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● The number of possible prognostic and diagnostic genes for cancers;  

● A list of independent prognostic genes for each cancer; 

● The universal prognostic genes mainly function in the spindle assembly checkpoint; 

● Statistical links between mutated pathways and prognostic genes. 
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Abstract: Prognostic signature is important in estimating cancer risk, subtyping cancer, 

and planning treatment. A single gene as a prognostic marker would facilitate the 

development of a clinical test. Here we showed that the number of prognostic and diagnostic 

genes differ greatly across cancers. By considering both the survival difference and the fold 

change of expression in cancer, we revealed the prognostic genes for each cancer and found 

twenty two genes with both diagnostic and prognostic capacity. The universal prognostic 

genes (CDC20, CDCA8, ASPM, ERCC6L, and GTSE1) mainly function in the spindle 

assembly checkpoint, and show more statistical links to mutated pathways, suggesting that 

expression of these genes can be altered by mutations from many pathways. Briefly, we 

systematically identified the prognostic genes and revealed the associations between the 

prognostic genes and genes mutated in cancer. 
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1 Introduction 
Cancers are characterized by distinct patterns of mutation and gene expression, associated 

with different prognosis.  

Prognostic expression signatures have been extensively identified and overall survival 

exhibits links to diverse biological processes. Uhlen et al summarized that shorter survival is 

associated with the upregulation of genes related to cell growth and the downregulation of 

genes related to cellular differentiation.1 For breast cancer, the MammaPrint test, including 70 

genes, is able to assess the benefit of chemotherapy.2 Metastasis is a key factor in short 

survival. In digestive cancers, besides activation of the mitotic cell cycle, altered expression in 

the extracellular matrix is linked to poor prognosis.3-5 A 64-gene signature is associated with 

metastasis for non-small cell lung carcinoma (NSCLC).6 Inflammatory-related genes are also 

involved in prognosis in glioblastoma (GBM),7 colorectal, and pancreatic cancers.3,4 Recently, 

an estimate of the risk of recurrence of colon cancer was shown to be provided by the total 

tumor-infiltrating T-cell count and the cytotoxic tumor-infiltrating T-cell count.8 In acute 

myeloid leukemia (AML), the worst overall survival is associated with the expression of 

multidrug resistant genes.9 Also, genes in the tumor microenvironment have a prognostic role 

for NSCLC.10 

Cancer-associated mutations have also been extensively studied. Recently, 299 driver 

mutation genes were revealed.11 The study confirmed that microsatellite instability was 

associated with an improved response to immune checkpoint therapy.11 A model estimating 

the mutation load of 24 genes predicted the response to cancer immunotherapy with 

anti-CTLA-4 and anti-PD-1 treatments.12 

The present work focuses on two questions. Firstly, what are the independent prognostic 

genes for each cancer? The expression signatures in the literature are actually combinations of 

a set of genes.2-7,10,13 A single gene as a prognostic marker would facilitate the development of 

a clinical test. Although some independent prognostic genes have been identified, including 

the genes for PSA for prostate cancer,14 microRNA-148a for bladder cancer,15 telomerase for 

colorectal cancer,16 KIAA1199 for NSCLC,17 and CTHRC1 for gastric cancer,18 a 

systems-level identification of an independent prognostic gene is still needed. We also noticed 

that the signature genes differ depending on the criteria. It will be interesting to discover 

which genes are identified under tighter criteria. Secondly, what are the links between 

expression of the prognostic genes and the mutations present for a specific cancer? Given that 

the mutations are the original driving factors for the tumor,19 what is the link from the 
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mutations to the altered gene expression, and how does the link determine the prognosis? We 

will explore the connection. 

Here we revealed the independent overall survival-associated genes for each cancer type and 

identified the genes with capacities of both prognosis and diagnosis. The links between 

mutation and the prognostic gene expression were also investigated.  

2 Materials and methods  
2.1 Datasets 

Gene expression data, survival data, and mutation data were retrieved from TCGA project 

from the initial release of Genomic Data Commons (GDC) in October 2016 using 

RTCGAToolbox.20 A total of 9523 samples across 29 tumor types were downloaded, including 

8811 tumor tissues and 712 non-tumor tissues. The abbreviation for cancer type is in 

supplementary information. Microarray-based gene expression data (gene expression omnibus 

ID: GSE21501 for pancreatic cancer21) were retrieved for validating. 

2.2 Identification of the prognostic genes  

The prognostic genes were identified with a log-rank test in a Kaplan–Meier survival model. 

In each cancer type, for each gene, patients were classified into two groups, the 

high-expression group (H) and the low-expression group (L), using the expression median of 

the gene as a cutoff. In identifying, we considered both survival difference (P[SV]) and the 

expression change (FC(H/L)) between the two groups. The area under the curve (AUC) of a 

receiver operating characteristic (ROC) curve and the expression fold change between the 

cancer (C) and normal (N) tissues (FC(C/N)) were employed to indicate the diagnosis ability.  

