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ABSTRACT 19 

Background: Inverse association between premorbid body mass index (BMI) and 20 

amyotrophic lateral sclerosis (ALS) has been discovered in observational studies; 21 

however, whether this association is causal remains largely unknown. 22 

Methods: We employed a two-sample Mendelian randomization approach to evaluate 23 

the causal relationship of genetically increased BMI with the risk of ALS. The 24 

analyses were implemented using summary statistics obtained for the independent 25 

instruments identified from large-scale genome-wide association studies of BMI (up 26 

to ~770,000 individuals) and ALS (up to ~81,000 individuals). The causal relationship 27 

between BMI and ALS was estimated using inverse-variance weighted methods and 28 

was further validated through extensive complementary and sensitivity analyses. 29 

Findings: Using 1,031 instruments strongly related to BMI, the causal effect of per 30 

one standard deviation increase of BMI was estimated to be 1.04 (95% CI 0.97~1.11, 31 

p=0.275) in the European population. The null association between BMI and ALS 32 

discovered in the European population also held in the East Asian population and was 33 

robust against various modeling assumptions and outlier biases. Additionally, the 34 

Egger-regression and MR-PRESSO ruled out the possibility of horizontal pleiotropic 35 

effects of instruments. 36 

Interpretation: Our results do not support the causal role of genetically increased or 37 

decreased BMI on the risk of ALS. 38 
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1. Introduction 42 

Amyotrophic lateral sclerosis (ALS) is a frequent adult-onset fatal neurodegenerative 43 

disease clinically characterized by rapidly progressive motor neurons degeneration 44 

and death because of respiratory failure [1]. Although great advance has been made 45 

for the understanding of ALS in the past decades, the pathogenic mechanism 46 

underlying ALS remains largely unknown and only few therapeutic options can be 47 

available [2]. It has been shown that both genetic [3, 4] and environmental factors (e.g. 48 

cigarette smoking, alcohol consumption, exposure to pesticides, lead, organic toxins 49 

or electromagnetic radiation and socioeconomic status) may contribute to the 50 

development of ALS [5, 6, 7, 8, 9, 10, 11]. However, no replicable and definitive 51 

environmental risk factors are currently well established for ALS. In addition, due to 52 

the quickly growing ageing of the population in the upcoming years, it is evaluated 53 

that the number of ALS cases across globe will increase by about 70% [12], which is 54 

anticipated to result in rather serious socioeconomic and health burden. Therefore, 55 

understanding the risk factors of ALS for improving the medical intervention and 56 

quality of life for ALS patients is considerably important from both disease treatment 57 

and public health perspectives. 58 

Among extensive epidemiological researches of ALS, an interesting and surprising 59 

observation is that ALS patients often encounter a loss of weight or a decrease of body 60 

mass index (BMI) at the early phase of diagnosis with many possible explanations [1, 61 

13, 14, 15, 16, 17, 18, 19, 20]. Indeed, substantial change of BMI in ALS patients has 62 

been identified as an independent prognostic factor and has been linked to disease 63 

progression [13, 21, 22, 23, 24, 25, 26, 27]. For example, it is observed that a rapid 64 

reduction of BMI in ALS patients at the initial disease stage is a strong indicator of 65 

faster disease progression and shorter survival time; in contrast, nutritional 66 

intervention for ALS patients to increase BMI can prolong the survival time and leads 67 

to a delay in disease progression [28, 29, 30]. The benefit of raising BMI for ALS 68 

patients by taking high-energy diet is also confirmed by mouse models [31]. 69 

However, whether the long-term exposure to genetically increased (or decreased) 70 

BMI prior to the onset of ALS also plays a pathological role in the development of 71 

ALS is less understood. Various findings with regard to the relationship between 72 

premorbid (i.e. prediagnostic) BMI and ALS have been reported in the literature. In a 73 
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large-scale observational cohort, it was shown that higher BMI before the onset of 74 

ALS was associated with a decreased risk of ALS, resulting in an average of 4.6% 75 

[95% confidence interval (CI) 3.0~6.1%] lower risk of ALS per unit increase in BMI 76 

[23]. This inverse association between premorbid BMI and the risk (or mortality) of 77 

