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Abstract

Caveolae are plasma membrane invaginations whose formation requires caveolin-1
(Cav1), the adaptor protein polymerase I, and the transcript release factor (PTRF or
CAVIN1). Caveolae have an important role in cell functioning, signaling, and disease.
In the absence of CAVIN1/PTRF, Cav1 forms non-caveolar membrane domains called
scaffolds. In this work, we train machine learning models to automatically distinguish
between caveolae and scaffolds from single molecule localization microscopy (SMLM)
data. We apply machine and deep learning algorithms to discriminate biological
structures from SMLM data. Our work is the first that is leveraging machine and deep
learning approaches to automatically identifying biological structures from SMLM data.
In particular, we develop and compare three binary classification methods to identify
whether or not a given 3D cluster of Cav1 proteins is a caveolae. The first uses a
random forest classifier applied to 28 hand-picked features, the second uses a
convolutional neural net (CNN) applied to a projection of the point clouds onto three
planes, and the third uses a PointNet model, a recent development that can directly
take point clouds as its input. We validate our methods on a dataset of super-resolution
microscopy images of PC3 prostate cancer cells labeled for Cav1. Specifically, we have
images from two cell populations: 10 PC3 and 10 CAVIN1/PTRF-transfected PC3 cells
(PC3-PTRF cells) that form caveolae. We obtained a balanced set of 1714 different
cellular structures. Our results show that both the random forest on hand selected
features and the deep learning approach achieve high accuracy in distinguishing the
intrinsic features of the caveolae and non-caveolae biological structures. More
specifically, both random forest and deep CNN classifiers achieve classification accuracy
reaching 94% on our test set, while the PointNet model only reached 83% accuracy. We
also discuss the pros and cons of the different approaches.

Introduction 1

Caveolae are tiny structures of 50-100 nm plasma membrane invaginations [1] that have 2

roles in membrane trafficking and signaling [2]. Caveolae formation require both Cav1 3

and CAVIN1/PTRF proteins. Secretion and overexpression of Cav1 in prostate cancer 4

promotes tumor growth and has significant role in cancer metastasis [2]. Cav1 domains 5
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are below the diffraction limit of the light microscopy (i.e. 250 nm) which makes it hard 6

to study them using conventional microscopic imaging modalities. Recent advancements 7

in microscopy technology have enabled light microscopes to break Abbe’s diffraction 8

limit. These techniques, known as super resolution microscopy, can reach resolutions of 9

< 20 nm in localizing the target protein [3]. Single molecule localization microscopy 10

(SMLM) is a subset of techniques that work by manipulating the environment such that 11

in each captured instance, a frame, only a few molecules are stochastically activated to 12

emit light. Highly precise localizations can then be obtained from isolated point spread 13

functions (PSFs) of isolated fluorophores (blinks). A 2D super resolution image can be 14

obtained by stacking up thousands of the collected frames. To achieve a 3D SMLM 15

image, a cylindrical lens is inserted so that the microscope captures a deformed 16

Gaussian PSF for each molecule. The XY coordinates of the molecule are measured as 17

the center of the PSF, while Z coordinate can be measured from the deformation of the 18

PSF [3,4]. Consequently, the nanoscale 3D biological clusters with dimensions below the 19

diffraction limit of optical light (i.e. 200-250nm) can be studied and visualized using the 20

final 3D point cloud collected from the SMLM frames. 21

In this work, we focus on the analysis of SMLM images of PC3 cancer cell labeled 22

with antibodies to the membrane protein caveolin-1 (Cav1). Cav1 can be localized to 23

invaginated caveolae or non-caveolar scaffolds [5]. The presence of the CAVIN1/PTRF 24

protein, a Cav1 adaptor protein, is required for the creation of a caveola [1]. Caveolae 25

have functional roles in the cell as mechanoprotective membrane buffers, 26

mechanosensors, signaling hubs and endocytic transporters [6]. The role of scaffolds is 27

less well-characterized, in large part due to difficulties distinguishing these two 28

Cav1-positive membrane domains, but they have been specifically associated with 29

regulation of receptor signaling and prostate cancer progression [7, 8]. The primary 30

objective of our research is to identify whether a given Cav1-positive membrane 31

structure is or is not a caveolae. 32

SMLM data is difficult for humans to visually inspect and manually analyze as the 33

data is noisy and contains hundreds of thousands or millions of points representing 34

complex cellular structures. As SMLM technology is a recent development, the majority 35

of the published methods on SMLM are related to the image acquisition, with less 36

published work about quantitative analyses from SMLM data. Among the SMLM 37

quantification methods, many primarily investigate how to accurately segment 2D 38

SMLM point clouds into clusters representing individual cellular structures. These 39

cluster analysis methods currently rely on the extraction and analysis of a few primitive 40

features (radius, density, number of points, etc.) to describe the 2D clusters as in Owen 41

et al. [9, 10], where they applied Ripley’s functions to analyze the 2D clusters of 42

super-resolution data. Beyond segmentation, some methods use the features to identify, 43

group, and query of the different types of clusters. Lillemeier et al. [11] used the number 44

of points per cluster and the cluster’s radius to compare between the clusters of two 45