2.3 Regression for the expression of the prognostic genes with the mutation counts 

The 40 prognostic genes, which were identified with P[SV]≤10−6 and FC[H/L]≥4, and the top 

200 frequently mutated genes, were included in this section. Firstly, for each prognostic gene, 

the dependence between its expression and the mutation counts of the 200 mutated genes 

were tested with a chi-squared (χ2) test for each cancer. The mutated genes with p ≤ 0.001 (χ2 

test) were included in an enrichment analysis. A cutoff of p ≤ 0.05 was used to find the 

enriched terms and pathways. Upon satisfaction of those criteria, a link between the 

prognostic gene and the mutated pathway (terms) was counted. This was done for all cancers 

to see how many cancer types shared the link. Secondly, we carried out a generalized linear 

regression of the expression of the prognostic gene with the mutation counts of the top 200 

frequently mutated genes for each cancer type. The regression generated a set of parameters 

indicating the contribution of the mutation in explaining the expression level of the prognostic 
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gene. Only mutated genes with a significant parameter were used to construct a network.  

More details are in Supplementary Information. 

3 Results 
3.1 Prognostic genes differs across cancers 

First, we found under the same cutoff of overall survival difference (P[SV]), the number of 

potential prognostic genes differed between cancer types (Fig. 1A and Fig. S1A). Cancer 

CHOL, ESCA, STAD, COAD, GBM and PCPG had only a limited number of prognostic 

genes (Fig. 1A). We assessed the diagnostic genes by calculating the area under the receiver 

operating characteristic (ROC) curve (AUC) between the cancer and control (normal) data. 

The cancers also had different numbers of genes at a high AUC value (AUC≥0.9) (Fig. 1A). 

The result suggests that the number of prognostic and diagnostic genes differs between 

cancers.  

We did not observe a link between the number of prognostic genes and the survival 

probability (Fig. 1B). We calculated Pearson correlation coefficients (PCCs) of the gene 

expression of 25,301 genes for each pair of patients for each cancer, and associated the 

coefficients to the five-year survival probability. Interestingly, the survival probability highly 

correlated to the standard deviation (Std) of the PCC (r=−0.97) (Fig. 1C).  

The pathways and gene ontology (GO) terms that were enriched for the survival-related genes 

exhibited distinct clusters for the cancer types (Fig. 1D). In KIRP, ACC, and MESO, the genes 

were enriched for the terms “cell cycle” and “cell division”. CESC, BRCA, STAD, BLCA, 

and HNSC shared enriched term “T cell costimulation”. LUSC, THCA, DBLC, UCEC, USC, 

and LIHC had common terms of “cell adhesion”. GBM, LAML, and PAAD were not included 

in any of the clusters mentioned above. We observed a substantial enrichment in the term 

“Glycoprotein”. P-glycoprotein was found in the multidrug resistance (MDR) phenotype of 

adult solid tumors.22 The enrichment for the genes whose expressions change greatly is shown 

in Fig. S1B.  

3.2 Prognostic genes identified 

Then, we identified the prognostic genes. We considered two factors to be important. The first 

was a tight association between the variation of clinical outcome (here, overall survival) and 

the variation of expression level of the gene, which can be represented by the survival 

difference (P[SV]) between the high- and low-expression groups. The second was the 

discriminability of the gene by mRNA level between the two groups. The fold change of gene 

expression in the high (H) and low (L) groups (FC(H/L)) was used to indicate such 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 22, 2019. ; https://doi.org/10.1101/526285doi: bioRxiv preprint 

https://doi.org/10.1101/526285
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

discriminability.  

First, relaxed criteria of P[SV]≤10−3 and FC(H/L)≥2, selecting the top 10 genes for each 

cancer type, resulted in 236 genes in 29 cancer types (Fig. S2A, Suppl-1). Eight of the 236 

genes were in the list identified in literature by P[SV]≤10−3 in 17 cancers1 (Fig. S2B). The 

genes include C1orf88 for ACC, BCL2L14 for BLCA, TMEM65 for BRCA, RBM38 for 

CESC, ATP13A3 for CHOL, ATOH1 for CORD, ATP1A3 for DLBC and UCS, GRPEL2 for 

ESCA, RARRES2 for GBM, CHGB for HNSC, CLDN3 for KICH, ATP6V1C2 for KIRH, 

HOXD10 for KIRP, TREML2 for LAML, ISL2 for LGG, CDC20 for LIHC, GTSE1 for LUAD, 

PAPPA for LUSC, CEP55 for MESO, DYDC2 for OV, MYEOV for PAAD, KIAA0319 for 

PRAD, LBH for STAD, CILP for THCA, PRKCB for THYM, and TP53TG3B for UCEC 

(Suppl-1). Very few genes were shared across cancer types, consistent with the literatures.1,23 