ALS was also supported by some recent studies [32, 33, 34, 35, 36]; see Tables S1 for 78 

more information. However, contradictory results were also reported. For example, it 79 

was shown that ALS cases consistently had a greater BMI compared with controls 80 

beyond five years before ALS manifestation although they had a smaller BMI than 81 

controls within five years prior to onset; and that per unit increase of BMI can result 82 

in ~5.0% (95% CI 0.0~11.0%) higher risk of ALS (Table S2 and Fig. S1) [13]. This 83 

study also implied that BMI may already begin to change about ten years before onset 84 

of ALS. A more pronounced increased risk associated with greater BMI before five 85 

years onset of ALS was observed in a population-based case-control study performed 86 

in Washington State [37, 38]: 50% higher risk of ALS for those with BMI between 24 87 

and 26 kg/m2 compared with those with BMI less than 21 kg/m2, and 70% higher risk 88 

of ALS for those with BMI between larger than 26 kg/m2 compared with those with 89 

BMI less than 21 kg/m2. 90 

The conflicting observations on the relationship between premorbid BMI and ALS 91 

may be partly due to uncontrolled/unknown bias or confounding factors that are 92 

frequent in observational studies, or partly due to the relatively small sample size for 93 

patients because of the rarity of ALS, or partly due to the reverse causality in previous 94 

studies as well as a limited retrospective time (or follow-up) before ALS onset [13]. 95 

We employ the systematic review and meta-analysis to provide a pooled conclusion 96 

about the relationship between premorbid BMI and ALS (Supplementary Text S1). 97 

We show that on average a unit increase of premorbid BMI can robustly result in 98 

about 3.0% (95% CI 2.1~4.5%) risk reduction of ALS, supporting the previous 99 

finding that a greater premorbid BMI is a protective factor for the development of 100 

ALS [23, 32, 33, 34, 35, 36]. Nevertheless, there still exists an essential problem — 101 

is the change of BMI before ALS manifestation a causal risk factor or the 102 

consequence of ALS? 103 

Because BMI is a modifiable exposure factor and obesity is a growing global health 104 

problem [39], a better characterization of the causal effect of BMI on ALS can thus 105 
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facilitate our understanding of the pathogenesis of ALS and finally leads to better 106 

prevention and treatment for ALS patients. Traditionally, randomized controlled trial 107 

(RCT) studies are the gold standard for inferring the causal impact of exposure on 108 

outcome. However, determining the causal relationship between premorbid BMI and 109 

ALS through RCT is challenging and unrealistic, because RCT necessarily requires a 110 

very large set of subjects and an extremely long follow-up before clinical manifest of 111 

ALS due to its rarity in the population [40] and wide variations in prevalence and 112 

incidence across various age groups [41, 42, 43, 44]. Therefore, it is desirable to 113 

investigate the causal association between premorbid BMI and ALS through 114 

observational studies. Mendelian randomization is such an approach [45, 46], which 115 

employs single nucleotide polymorphisms (SNPs) as instruments for the exposure (i.e. 116 

premorbid BMI) and assesses its causal effect on the outcome of interest (i.e. ALS) 117 

(Fig. S2) [47]. The recent successes of large-scale genome-wide association studies 118 

(GWASs) [48, 49, 50, 51, 52] make it feasible to choose strongly associated SNPs to 119 

be valid instruments for causal inference in Mendelian randomization [53, 54]. Indeed, 120 

in the last few years Mendelian randomization has become a very popular method for 121 

causality inference in observational studies [54, 55]. 122 

Therefore, our main goal in this study is to examine whether there exists a causal 123 

association between the long-term exposure to genetically increased (or decreased) 124 

BMI and ALS onset. Consequently, SNPs which influence BMI would also affect the 125 

risk of ALS through changes of BMI. To do so, we conducted the largest and most 126 

comprehensive two-sample Mendelian randomization analysis to date by using 127 

summary statistics obtained from large-scale GWASs with ~770,000 individuals for 128 

BMI and ~21,000 ALS cases. 129 
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2. Materials and Methods 130 

2.1. GWAS data sources and instrument selection 131 

We selected 1,031 independent index association SNPs (p<5.00E-8) to serve as 132 

instrumental variables for BMI (Table S3) from the Genetic Investigation of 133 

ANthropometric Traits (GIANT) consortium, which is the largest BMI GWAS (up to 134 

