our analysis is 

limited to cell fractions and lacks data on the functional state of these cells it is difficult to 

draw conclusions on the immune state of these subgroups. We were nevertheless able to 

correlate gene expression patterns that annotated to immunity and inflammation with the 

two subgroups in leukocyte configuration. We found downregulation of both immunity and 

inflammatory mechanisms in the first subgroup of depleted neutrophils, increased dendritic 

and CD4 helper cell fractions implying an immunosuppressed state. Supporting this 

interpretation are prior studies that correlate pure fractions of leukocytes to clinical course 

and outcome. Deconvolution of leukocyte fractions in trauma showed increased risk of 

Multi Organ Dysfunction Syndrome (MODS) with elevated dendritic cell counts but depleted 

neutrophil levels (3) which corresponds to the configuration of subgroup 1. Given the 

limitation of our dataset further studies are required to confirm the association of subgroup 

2 with MODS in critical illness.  

 

Conclusion 

Our study identifies two patient consistent subgroups in diverse forms of critical illness, 

distinguished based on their leukocyte composition. This preserved configuration may serve 

as a universal marker of multiple organ dysfunction for the critically ill, and allow for more 

targeted approaches to outcome prediction and treatment. 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525865doi: bioRxiv preprint 

https://doi.org/10.1101/525865


 18

References 

1.  Davenport EE, Burnham KL, Radhakrishnan J, Humburg P, Hutton P, Mills TC, 

Rautanen A, Gordon AC, Garrard C, Hill AVS, et al. Genomic landscape of the 

individual host response and outcomes in sepsis: A prospective cohort study. Lancet 

Respir Med (2016) 4:259–271. doi:10.1016/S2213-2600(16)00046-1 

2.  Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, Hayden DL, Hennessy L, 

Moore EE, Minei JP, et al. A genomic storm in critically injured humans. (2011) 

208:2581–2590. doi:10.1084/jem.20111354 

3.  Cabrera CP, Manson J, Shepherd JM, Torrance HD, Watson D, Longhi MP, Hoti M, 

Patel MB, Dwyer MO, Nourshargh S, et al. Signatures of inflammation and impending 

multiple organ dysfunction in the hyperacute phase of traumaO: A prospective cohort 

study. (2017)1–21. doi:10.1371/journal.pmed.1002352 

4.  Wang L, Oh WK, Zhu J. Disease-specific classification using deconvoluted whole blood 

gene expression. Sci Rep (2016) 6:1–13. doi:10.1038/srep32976 

5.  Warren HS, Elson CM, Hayden DL, Schoenfeld DA, Cobb JP, Maier R V, Moldawer LL, 

Moore EE, Harbrecht BG, Pelak K, et al. A Genomic Score Prognostic of Outcome in 

Trauma Patients. (2009) 5:3–10. doi:10.2119/molmed.2009.00027 

6.  Burnham KL, Davenport EE, Radhakrishnan J, Humburg P, Gordon AC, Hutton P, 

Svoren-jabalera E, Garrard C, Hill AVS, Hinds CJ, et al. Shared and Distinct Aspects of 

the Sepsis Transcriptomic Response to Fecal Peritonitis and Pneumonia. (2017) 

196:328–339. doi:10.1164/rccm.201608-1685OC 

7.  Grimaldi D, Louis S, Pène F, Sirgo G, Rousseau C, Claessens YE, Vimeux L, Cariou A, 

Mira JP, Hosmalin A, et al. Profound and persistent decrease of circulating dendritic 

cells is associated with ICU-acquired infection in patients with septic shock. Intensive 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525865doi: bioRxiv preprint 

https://doi.org/10.1101/525865


 19

Care Med (2011) 37:1438–1446. doi:10.1007/s00134-011-2306-1 

8.  Obermoser G, Presnell S, Domico K, Xu H, Wang Y, Anguiano E, Thompson-Snipes LA, 

Ranganathan R, Zeitner B, Bjork A, et al. Systems scale interactive exploration reveals 