It is notable that the subunits of P- and V-ATPases (such as ATP13A3, ATP1A3, and 

ATP6V1C2) were in the list. These genes are responsible for transporting cations across 

membranes and organelle acidification.24 

Then, the 236 genes were filtered further with stricter criteria, P[SV]≤10−6 and FC(H/L)≥4, 

resulting in a list of 40 genes (Fig. 2A and Suppl-2). Cancers CHOL, ESCA, TGCT, OV and 

UCS had no prognostic genes under the criteria (Fig. 2A). The genes CDC20, CDCA8, and 

CEP55 were prognostic in more than three cancer types. Other genes were specific for 

particular cancers, such as MYEOV for PAAD. Most of the genes had a hazard effect, meaning 

that high expression of the gene was associated with poorer overall survival (Fig. 2A). The 

prognostic genes were enriched for the terms of cell cycle, cell division, and cytoskeleton (Fig. 

S2 C and D). Moreover, in the space of the principal components (PCs) constructed with 

expression of the 40 genes, the cancer tissues showed clustering patterns and cancer types 

could be discriminated (Fig. 2B), indicating that the genes represent cancer-type specific 

survival information.  

As few prognostic genes were identified for some cancer types with the strict criteria (Fig. 

2A), another strategy, using the Pearson correlation coefficient between survival time and 

gene expression, was applied to identify optional candidates from the 236 prognostic genes. 

The result is shown in Fig. 2C. Although some of these genes are not in the list in Fig. 2A, 

they performed well in indicating survival, for instance, HIST3H2A and LRRC61 for GBM, 

and CA11 for PAAD (Fig. 2C and D).  

Some of the prognostic genes have been previously identified. For instance, lower expression 

of MYBL2 is associated with a favorable overall survival in LGG,25 LIHC,26 and NSCLC.27 
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High DKK1 was identified for gastric cancer.28 NPTX2 has been suggested to have prognostic 

value for GBM,29 we found it was moderately significant (p ≤ 0.05) for survival.30 We also 

randomly selected one gene, MYEOV, and tested its prognostic performance with 

microarray-based data for PAAD (Fig. S2E).21  

3.3 Genes with prognostic and diagnostic capacities  

We noticed that although some of the genes have prognostic abilities, their average expression 

levels are even higher in normal tissue than in the low-expression cancer tissues, which leads 

to confusion in predicting clinical outcome because there is a difficulty in deciding if an 

unknown tissue is cancer. An example is from gene DKK1 for LUAD (Fig. S3).  

Therefore, we assessed the diagnostic ability of the 236 prognostic genes from two aspects. 

One was the fold change of gene expression between the cancer (C) and the control (N) 

tissues (FC(C/N)), and the other was the AUC in diagnosis. With the criteria 

|log2FC(C/N)|≥1.5 and AUC≤0.8, we identified 22 genes (Fig. 3A, Fig. S4, Suppl-3). For 

CDC20, CDCA8, CDK1, MYBL2, KIF14, SPAG5, and STC2, their prognostic value has been 

previously identified. We here confirmed their diagnostic value. For others, we revealed both 

prognostic and diagnostic values. As shown in Fig. 3B, the expression levels of the genes 

exhibited a successive increase from the controls, to the low-expression cancer group, and 

then to the high-expression cancer group, making assessment of both diagnosis and prognosis 

possible. The genes CDC20, CDCA8, MYBL2, C1QTNF6, CEP55, CDK1, and KIF14 are 

universal, since they mark multiple types of cancers not only in prognosis but also in 

diagnosis. CDC20 can be a prognostic marker for LIHC and KIRC, and can be a diagnostic 

marker for more than nine types of cancer (Fig. S5). The protein encoded by CDC20 is 

required for the full ubiquitin ligase activity of the anaphase promoting complex/cyclosome 

(APC/C). The spindle assembly checkpoint causes CDC20 to bind to different sites on the 

APC/C, which alters APC/C substrate specificity.31 The product of CDCA8 is a component of 

the vertebrate chromosomal passenger complex (CPC), which ensures correct chromosome 

alignment and segregation and is required for microtubule stabilization and spindle 

assembly.32 CDK1 and MYBL2 are central regulators of cell cycle progression.33,34 MYBL2 

is a well-known prognostic predictor.33 KIF14 is involved in many processes, including 

chromosome segregation and mitotic spindle formation.35,36 

We also tested the possibility of fifteen immunoregulation-related genes in prognosis as well 

as diagnosis (Fig. 4). PVR was significant for prognosis for KIRC and HNSC. The product of 

PVR is the ligand of TIGIT, which can repress the activity of NK cells.37 CD48 has prognostic 
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value for BRCA (Fig. 4). 

Briefly, we identified 22 genes that have both prognostic and diagnostic capacities. 