773,253 individuals) for the European population to date (Supplementary Text S2) 135 

[50]. For all the instruments we obtained their association summary statistics in terms 136 

of the effect allele, marginal effect size estimate and standard error. To estimate the 137 

causal effect of BMI on ALS, we extracted corresponding association summary 138 

statistics of these index SNPs for ALS from an ALS GWAS that was also carried out 139 

in the European population up on 80,610 individuals (20,806 cases and 59,804 140 

controls) (Table S3) (Supplementary Text S2) [4]. 141 

Besides the set of 1,031 instruments obtained from [50], as a part of complementary 142 

and sensitivity analyses, we also attempted to validate whether the relationship 143 

between BMI and ALS derived from the European population also holds in the East 144 

Asian population. To do so, we performed an additional Mendelian randomization 145 

study using another set of 75 instruments obtained from an East Asian BMI GWAS up 146 

to 158,284 individuals (Table S4 and Supplementary Text S2) [52]. The corresponding 147 

summary statistics of ALS for these instruments were extracted from an East Asian 148 

ALS GWAS up to 4,084 individuals (1,234 cases and 2,850 controls) (Supplementary 149 

Text S2) [56]. The two sets of index SNPs of BMI from the two populations share 150 

only one common instrument (i.e. rs7903146). The GWAS data sets used in the 151 

present study are summarized in Table 1. 152 

2.2. Estimation of causal effect with inverse-variance weighted methods 153 

To examine whether the instruments are strong, for each index SNP that was used as 154 

instrument in turn, we calculated the proportion of phenotypic variance of BMI 155 

explained (PVE) by the instrument using summary statistics [57] and generated the F 156 

statistic (Table S3) [58, 59]. We then performed the two-sample Mendelian 157 

randomization analysis [60, 61] to estimate the causal effect of BMI on ALS in terms 158 

of OR per standard deviation (SD) change in BMI with inverse-variance weighted 159 

(IVW) methods [59, 62]. Before formal analysis, to ensure the validity of Mendelian 160 
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randomization analysis, we examined the pleiotropic associations of instruments by 161 

removing those that may be associated with ALS with a marginal p value below 0.05 162 

after Bonferroni correction. While in our analysis no instruments were excluded from 163 

any set of instruments by this strategy. 164 

2.3. Complementary and sensitivity analyses 165 

To ensure results robustness and guard against model assumptions in the Mendelian 166 

randomization analysis (Fig. S2), we carried out a series of complementary and 167 

sensitivity analyses: (i) leave-one-out (LOO) cross-validation analysis [63] and 168 

Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 169 

analysis [64] to validate whether there are instrumental outliers that can substantially 170 

influence the causal effect estimate; (ii) weighted median-based method that is robust 171 

when some instruments are invalid [65]; (iii) MR-Egger regression to examine the 172 

assumption of directional pleiotropic effects [61, 66]; (iv) IVW causal analysis after 173 

removing instruments that may be correlated to other 38 complex metabolic, 174 

anthropometric and socioeconomic traits from large-scale GWASs (Supplementary 175 

Text S2); (v) reverse causal inference on BMI using ALS instruments; (vi) IVW 176 

method for the causal effect estimation of BMI on ALS in the East Asian population.177 
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3. Results 178 

3.1. Causal effect of BMI on ALS 179 

By using the PLINK procedure (Supplementary Text S2), we selected 1,031 180 

independent SNPs to be valid instruments for BMI in the European population from 181 

the GIANT study [50] (Table S3). These instruments together explain a total of 8.28% 182 

of phenotypic variance for BMI. The F statistics for all these SNPs are above 10 183 

(ranging from 28.8 to 1426.2 with an average of 58.4), implying that the weak 184 

instrument is less likely to bias our analysis. In addition, as there is significantly 185 

statistical evidence for the heterogeneity of causal effect across instruments 186 

(p=7.43E-4); therefore, only the results estimated using the random-effects IVW 187 

method are displayed in the following paragraphs. 188 

With the random-effects IVW method we find that the OR of ALS per unit [one 189 

standard deviation (SD)] increase of BMI is estimated to be 1.04 (95% CI 0.97~1.11, 190 

p=0.275) using the set of 1,031 instruments, suggesting that the genetically changed 191 