quantitative and qualitative differences in response to influenza and pneumococcal 

vaccines. Immunity (2013) doi:10.1016/j.immuni.2012.12.008 

9.  Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, 

Sutphin GL, Zhernakova A, Schramm K, et al. The transcriptional landscape of age in 

human peripheral blood. Nat Commun (2015) 6: doi:10.1038/ncomms9570 

10.  Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network 

analysis. BMC Bioinformatics (2008) 9: doi:10.1186/1471-2105-9-559 

11.  Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, 

Drake TA, Lusis AJ, et al. Integrating genetic and network analysis to characterize 

genes related to mouse weight. PLoS Genet (2006) 2:1182–1192. 

doi:10.1371/journal.pgen.0020130 

12.  Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, 

Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat 

Methods (2015) 12:453–457. doi:10.1038/nmeth.3337 

13.  Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, Zhang A, 

Costigan M, Yekkirala A, Barrett L, et al. A Systems-Level Analysis of the Peripheral 

Nerve Intrinsic Axonal Growth Program. Neuron (2016) 89:956–970. 

doi:10.1016/j.neuron.2016.01.034 

14.  Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, Hartl C, 

Leppa V, Ubieta LDLT, Huang J, et al. Genome-wide changes in lncRNA, splicing, and 

regional gene expression patterns in autism. Nature (2016) 540:423–427. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525865doi: bioRxiv preprint 

https://doi.org/10.1101/525865


 20

doi:10.1038/nature20612 

15.  Horvath S, Dong J. Geometric interpretation of gene coexpression network analysis. 

PLoS Comput Biol (2008) 4:24–26. doi:10.1371/journal.pcbi.1000117 

16.  Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I, Lu XH, Ramos 

EM, El-Zein K, Zhao Y, et al. Integrated genomics and proteomics define huntingtin 

CAG length-dependent networks in mice. Nat Neurosci (2016) 19:623–633. 

doi:10.1038/nn.4256 

17.  Horvath S, Zhang B, Carlson M, Lu K V., Zhu S, Felciano RM, Laurance MF, Zhao W, Qi 

S, Chen Z, et al. Analysis of oncogenic signaling networks in glioblastoma identifies 

ASPM as a molecular target. Proc Natl Acad Sci (2006) 103:17402–17407. 

doi:10.1073/pnas.0608396103 

18.  Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao 

GF, Plaisier CL, Eddy JA, et al. The Immune Landscape of Cancer. Immunity (2018) 

48:812–830.e14. doi:10.1016/j.immuni.2018.03.023 

19.  Q. W, B. H, X. H, H. K, M. S, L. S, A.C.  deCarvalho, S. L, P. L, Y. L, et al. Tumor Evolution 

of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes 

in the Microenvironment. Cancer Cell (2017) 32:42–56.e6. 

doi:10.1016/j.ccell.2017.06.003 

20.  Wang L, Oh WK, Zhu J. Disease-specific classification using deconvoluted whole blood 

gene expression. Sci Rep (2016) 6:1–13. doi:10.1038/srep32976 

21.  Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE, Burnham KL, 

Nürnberg P, Schultz MJ, Horn J, Cremer OL, et al. Classification of patients with sepsis 

according to blood genomic endotype: a prospective cohort study. Lancet Respir Med 

(2017) 5:816–826. doi:10.1016/S2213-2600(17)30294-1 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525865doi: bioRxiv preprint 

https://doi.org/10.1101/525865


 21

22.  Edgar R. Gene Expression Omnibus: NCBI gene expression and hybridization array 

data repository. Nucleic Acids Res (2002) 30:207–210. doi:10.1093/nar/30.1.207 

23.  Scicluna BP, Wiewel MA, van Vught LA, Hoogendijk AJ, Klarenbeek AM, Franitza M, 

Toliat MR, Nürnberg P, Horn J, Bonten MJ, et al. Molecular Biomarker to Assist in 

Diagnosing Abdominal Sepsis upon ICU Admission. Am J Respir Crit Care Med (2018) 