3.4 Links between mutations and prognostic genes 

Finally, we investigated the association between the mutations and the expression of the 

prognostic genes. The genes with mutations were identified (Fig. S6A and B). The total 

mutations did not seem to be directly associated with survival (Fig. S6C). We normalized the 

mutation rate by dividing by gene length, as a longer gene has more chances to mutate.19 

Interestingly, we found that genes with ~1 mutation per kbp had the lowest expression, in both 

cancer and control samples (Fig. S6D). Additional analysis is shown in Fig. S7. 

We revealed the link between the mutated pathway and the expression of the prognostic genes 

(Fig. 5A). The prognostic genes could be placed in three classes. In the first class, the gene 

expression was affected by many mutated pathways in more than five cancer types. These 

genes were CDC20, CDCA8, ASPM, ERCC6L, KLRA1, KIF14, SGOL1, and FAM72D. We 

noticed CDC20, ERCC6L, ASPM, and CDCA8 are related to anaphase spindle 

assembly.31,32,38,39 The second class included the genes whose expression was affected by only 

a few pathways, such “Focal adhesion”, the “FoxO and ErbB signaling pathways” and 

“Carbohydrate digestion and absorption”. These genes included GTS1, C1orf88, C5orf32, 

ATP6V1C2, CLIP, and C1QTNF6. In the last class, links were found to less than three cancer 

types, showing specificity. The genes MYEOV, ANKRD56, and C7orf29 are connected to 

mutations in the “Tight junction” and “Long-term potentiation” pathways. Mutations 

occurring in the PI3K/PI4K domain, methylation-related and central carbon 

metabolism-related genes showed extensive alteration of the expression levels of the 

prognostic genes. 

We then tested the relationships between the mutated genes and the prognostic genes (Fig. 

5B). CDC20, CDCA8, and ASPM were associated with a greater number of mutated genes. 

Mutations in PKHD1, ATM, and ZNF536 were associated with a greater number of prognostic 

genes.  

Frequently mutated genes, including TP53 and PTEN, showed a strong association to CDC20 

expression (Fig. 5B, Fig. 2A). Mutations in TG (thyroglobulin), EP400, a component of the 

NuA4 histone acetyltransferase complex, and SI (a sucrase-isomaltase enzyme) showed links 

with CDCA8. Mutations in CNTNAP5, which encodes a cell adhesion molecule in the nervous 

system,40 and mutations in ATM, whose product belongs to the PI3/PI4-kinase family and 

functions as a cell cycle checkpoint kinase, exhibited a link to the prognostic gene ASPM. 

GTSE1 encodes a protein that is involved in p53-induced cell cycle arrest in G2/M phase by 
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interfering with microtubule rearrangements.41 We found that mutations in cadherin 23 

(CDH23), which helps cells stick together, and TEX15, which is involved in DNA 

double-stranded break repair, are linked to GTSE1 expression. The expression of MYEOV is 

mainly affected by mutations in genes associated with intraflagellar transport (DYNC2H1), 

actin-microtubule interactions and cellular junctions (MACF1), myotendinous junctions 

(COL22A1), and calcium-binding microfibrils and glucose homeostasis (FBN1).  

Briefly, we have provided an insight into the relationships between prognostic genes and 

genes mutated in cancers.  

4 Discussion 
Prognostic genes are important in estimating low-risk patients, assessing cancer progression, 

subtyping cancer, and making a proper plan for medical treatment. Here, we reveal the 

prognostic genes for overall survival for 29 cancers by systematic scanning.  

Three points are highlighted. Firstly, the prognostic genes vary greatly among the cancer types. 

It seems that the more subtypes the cancer has, the fewer prognostic genes. For instance, 

GBM can be classified into six subgroups (IDH, K27, G34, RTK I and II, and MES). 42 Breast 

tumors have five molecular subtypes (Luminal A, Luminal B, Her2 overexpressing, basal, and 

normal-like).43 ESCA includes four subtypes.44 The three cancers had fewer prognostic genes 

(Fig. 1A–B). In the literature, high levels of intratumor genetic heterogeneity are associated 

with poorer survival across cancers.45 We found a significant association between the 

intertumor expression heterogeneity and the overall survival (Fig. 1C).  

Secondly, the 236 prognostic genes were identified under the criteria of both survival 

difference and expression change. Expression differentiation between cancer and adjacent 

normal tissues has been proven to be irrelevant to survival.46 We demonstrated it is not 

appropriate to identify prognostic genes by comparing gene expression between cancer and 

control samples (DKK1, Fig. S3).46 We identified 22 genes for both prognosis and diagnosis. 

High-quality prognostic genes, including CDC20, ASPM, CDCA8, SGOL1, and ERCC6L, 

play roles in G2/M processes, such as the spindle assembly checkpoint.31,32,38,39 Therefore, the 

regulation of anaphase of the cell cycle is intimately associated with patient survival.  