BMI is not necessarily causally associated with an increased or decreased risk of ALS. 192 

We further examine whether the lack of detectable non-zero causal effect of BMI on 193 

ALS is due to a lack of statistical power. To do so, we calculated the statistical power 194 

to detect an OR ratio of 1.10 (or 0.90) in the risk of ALS per unit change of BMI 195 

following the analytic-form approach given in [67] 196 

(https://cnsgenomics.shinyapps.io/mRnd/). It is shown that the estimated statistical 197 

power is 94%, indicating that we would have reasonably high power to detect such a 198 

causal effect of BMI on ALS if BMI is indeed causally related to the risk of ALS. 199 

3.2. Sensitivity analyses to validate the estimated causal effect of BMI on ALS 200 

We now validate the causal effect of BMI on ALS estimated above through various 201 

sensitivity analyses. First, we examine whether there exist potential instrument 202 

outliers and whether these outliers have a substantial influence on the estimate of 203 

causal effect. To do so, we created a scatter plot by drawing the effect sizes of BMI 204 

with regard to their effect sizes of ALS for all the 1,031 instruments. Among all the 205 

instruments, one index SNP (i.e. rs2229616) has the largest effect size of 0.106 on 206 

BMI and can be reasonably assumed to be a potential outlier (Fig. 1). However, this 207 

outlier does not impact the estimated causal effect in our Mendelian randomization 208 
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analysis. Specially, after removing rs2229616, the OR of ALS per one SD increase of 209 

BMI is 1.04 (95% CI 0.97~1.11, p=0.317), almost the same as that obtained using all 210 

the instruments. To further examine whether a single instrument may strongly 211 

influence the causal effect of BMI on ALS, we performed a leave-one-out (LOO) 212 

Mendelian randomization analysis. Again, the LOO analysis results show that no 213 

single instrument can influence the causal effect estimate substantially (Fig. 2). 214 

Additionally, we also directly tested whether any instrument is an outlier using 215 

MR-PRESSO [64], which shows that no significant instrument outliers exist for the 216 

Mendelian randomization analysis at the significance level of 0.05. 217 

To study whether some are invalid among the set of 1,031 instruments and may bias 218 

the results, we conducted a Mendelian randomization analysis using the weighted 219 

median method [65]. The weighted median method yields the consistent estimate as 220 

before. In particular, the OR of ALS per one SD increase of BMI is calculated to be 221 

1.01 (95% CI 0.91~1.13, p=0.806), suggesting that invalid instruments unlikely bias 222 

our results. 223 

To investigate whether these instruments show potentially horizontal pleiotropy, we 224 

performed a Mendelian randomization analysis using the MR-Egger regression [61, 225 

66]. The results from the MR-Egger regression analysis are again largely consistent 226 

with our main results. For example, using all the 1,031 instruments the MR-Egger 227 

estimates the OR per one SD increase of BMI on ALS to be 0.97 (95% CI 0.79~1.19, 228 

p=0.740). The MR-Egger regression intercept is 0.001 (95% CI -0.002~0.004, 229 

p=0.473). Furthermore, funnel plots also display a symmetric pattern around the 230 

causal effect point estimate (Fig. 3). The funnel plots and MR-Egger regression results 231 

together offer no evidence for horizontal pleiotropy. 232 

We further performed causal estimation for BMI after removing instruments that may 233 

be potentially associated with other 38 complex traits (Supplementary Text S2) with 234 

various threshold values. Again, the resulting estimates of causal effect for BMI on 235 

ALS are not statistically significant regardless of the thresholds used, consistent with 236 

the results obtained with all the instruments (Table S5). The Mendelian randomization 237 

analysis using ALS instruments also removes the likelihood of reverse causality (the 238 

causal effect size is -0.011 with 95% CI -0.034~0.011 and p=0.317). 239 
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Finally, we estimated the causal effect of BMI on ALS in the East Asian population. 240 

To do so, we first obtained a set of 75 BMI-associated SNPs to serve as instruments 241 

