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Abstract 
 
Capture Hi-C is a powerful approach for detecting chromosomal interactions 
involving, at least on one end, DNA regions of interest, such as gene promoters. We 
present Chicdiff, an R package for robust detection of differential interactions in 
Capture Hi-C data. Chicdiff enhances a state-of-the-art differential testing approach 
for count data with bespoke normalisation and multiple testing procedures that 
account for specific statistical properties of Capture Hi-C. We validate Chicdiff on 
published Promoter Capture Hi-C data in human Monocytes and CD4 + T cells, 
identifying multitudes of cell type-specific interactions, and confirming the overall 
positive association between promoter interactions and gene expression. Chicdiff is 
implemented as an R package that is publicly available at  
https://github.com/RegulatoryGenomicsGroup/chicdiff.  
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1. Introduction 
 

Differential signal detection in sequencing data is one of the most common 
tasks in genomic analyses. Multiple tools have been developed for this purpose, 
many of which, including DESeq and EdgeR, are based on the negative binomial 
models for count data (Anders and Huber 2010; Robinson, McCarthy, and Smyth 
2010; McCarthy, Chen, and Smyth 2012). Such tools are theoretically suitable for the 
analysis of most sequencing data types, including chromatin immunoprecipitation 
(ChIP-seq) and Hi-C, leading to the development of wrapper packages around 
DESeq and EdgeR that facilitate differential analyses for such data (Ross-Innes et al. 
2012; Lareau and Aryee 2018). However, both of these algorithms have been 
developed with standard RNA sequencing data in mind, and may therefore not 
account for or benefit from the specific properties of data resulting from other assays.  

Capture Hi-C (CHi-C) is a powerful experimental technique for detecting 
chromosomal interactions globally and at high resolution. In CHi-C, the genome-wide 
pulldown of pairs of interacting genomic fragments by Hi-C is followed by sequence 
capture to selectively enrich Hi-C material for interactions involving (at least on one 
end) the fragments of interest, termed 'baits'. Differential analyses in CHi-C data are 
challenging due to sample normalisation issues, sparsity and uneven signal-to-noise 
ratios across interaction distances and different capture baits, which are not 
accounted for by standard differential analysis algorithms.  

We have previously reported Chicago, a statistical pipeline for robust 
detection of significant interactions in Capture Hi-C data from a single condition 
(Cairns et al. 2016). Here, we present Chicdiff, an R package for differential Capture 
Hi-C data analysis. Chicdiff combines moderated differential testing for count data 
implemented in DESeq2 (Love, Huber, and Anders 2014) with CHi-C-specific 
procedures for signal normalisation informed by Chicago, and p-value weighting. 
Jointly, procedures implemented in Chicdiff enable a robust and sensitive detection 
of differential interactions in CHi-C data. 
 
2. Approach 
 

A schematic of the overall analysis approach is presented in Figure S1. The 
following sections and Supplementary Note describe specific steps in more detail. 
 
2.1. Feature selection 
 

CHi-C data are often sparse, particularly at large interaction distances, 
limiting the power of differential signal detection at single-fragment resolution even at 
significantly interacting regions. In part, this problem can be mitigated based on the 
fact CHi-C signals commonly spread to adjacent fragments (Eijsbouts et al. 2018), 
most likely owing to the tethering of these fragments into the vicinity of the baits by 
nearby specific interactions. Therefore, to increase power, Chicdiff pools reads 
across several fragments (by default, five in each direction) surrounding each 
interacting fragment of interest for each bait. A functionality is provided to prioritise 
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fragment-level interactions within each detected differentially interacting region 
post-hoc (see Supplementary Note).  
 