197:1070–1073. doi:10.1164/rccm.201707-1339LE 

24.  Scicluna BP, Klein Klouwenberg PMC, Van Vught LA, Wiewel MA, Ong DSY, 

Zwinderman AH, Franitza M, Toliat MR, Nürnberg P, Hoogendijk AJ, et al. A molecular 

biomarker to diagnose community-acquired pneumonia on intensive care unit 

admission. Am J Respir Crit Care Med (2015) doi:10.1164/rccm.201502-0355OC 

25.  Sweeney TE, Shidham A, Wong HR, Khatri P. A comprehensive time-course-based 

multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic 

gene set. Sci Transl Med (2015) 7:1–16. doi:10.1126/scitranslmed.aaa5993 

26.  Zhang B, Horvath S. A General Framework for Weighted Gene Co-expression Network 

Analysis. (2005) 

27.  Methods T, Clustering H, Author D, Langfelder P, Zhang B, Horvath S, Langfelder MP, 

Gpl L, Contains D, Date RC. Package ‘ dynamicTreeCut .’ (2016)1–14. 

28.  Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large 

gene lists using DAVID bioinformatics resources. Nat Protoc (2009) 4:44–57. 

doi:10.1038/nprot.2008.211 

29.  Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: An R package for measuring 

semantic similarity among GO terms and gene products. Bioinformatics (2010) 

26:976–978. doi:10.1093/bioinformatics/btq064 

30.  Tarca AL, Carey VJ, Chen X wen, Romero R, DrOghici S. Machine learning and its 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525865doi: bioRxiv preprint 

https://doi.org/10.1101/525865


 22

applications to biology. PLoS Comput Biol (2007) doi:10.1371/journal.pcbi.0030116 

31.  Thorndike RL. Who belongs in the family? Psychometrika (1953) 

doi:10.1007/BF02289263 

32.  Ketchen DJ, Shook CL. The Application of Cluster Analysis in Management Strategic 

ResearchO: and Analysis Critique. Strateg Manag J (1996) 

33.  Zador Z, Sperrin M, King AT. Predictors of outcome in traumatic brain injury: New 

insight using receiver operating curve indices and Bayesian network analysis. PLoS 

One (2016) 11:1–18. doi:10.1371/journal.pone.0158762 

34.  Zador Z, Huang W, Sperrin M, Lawton MT. Multivariable and Bayesian Network 

Analysis of Outcome Predictors in Acute Aneurysmal Subarachnoid Hemorrhage: 

Review of a Pure Surgical Series in the Postinternational Subarachnoid Aneurysm Trial 

Era. Oper Neurosurg (2017) 0:1–8. doi:10.1093/ons/opx163 

35.  Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat 

Commun (2015) 6:1–11. doi:10.1038/ncomms9971 

36.  Manson J, Cole E, Ath HD De, Vulliamy P, Meier U, Pennington D, Brohi K. Early 

changes within the lymphocyte population are associated with the development of 

multiple organ dysfunction syndrome in trauma patients. Crit Care (2016)1–10. 

doi:10.1186/s13054-016-1341-2 

37.  Muller Kobold AC, Tulleken JE, Zijlstra JG, Sluiter W, Hermans J, Kallenberg CGM, 

Cohen Tervaert JW. Leukocyte activation in sepsis: Correlations with disease state 

and mortality. Intensive Care Med (2000) doi:10.1007/s001340051277 

38.  MacLeod MKL, Kappler JW, Marrack P. Memory CD4 T cells: Generation, reactivation 

and re-assignment. Immunology (2010) 130:10–15. doi:10.1111/j.1365-

2567.2010.03260.x 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525865doi: bioRxiv preprint 

https://doi.org/10.1101/525865


 23

39.  MacLeod MKL, Clambey ET, Kappler JW, Marrack P. CD4 memory T cells: What are 

they and what can they do? Semin Immunol (2009) doi:10.1016/j.smim.2009.02.006 

40.  Cabrera-Perez J, Condotta SA, Badovinac VP, Griffith TS. Impact of sepsis on CD4 T cell 

immunity. J Leukoc Biol (2014) doi:10.1189/jlb.5MR0114-067R 

41.  Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. 