(Tables S4). The estimated PVE by these instruments is 2.59%, and all have an F 242 

statistic above 10 (range from 22.6 to 410.1 with an average of 56.8) and are thus 243 

deemed as strong instruments [58, 59]. With these identified instruments, again we 244 

find that genetically higher BMI is not causally associated with an increased or 245 

decreased risk of ALS at the significance level of 0.05. Specifically, the OR of ALS 246 

per one SD increase of BMI is estimated to be 0.90 (95% CI 0.59~1.39, p=0.647). 247 
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Discussion 248 

The main objective of our study was to dissect whether there has a causal association 249 

between premorbid BMI and ALS and to investigate whether genetic predisposition to 250 

BMI plays an etiological role in ALS. To achieve this, in the present paper we have 251 

implemented a comprehensive Mendelian randomization analysis using summary 252 

statistics from GWASs. To our knowledge, this is the first Mendelian randomization 253 

study to explore the relationship between BMI prior to disease onset and ALS by 254 

leveraging genetic information from large scale GWASs. Additionally, as little has 255 

been known about the casual factors for the development of ALS to data[2]; therefore, 256 

our study contributes considerably to research on the role of premorbid BMI with 257 

regard to the risk of ALS and has the potential implication in public health. 258 

Although previous epidemiological studies showed evidence that premorbid BMI may 259 

have a neuroprotective role on ALS (Supplementary Text S1) [32, 33, 34, 35, 36, 37, 260 

38], our Mendelian randomization analysis does not support the existence of causal 261 

association between premorbid BMI and the risk of ALS. Besides finding the null 262 

causal relationship between BMI and ALS in the European population, we also 263 

validated that the causal association does not hold in the East Asian population and 264 

that the failure of identifying non-zero causal effect of BMI on ALS is not possibly 265 

due to the lack of statistical power in the European population. 266 

Unlike the results of observational studies which can be easily biased by measurement 267 

errors and confounding factors (e.g. cigarette smoking, alcohol drinking or daily diet 268 

intakes; and it indeed has been shown that BMI is no longer associated with ALS after 269 

controlling for socioeconomic status, prior chronic obstructive pulmonary disease, 270 

marital status, diabetes and residence at ALS diagnosis [68]), the results of Mendelian 271 

randomization analysis are often not susceptible to the measurement error bias 272 

because SNPs can be sequenced accurately [69], and are also less susceptible to 273 

reverse causation and confounders compared to other study designs because 274 

Mendelian randomization uses the principle that the random meiotic assortment of 275 

genotypes is independent of confounders and disease process of ALS. Additionally, 276 

one of the strengths of this study is that the GWAS data sets with large sample sizes 277 

(up to ~770,000 for BMI [50] and ~81,000 for ALS [4]) that were employed in our 278 

analyses ensures sufficient statistical power and thus the Mendelian randomization 279 
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results are reasonably believable. 280 

It needs to emphasize that in the main Mendelian randomization analysis we 281 

employed multiple uncorrelated strongly relevant instrument variables (a total of 282 

1,031) for causality inference of BMI on ALS. The benefit of applying multiple 283 

instruments in Mendelian randomization analysis is that the possibility of weak 284 

instruments bias is less likely and the high statistical power is guaranteed. However, it 285 

also has a higher likelihood to incorporate pleiotropic instruments, which violates the 286 

assumptions of Mendelian randomization analysis (Fig. S2) [47, 53, 54]. Therefore, to 287 

minimize the possibility of pleiotropy, we have tried to remove pleiotropic 288 

instruments. In addition, we also carried out sensitivity analyses by excluding 289 

instruments that may be associated with other 31 complex phenotypes which may link 290 

to ALS in a metabolic, anthropometric or socioeconomic way and possibly mediate 291 

the effect of BMI on ALS. Our Mendelian randomization analysis showed that the 292 

results are robust against pleiotropy and mediation effects as well as various model 293 

assumptions. 294 

The mechanisms underlying the causal associations between BMI and ALS may be 295 

considerably complex. Although no statistically significant evidence that BMI 296 

influences ALS was found in the direct biological pathway in our study, we cannot 297 

exclude the probability that BMI can have an impact on ALS via other indirect 298 

pathway. For example, it has been extensively shown that BMI is linked to many 299 