Thirdly, we associated the mutations and the prognostic genes. Mutations in the PI3K–AKT, 

ErbB, and FoxO signaling pathways, and in the biological processes of tight junction and 

methylation, can ubiquitously alter the expression of the prognostic genes. Further 

relationships were seen between prognostic genes that function in anaphase of the cell cycle, 

especially CDC20, CDCA8, ASPM and GTSE1, and the mutated genes including TP53, PTEN, 
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ATM, EP400 and BAI3. PKHD1 mutations link seven prognostic genes (Fig. 5B). Fibrocystin, 

encoded by PKHD1 in the liver and kidney, may be involved in cell adhesion, cell repulsion, 

and the growth and division of cells.47  

Our results provide a comprehensive prognostic and diagnostic gene list, and reveal the 

characteristics of prognostic genes of cancer and the statistical association to mutation. 
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Figure legends 
Figure 1 Survival-associated genes differ among cancers.  

A. The number of genes associated with a differential survival (P[SV]), with an expression 

change in the cancer tissues (FC(H/L)), with a capacity of diagnosis for cancer (AUC), and 

with an expression change between the control (N) and cancer (C) samples (FC(C/N)), 

respectively. In each cancer type, for each gene, cancer tissues are divided into high (H) and 

low (L) expression groups based on the median expression of the gene in the cancer type. 

P[SV] and FC(H/L) represent survival difference and fold change between the two groups, 

respectively. FC(C/N) means the fold change between the cancer tissues and normal controls. 

AUC is the area under receiver operating characteristic (ROC) curves in diagnosing the 

cancer samples with expression of the gene.  

B. The number of prognostic genes with a significance of P[SV]≤0.001. The data were sorted 

with the five-year survival probability. 

C. Relationship between survival probability and variation of gene expression among the 

population. Shown is the five-year survival probability against the standard deviation (Std) of 

the correlation coefficients of expression profile (20,531 genes) of each pair of patients for 

each cancer.  

D. The pathways and terms enriched for the genes whose expression was highly correlated to 

survival time. For each cancer, the top 200 most strongly correlated genes were chosen.  

Figure 2 Prognostic genes associated with both survival difference and expression changes in 

cancer.  

A. The 40 prognostic genes identified. Firstly, with criteria of a survival difference 

P[SV]≤10−3 and fold change of expression FC(H/L)≥2, and by selecting the top ten genes at 

most for each cancer type, 236 genes were identified in 29 cancer types. Then the 236 genes 

were further filtered with stricter criteria of P[SV]≤10−6 and FC(H/L)≥4. The term “effect” 

indicates the relationship between gene expression and survival, a downward-pointing 

triangle means a high expression of the gene corresponds to a poor survival, and an 

upward-pointing triangle means a high expression to a good survival. 

B. Principal component analysis (PCA) for the gene expression of the 40 prognostic genes in 

29 cancer types.  

C. The genes whose expressions highly correlate with survival. The correlation is calculated 

as a Pearson correlation coefficient (r). 

D. Survival curves for the three prognostic genes. 
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Figure 3 Genes with the capacity for both prognosis and diagnosis. 

A. The 22 genes that are both prognostic and diagnostic. The 236 prognostic genes were 

further filtered with two new criteria. One was the fold change of expression between the 

cancer tissues (C) and the normal tissues (N), namely |log2(FC[C/N])|≥2. The other was the 

capacity of differentiating cancer and normal cases, which was assessed by AUC of ROC 

curve, with the criterion of AUC≥0.8.  

B. The gene expression of the 22 genes in normal tissues, and both low- and high-expression 

cancer groups (Cancer-L and Cancer-H). 

C. Demonstration of two genes, CDC20 and MYEOV, in prognosis and diagnosis. Left panels, 

expression levels of the genes in normal and cancer tissues (Cancer-H and Cancer-L). Middle 

panels, the ROC curves of diagnosis. Right panels, the survival curves of the high- and 

low-expression groups. The p value of the log-rank test and the number of the groups are 

indicated. 

Figure 4 Prognostic and diagnostic value of fifteen immunoregulation-related genes.  

Shown is the survival difference (P[SV]) between the high- and low-expression groups of 

each immunoregulation-related gene. The AUC indicates the diagnostic capacity in 

differentiating cancer tissues.  

Figure 5 Association between the expression of the prognostic genes and the somatic 

mutations. 

A. Links between the expression of the prognostic genes and the mutation profile of the top 

200 frequently mutated genes. For each prognostic gene, a chi-squared test was employed to 

test the association between its expression level and the mutation times of the 200 mutated 

genes in each cancer. The mutated genes with p ≤ 0.001 were included in an enrichment test 

for GO term, KEGG pathway, InterPro domain, and SMART mode. A cutoff of p ≤ 0.05 was 

used to find the enriched terms and pathways. If the criteria were satisfied, a link between the 

prognostic gene and the mutated pathway (term) was counted once. This was done for each 

cancer type. The heat map here displays the counts for the links within 29 cancer types.  