2.2. Data normalisation 
 

Typically in differential count analyses, a single normalisation (scaling) factor 
is estimated per sample to account for differences in library size. However, we found 
that in CHi-C data, normalisation can be further improved by taking into account the 
differences in the background levels for specific pairs of fragments between samples. 
In CHi-C, unlike in many other data types such as RNA-seq, it is possible to obtain 
such background estimates from the data, and procedures for this are implemented 
in Chicago package. Chicdiff combines scaling factors based on these background 
estimates with sample-level scaling factors in a manner that minimises the total 
dispersion of read counts across replicates and conditions at each interaction.  
 
2.3. Significance testing 
  

The count and scaling matrices generated as described above are provided 
as input for the DESeq2 package that tests each interaction for differences between 
conditions using a negative binomial model with moderated dispersion estimation. 
DESeq2 implements both pairwise testing between conditions, as well as likelihood 
ratio tests for multi-condition differences. The p-values from either of these tests are 
then submitted to the weighting procedure as described below.  
 
2.4. Weighted multiple testing treatment 
 

As with other Hi-C-derived data types, signal-to-noise ratios and effect sizes 
in CHi-C data vary highly with interaction distance. This makes a strong case for 
non-uniform multiple testing correction, such that p-values for differential tests on 
longer-distance interactions are corrected more stringently compared with those on 
short-distance interactions. To do this, Chicdiff uses the Independent Hypothesis 
Weighting (IHW) method (Ignatiadis et al. 2016) to learn p-value weights based on 
interaction distance in a manner that maximises the number of rejected null 
hypotheses. However, training IHW weights on the test regions is not appropriate, 
since their p-values are often not uniform under the null due to selection bias, which 
violates IHW’s core assumption. Therefore, instead we learn weights on a separate 
"weight training set" of fragment pairs randomly drawn from the full interaction count 
data for each sample (i.e., not limited to CHiCAGO-detected significant interactions), 
thus avoiding selection bias. The distance-dependent weights learned this way are 
applied to the p-values in the test set, and the resulting weighted p-values are 
reported to the user. 

 
3. Use example  
 

 We applied Chicdiff to detect interactions specific to naive CD4+ T cells 
versus monocytes based on promoter CHi-C data from (Javierre et al. 2016). This 
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resulted in 208,232 detected differential interacting regions (weighted adjusted 
p-value < 0.05; see Table S1 for further summary statistics). An example of 
differential interactions is shown in Figure 1, and a heatmap of a subset of differential 
and non-differential interactions is shown in Figure S2. As expected, many genes 
whose promoters engaged in differential interactions showed consistent differences 
in expression between the two cell types (Figure S3). 

Figures S4-S9 validate the Chicdiff approach by comparing the differential 
interaction calls obtained with and without pooling across multiple fragments, with 
Chicdiff versus standard DESeq2 normalisation, and with and without p-value 
weighting, with respect to the expression of associated genes and other parameters. 
 
4. Conclusions 
 

Capture Hi-C is a versatile experimental technique for detecting chromosomal 
interactions that involve, at least on one end, fragments of interest, such as gene 
promoters. Chicdiff extends and complements the Chicago statistical pipeline to 
provide a statistical framework for the detection of differential interactions between 
cell types and conditions in Capture Hi-C data. We expect Chicdiff to be widely used 
by the gene regulation and chromosome conformation communities. 
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Figure 1. Example of differential interactions detected by Chicdiff. Profiles of 
Promoter Capture Hi-C interaction counts detected for WNT7A promoter in naive 
CD4 + T cells (top) and monocytes (bottom) (data from (Javierre et al. 2016)). Mean 
counts across four and three replicates for each cell type, respectively, are shown 
along the Y axis, and interactions beyond 1Mb each way are cropped out. Significant 
interactions detected for each condition separately by Chicago are colour-coded 
(blue: 3<score<=5; red: score>5). Significant differentially interacting regions 
detected by Chicdiff (adjusted weighted p-value < 5e-4) are depicted as red blocks 
between the respective interaction profiles. The number in brackets in the plot title 
refers to the ID of the corresponding baited restriction fragment (440833). 
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