cardiovascular risk factors (e.g. hypertension and dyslipidemia) and metabolic 300 

phenotypes (e.g. type II diabetes, glucose and insulin levels), which in turn have been 301 

found to be protective in the development of ALS [70, 71, 72, 73, 74]. The underlying 302 

mechanism may be that higher BMI is typically associated with higher blood lipid or 303 

glucose levels [39], which could resist against the increased energy consumption and 304 

hypermetabolism of ALS patients and thus reduce the hypermetabolic damage on the 305 

motor neuron system [17], potentially delaying ALS onset and increasing the survival 306 

time [20, 28, 29, 30, 75]. As another explanation, higher BMI was also reported to be 307 

associated with higher concentrations of progranulin [76] which could mediate the 308 

fat-induced insulin resistance and revert mutant TDP-43 (TAR DNA-binding protein 309 

43) induced axonopathy when overexpression [77], while TDP-43 is widely known to 310 

link to the increasing risk of ALS [2]. Therefore, we presume that the observed 311 
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associations between premorbid BMI and ALS risk in those previous studies could be 312 

attributed to the consequence of some unknown biological pleiotropy. 313 

Some limitations of this study should be considered. First, similar to other Mendelian 314 

randomization studies, we acknowledge that the validity of our Mendelian 315 

randomization relies on some crucial modeling assumptions (Fig. S2) [47, 53, 54], 316 

some of which cannot be possible to be fully tested for in the framework of 317 

summary-data based Mendelian randomization. Thus, we emphasize that the results 318 

obtained in the present study should be interpreted with caution, although we have 319 

been extremely careful in selecting instruments to satisfy various model assumptions 320 

and have conducted extensive sensitivity analyses to guard against model assumption 321 

misspecifications. Second, also like other Mendelian randomization studies, we 322 

assumed a linear relationship between BMI and ALS in the Mendelian randomization 323 

model; while linearity may be not reasonable in the practice. Thus, we cannot fully 324 

rule out the possibility of nonlinear link between BMI and ALS. Third, due to the use 325 

of GWAS summary statistics rather than the individual-level data, we cannot test for 326 

the causal effect between BMI and ALS stratified by gender or age groups [13, 33]. 327 

In conclusion, based the Mendelian randomization results obtained from large-scale 328 

GWAS summary statistics, the present study is not supportive of the causal role of 329 

genetically increased or decreased BMI on the risk of ALS.330 
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Figure Legends and Tables 598 
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Fig. 1. Relationship between the SNP effect size estimates of BMI (x-axis) and the 600 

corresponding effect size estimates of ALS (y-axis) in the European population using 601 

1,031 instruments generated from [50]. In the plot, the 95% CIs for the effect sizes of 602 

instruments on BMI are shown as horizontal lines, while the 95% CIs for the effect 603 

sizes of instruments on ALS are shown as vertical lines. The horizontal dotted line 604 

represents zero effects. The line in red represents the estimated causal effect of BMI 605 

on ALS obtained using the random-effects IVW method. The red dot in the rightmost 606 

side is identified as an outlier (i.e. rs2229616). 607 
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 608 

Fig. 2. Leave-one-out (LOO) results of BMI on ALS based on the set of 1,091 609 

instruments in the European population. (A) Estimated LOO causal effects; (B) The p 610 

values of the LOO causal effects. In the left panel, the red reference line is the point 611 

estimate of causal effect for BMI using all the instruments; in the right panel, the red 612 

reference line represents the significance level of 0.05. 613 
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Fig. 3. Funnel plot for single causal effect estimate of BMI on ALS obtained using all 615 

1,091 instruments in the European population. 616 
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Table 1 617 

GWAS data sets used in the Mendelian randomization analysis in the main text. 618 

Traits PubMed ID Population k Sample size Data source 
BMI 30124842 European 1,031 773,253 GIANT [50] 
ALS 29566793 European  80,610 Nicolas, et al (2018) [4] 
BMI 28892062 East Asian 75 158,284 BioBank Japan [52] 
ALS 28931804 East Asian  4,084 Benyamin, et al (2017) [56] 

BMI: body mass index; ALS: amyotrophic lateral sclerosis; k is the number of 619 

instruments. 620 
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