B. Generalized linear regression of the expression of the prognostic genes with the mutation 

profile of the top 200 mutated genes. The network displays the regression results after 

filtering with p < 0.05 in the chi-squared test. In the network, the yellow-marked genes are the 

prognostic genes and the other genes are the mutated genes. A line from the mutated gene to 

the prognostic gene indicates that the mutation relates to the expression of the prognostic gene. 

Blue and red lines mean negative and positive effects, respectively. The line width is 
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proportional to the significance (p value of chi-squared test). 
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Materials and methods 

Datasets 

Gene expression data, survival data, and mutation data used in this study were retrieved from 

TCGA project from the initial release of Genomic Data Commons (GDC) in October 2016 

(https://portal.gdc.cancer.gov/) using RTCGAToolbox.
1
 A total of 9523 samples across 29 

tumor types were downloaded, including 8811 tumor tissues and 712 non-tumor tissues. 

Microarray-based gene expression data (gene expression omnibus ID: GSE21501 for 

pancreatic cancer
2
) were retrieved for validating the expression markers for survival. 

Identification of the prognostic genes  

Genes whose expression is associated with a differential overall survival were identified with 

a log-rank test in a Kaplan–Meier survival model. In each cancer type, for each gene, patients 

were classified into two groups using the expression median of the gene as a cutoff. The two 

groups were named the high-expression group (H) and the low-expression group (L), 

depending on whether the expression level was higher or lower than the median, respectively. 

The survival difference was tested in the two groups. In identifying, we considered both 

survival difference and the expression change between the two groups. First, the criteria of a 

survival difference P[SV]≤10
3

 and a fold change of expression (FC(H/L))2 were applied to 

20,531 genes for 29 cancer types, resulting in a list of 236 genes by choosing the top ten 

genes. Then, stricter criteria, P[SV]≤10
6 

and FC[H/L]>4 were applied to the 236 genes, 

resulting in a list of 40 genes. Finally, we were interested in the possibility of the prognostic 

genes acting as markers to diagnose cancer and normal tissues. Thus, the expression 

difference between cancer (C) and control (N) tissues was tested. The area under the curve 

(AUC) of a receiver operating characteristic (ROC) curve and the expression fold change 

(FC(C/N)) between the cancer and normal tissues were employed to indicate the difference, 

namely AUC0.8 and |log2[FC(C/N)]|2, resulting in a list of 22 genes. 

We also identified prognostic genes another way, by examining the Pearson correlation 

coefficient between gene expression and survival time among the population. Candidate genes 

were those with a large positive or negative correlation.  

Analysis of association between immunoregulation-related gene expression and survival 

time 

Fifteen immunoregulation-related genes were considered, including PDL-1, PDL-2, and PVR. 

PDL-1 and PDL-2 are ligands of programmed death-1 (PD-1), which is involved in the 

inhibition of T cells,
3
 and PVR is a ligand of TIGIT. The binding of the two inhibits NK cell 
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cytotoxicity.
4
 

Analysis of the mutations in cancers 

For each gene, mutations were counted in all cancers. A mutation rate (frequency) of the gene 

is the ratio of the total mutations in the gene to the number of all patients in all cancers. The 

top 200 frequently mutated genes were used in a regression model for the expression of the 

prognostic genes to examine what kind of mutations contributed to the expression levels of 

the prognostic genes (see below). Given that the mutation count is related to both gene length 

and gene expression,
5,6

 the mutation rate was normalized by dividing the rate by gene length 

[Kbp].  

We investigated the relationship between the mutation counts and the survival time. The 

survival time was truncated at a survival probability of 60%. We also tested the relationship 

between the normalized mutation rate and the expression level. 

Regression for the expression of the prognostic genes with the mutation counts 

The 40 prognostic genes, which were identified with P[SV]≤10
6 

and FC[H/L]4, and the top 

200 frequently mutated genes, were included in this section of analysis. Firstly, the prognostic 

genes were aligned to the pathways enriched for the mutated genes and GO terms. For each 

prognostic gene, the dependence between its expression and the mutation counts of the 200 

mutated genes were tested with a chi-squared (
2
) test for each cancer. The mutated genes 

with p ≤ 0.001 (
2
 test) were included in an enrichment analysis on GO terms, KEGG 

pathways, InterPro domains, and SMART modes, based on a hypergeometric distribution or 

Fisher’s exact test. A cutoff of p ≤ 0.05 was used to find the enriched terms and pathways. 

Upon satisfaction of those criteria, a link between the prognostic gene and the mutated 

pathway (terms) was counted. This was done for all cancers to see how many cancer types 

shared the link. 