Nat Rev Immunol (2017) 17:30–48. doi:10.1038/nri.2016.116 

42.  BANCHEREAU Jacques, M. SR. Dendritic cells and the control of immunity. Nature 

(1998) 392:245–252. 

43.  Arpa DN, Amato G, Amelio DL, Napoli B, Pileri D, Cataldo V, Mogavero R, Lombardo C, 

Conte F. DECREASE OF CIRCULATING DENDRITIC CELLS IN BURN PATIENTS. (2007) 

XX:199–202. 

44.  Pastille E, Didovic S, Brauckmann D, Rani M, Agrawal H, Schade FU, Zhang Y, Flohe SB. 

Modulation of Dendritic Cell Differentiation in the Bone Marrow Mediates Sustained 

Immunosuppression after Polymicrobial Sepsis. J Immunol (2011) 186:977–986. 

doi:10.4049/jimmunol.1001147 

45.  Schefold JC, Zuckermann-Becker H, Volk HD, Meisel C. Phenotype changes and 

impaired function of dendritic cell subsets in patients with sepsis: A prospective 

observational analysis. Crit Care (2009) 13:1–12. doi:10.1186/cc7969 

46.  Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat 

Immunol (2000) doi:10.1038/79734 

47.  De AK, Laudanski K, Miller-Graziano CL. Failure of monocytes of trauma patients to 

convert to immature dendritic cells is related to preferential macrophage-colony-

stimulating factor-driven macrophage differentiation. J Immunol (Baltimore, Md  

1950) (2003) 170:6355–6362. doi:10.4049/jimmunol.170.12.6355 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525865doi: bioRxiv preprint 

https://doi.org/10.1101/525865


 24

Supplementary material 

 Endotype Mean age 

(SD) 

Sex 

(M:F) 

Mortality 

(%) 

TRAUMA Subgroup 1 33.4  (10.9) 75:37 6/112  (5.4) 

 Subgroup 2 35.5  (11.9) 26:20 1/46  (2.2) 

ABDOMEN Subgroup 1 62.2  (13.1) 13:13 4/26  (15.4) 

 Subgroup 2 61.5  (10.9) 14:11 4/25  (16.0) 

CAP Subgroup 1 60.6  (16.2)  43:29 15/72  (20.8) 

 Subgroup 2 61.8  (17.2) 20:16 8/36  (22.2) 

*No parameters have p<0.05 when comparing endotypes of the same cohort (t-test for age 

and chi square for sex and mortality). 

 

Supplementary table 1: Comparative analysis of patient endotypes distinguished based on 

immune cell compositions.  
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Supplementary figure 1: Validation of patient subgroups based on leukocyte composition. 

Area under (AUC) the receiver operator curve (ROC) show highly accurate classification of 

patient subgroups (AUC ≥ 0.98). AUC values are show as AUC (95% CI). 
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Supplementary figure 2: Verification of patient subgroups; one with increased neutrophils 

and second group with relatively supressed neutrophils and dominant dendritic cells, 

activated CD4 memory cells. A: Heatmap summary of clustering. Black: Subgroup 1, Red: 

Subgroup 2. B: Barplot representing differential fractions between subgroups 1 and 2. Red 

bars indicate significant difference between subgroups (MW p<0.05) 
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Supplementary figure 3: Verification of immune gene modules and meta gene correlations 

with patient subgroups in paediatric septic shock. Dendrograms with merged dynamic tree 

cut (A) gave gene co-expression modules with similar annotations as adult cohorts of 

trauma and sepsis. Panel B: Correlation of meta genes with subgroup memberships 

(Supplementary figure 2) paralleled results from adult cohort, further suggesting subgroup 2 

with higher immune activity versus subgroup 1 corresponding to an immune supressed 

state. 0: healthy, 1: group 1 and 2: group 2 
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