Secondly, we carried out a generalized linear regression of the expression of the prognostic 

gene with the mutation counts of the top 200 frequently mutated genes for each cancer type. 

The regression generated a set of parameters indicating the contribution of the mutation in 

explaining the expression level of the prognostic gene. Only mutated genes with a significant 

parameter were used to construct a network.  

Enrichment analysis 

The enrichment analysis for the 236 prognostic genes and the top 200 frequently mutated 

genes was carried out with DAVID.
7
  

Other analysis in the work 
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The activation status of pathways was assessed with SPIA.
8
 Survival analysis and the survival 

comparison were carried out by an inhouse Matlab program (Suppl-4).  

Abbreviation for cancer type 

LAML, Acute Myeloid Leukemia; 

ACC, Adrenocortical carcinoma; 

BLCA, Bladder Urothelial Carcinoma; 

LGG, Brain Lower Grade Glioma; 

BRCA, Breast invasive carcinoma; 

CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; 

CHOL, Cholangiocarcinoma; 

LCML, Chronic Myelogenous Leukemia; 

COAD, Colon adenocarcinoma; 

ESCA, Esophageal carcinoma; 

GBM, Glioblastoma multiforme; 

HNSC, Head and Neck squamous cell carcinoma; 

KICH, Kidney Chromophobe; 

KIRC, Kidney renal clear cell carcinoma; 

KIRP, Kidney renal papillary cell carcinoma; 

LIHC, Liver hepatocellular carcinoma; 

LUAD, Lung adenocarcinoma; 

LUSC, Lung squamous cell carcinoma; 

DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; 

MESO, Mesothelioma; 

OV, Ovarian serous cystadenocarcinoma; 

PAAD, Pancreatic adenocarcinoma; 

PCPG,  Pheochromocytoma and Paraganglioma; 

PRAD, Prostate adenocarcinoma; 

STAD, Stomach adenocarcinoma; 

TGCT, Testicular Germ Cell Tumors; 

THYM, Thymoma; 

THCA, Thyroid carcinoma; 

UCS, Uterine Carcinosarcoma; 

UCEC, Uterine Corpus Endometrial Carcinoma. 
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Figure Legend 

Figure S1 Cancers exhibit a great difference in the number of the genes that are associated 

with survival difference P[SV] and have a diagnostic value (AUC). 

A. Gene numbers at different cutoffs of both survival difference and differential expression 

between cancer and control. For each gene in each cancer, P[SV] was calculated with a 

log-rank test in the high- and low-expression groups that were obtained by dividing the cancer 

tissues by the median expression of the gene. AUC is the area under the ROC curves in 

differentiating the cancer and the control with the gene expression. 

B. The pathways that are significantly enriched for the genes whose expression changes 

greatly among cancer tissues (FC(H/L)2). The analysis was done with the SPIA tool. 

Figure S2 Forty prognostic genes identified by the criteria P[SV]10
6

 and FC[H/L]4.  

A. The identification flow chart. P[SV] is from the log-rank test in the high- and 

low-expression groups that were obtained by dividing the cancer tissues by the gene’s median 

expression. 

B. Venn diagram showing the number of the overlapping genes in our study (A) and in the 

literature (B) (Uhlen M. et al. 2017, Science 357). The overlapping genes are DKK1, EMP1, 

EPS8, FAM83A, MET, MGAT4A, MYEOV, and PGK1. 

C. Subcellular location of the forty prognostic genes. 

D. An enrichment analysis for the identified 236 and 40 prognostic genes with the DAVID 

tool for KEGG pathways and GO terms. 

E. The survival curves of the MYEOV high- and low-expression cancer groups in PAAD using 

microarray data (GEO ID, GSE21501). 

Figure S3 Sample to demonstrate that a prognostic gene is not necessarily suitable for 

discriminating cancer tissues from normal tissues.  

A. The survival curves of the DKK1 high- and low-expression cancer groups. 

B. Boxplot of the expression of DKK1 in LUAD tissues and normal tissues. LUAD tissues are 

divided into high- and low-expression groups based on the median expression. 

C. Expression of DKK1 in each LUAD tissue. 

D. Average expression of DKK1 in 21 cancers and controls. 

Figure S4 Survival curves and ROC curves to show the capacity of the genes in both 

prognosis and diagnosis in specific cancers. 

A. The survival curves of the high- and low-expression groups. The difference significance 

P[SV] and the median survival time are indicated. 
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B. ROC curves of diagnosis. 

Figure S5 Characteristics of CDC20 in prognosis and diagnosis in 21 cancers.  

A. The boxplots indicate gene expression of CDC20 in normal tissues, and the high- and 

low-cancer groups.  

B. Plot of the prognostic and diagnostic values of CDC20 in cancers. 

Figure S6 Most frequently mutated genes in cancers. 

A. Shown are the top 40 mutated genes for all cancer types. The vertical axis represents the 

mutation rate, namely a rate of total number of mutations occurring in the gene to the number 

of all patients in all cancer types. 

B. An enrichment analysis for the top 200 frequently mutated genes.  

C. Survival time of the patients with the mutations in each gene. The survival time is 

truncated at a survival probability of 60%; each patient that has a mutation in the gene was 

counted. Shown is a heat map indicating the distribution of the survival time against the 

mutation counts. Lightness is proportional to the number of genes. 

D. Relationship between the expression level and the mutation rate for each gene. The 

mutation rate was normalized by dividing the rate by gene length [Kbp]. The expression data 

(FPKM) were normalized into percentile in each sample (patient). For each gene, its 

expression percentile was plotted to its mutation rate per base pair. 

Figure S7  

A. Top 40 mutated genes for all cancer types. The mutation rate was normalized by dividing 

by gene length [Kbp]. 

B. Venn diagram showing the overlapping genes between the top 200 genes ranked by the 

maximum mutation rate before and after the normalization by gene length. 

C. Distribution of the normalized mutation rate.  

D. An enrichment analysis for the top 200 genes ranked by the normalized maximum 

mutation rate.  

E. An enrichment analysis for the top 200 genes whose mutations associate to the shortest 

survivals (from Fig. S6C).  
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Supplementary Files 

Suppl-1  

The prognostic genes identified at criteria of P[SV]10
3

 and FC(H/L)2, selecting the top ten 

genes for each cancer type. There were a total of 236 genes in 29 cancer types. Here, in each 

cancer type, for each gene, patients are classified into high (H) and low (L) expression groups 

using the expression median of the gene as a cutoff. The survival difference (P[SV]) was 

tested between the two groups with a log-rank test. FC(H/L) means the fold change of average 

expression between the two groups. In the files, chi-square is the value of 
2

 in the log-rank 

test, T-middle-H and T-middle-L are the time at 50% survival probability for the high- and 

low-expression groups, respectively, and mean-H and mean-L are the mean expression in the 

high- and low-expression groups, respectively. The gene symbol and cell type are the official 

symbol of the prognostic gene and the corresponding cancer type, respectively. 

Suppl-2 

The prognostic genes identified at criteria of P[SV]10
6

 and FC(H/L)4. In the file, the term 

“Effective” indicates the relationship between gene expression and survival, a 

downward-pointing triangle means a high expression of the gene corresponds to poor survival, 

and an upward-pointing triangle means a high expression of the gene corresponds to good 

survival. The other settings are the same as in the Suppl-1 file. 

Suppl-3 

The genes that have both prognostic and diagnostic values, with criterion of P[SV]  10
4

, 

indicating the survival difference between the high and low expression groups, and AUC  4, 

indicating the capacity of the diagnosing cancer. The term log2(FC(C/N)) is the fold change of 

average expression between the cancer (C) and the control (N).  Other settings are same as in 

Suppl-1 file. 

Suppl-4 

The programs (in Matlab) that used in the analysis;  

“Survival_Analysis_OKAY.m”, for survival analysis based on Kaplan-Meier survival model. 

“SR_chi_test_bigdata.m”, for survival difference test, namely log-rank test. 

“plot_Survival_Anlysis”, for plotting the survival curves. 
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Figure S1 A 

B 
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Abbr.:  

ARSPIDC, AGE-RAGE signaling pathway in diabetic complications; 

PPIER, Protein processing in endoplasmic reticulum 
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P[SV] ≤ 10–3; 

FC(H/L) ≥ 2; 

Top 10 

20531 genes  

(Total) 

236 genes 

P[SV] ≤ 10–6; 

FC(H/L) ≥ 4;  

40 genes 
 (40 genes)  

Figure S2 A B 

A. Top 20 genes with both P[SV] ≤ 10–3      

and FC(H/L) ≥ 2 in 29 Cancers  

B. Top 20 genes with P[SV] ≤ 10–3 in  17 

cancers in literature 

158 228 8 

A B 

C 

D E 

MYEOV-PAAD (Microarray data, GSE21501) 
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Figure S5 A 
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A 

B 

C D 

Figure S6 

Term Count PValue Benjamini FDR 

IPR013783:Immunoglobulin-like fold 24 1.1×10–4 0.0016 0.16 

hsa04510:Focal adhesion 12 2.1×10–5 0.0034 0.026 

hsa05213:Endometrial cancer 7 2.6×10–5 0.0020 0.032 

hsa04512:ECM-receptor interaction 8 5.9×10–4 0.0030 0.071 

hsa04151:PI3K-Akt signaling pathway 12 2.0×10–3 0.033 2.30 

The top 200 genes ranked by the maximum mutation rate  
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Figure S7 

The top 200 genes ranked by the normalized maximum mutation rate  

The top 200 genes whose mutations associate to the shortest survival time 
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