SMLM imaging techniques for two types of cells. Rossy et al. [12] extracted cluster 46

features that capture the circularity, number of points, radius, and density of every 47

cluster and then found simple statistics for each feature alone to compare more than 48

two types of clusters. Pageon et al. [13] used the cluster density and diameter statistics 49

to compare between two types of clusters. Caetano et al. [14] proposed an analytical 50

tool that to extract cluster density, diameter, and size and then statistically compare 51

different types of clusters based on these features. In the work of Rubin-Delanchy et 52

al. [15], a simple statistic of each individual cluster feature was used to compare the 53

clusters of two different types of cells. The primary features were the number of points, 54

radius, and density, which were used to compare between two types of clusters. Levet et 55

al. [16] proposed a software called SR-Tesseler that can be used to segment the 2D 56

clusters and extract elementary features for them, but without training a system to 57
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identify them automatically. The software extracts four simple features for every 2D 58

cluster. Their software is capable of extracting the area, number of points, circularity, 59

and diameter of the individual clusters. 60

The aforementioned methods used a small number of features to quantify and 61

analyze 2D (not 3D) SMLM clusters. The feature extraction methods used on 2D 62

SMLM data are not sufficient to effectively identify and analyze these 3D clusters. 63

Fortunately, the explosive growth in the field of machine learning over the last decade 64

has yielded a number of algorithms that are able to analyze large data such as 3D 65

SMLM data. In addition to being able to learn more and perhaps currently unknown 66

features on its own, the machine learning approaches will also be capable to combine 67

and weigh its learned features to automatically classify molecular structures. To our 68

knowledge, we are the first to use machine learning to help in the identification and 69

analysis of the SMLM data clusters. 70

In order to better understand the nature of the caveolae and its role in human 71

biology, in this work, we have employed and compared a number of machine learning 72

algorithms for identifying the caveolar structures from 3D SMLM data of PC3 cells. 73

Materials and methods 74

Methods overview 75

The primary objective of this research is to be able to accurately predict the class labels 76

of segmented cellular structures originating from SMLM images of the same type of 77

cells. We call these segmented structures blobs. We have approached this problem as a 78

binary classification problem: caveolae (positive) or not caveolae (negative). Our 79

approach to this problem involves three steps (described in detail later in the paper): 80

(i) Data pre-processing: De-noises and segments blobs from SMLM data; 81

(ii) Data representation: Describes the blob representations used (i.e., the 82

representation of the input to the next step) we denote the transformation of the 83

representation as x→ g(x) = x′ where is x is an input blob as a point cloud, x′ is 84

a new representation of the same data; and g is the transformation function that 85

may include transforming the point cloud into volumes, extract the 2D projections, 86

etc. 87

(iii) Machine learning models: Describes models used on each input representation 88

and how they are trained to predict the class of a blob. We denote this prediction 89

operation as x′ → f(x′) = f(g(x)) = ŷ, where ŷ is the predicted class (i.e. 90

caveoalae or not). The function f is learned from a training set of M blobs with 91

known class labels {(xi, yi), i = 1, 2, . . . ,M} 92

Image acquisition 93

PC3 prostate cancer cells and PC3 cells stable transfected with CAVIN1/PTRF-green 94

fluorescent protein (GFP) (PC3-PTRF) were cultured as previously described [1, 17] 95

and plated on coverslips (NO. 1.5H, Carl Zeiss AG; coated with fibronectin) for 24 h 96

before fixation with 3% paraformaldehyde (PFA) for 15 min at room temperature. 97

Coverslips were rinsed with PBS/CM (phosphate buffered saline complemented with 1 98

mM MgCl2 and 0.1 mM CaCl2), permeabilized with 0.2% Triton X-100 in PBS/CM, 99

blocked with PBS/CM containing 10% goat serum (Sigma-Aldrich Inc.) and 1% bovine 100

serum albumin (BSA, Sigma-Aldrich Inc.) and then incubated with the rabbit 101

anti-caveolin-1 primary antibody (BD Transduction Labs Inc.) for 12 h at 4°C and with 102
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Alexa Fluor 647-conjugated goat anti-rabbit secondary antibody (Thermo-Fisher 103

Scientific Inc.) for 1 h at room temperature. The primary and secondary antibodies 104

were diluted in SSC (saline sodium citrate) buffer containing 1% BSA, 2% goat serum 105

and 0.05% Triton X-100. Cells were washed extensively after each antibody incubation 106

with SSC buffer containing 0.05% Triton X-100, post-fixed using 3% PFA for 15 min 107

and washed with PBS/CM. Before imaging, cells were immersed in imaging buffer 108

(freshly prepared 10% glucose (Sigma-Aldrich Inc.), 0.5 mg/ml glucose oxidase 109

(Sigma-Aldrich Inc.), 40 µg/mL catalase (Sigma-Aldrich Inc.), 50 mM Tris, 10 mM 110

NaCl and 50 mM β-mercaptoethylamine (MEA; Sigma-Aldrich Inc.) in double-distilled 111

water [3, 18] and sealed on a glass depression slide for imaging. 112

GSD super-resolution imaging was performed on a Leica SR GSD 3D system using a 113

160x objective lens (HC PL APO 160x/1.43, oil immersion), a 642 nm laser line and an 114

EMCCD camera (iXon Ultra, Andor). Preview images were taken with 5% laser power 115

in both the GFP and Alexa Fluor 647 channels for each cell, in TIRF (total internal 116

reflection fluorescence) mode. Full laser power was then applied to pump the 117

fluorophores to the dark state; at a frame correlation value of 25% the imaging program 118

auto-switched to acquisition with 50% laser power, at 6.43 ms/frame speed. The TIRF 119

mode was also applied to the acquisition step of the GSD super-resolution imaging to 120

eliminate background signals. The event lists were generated using the Leica SR GSD 121

3D operation software with a XY pixel size of 20 nm, Z pixel size of 25 nm and Z 122

acquisition range +/- 400 nm. The CAVIN1/PTRF masks for the PC3-PTRF cells were 123

generated by converting the GFP-channel of the preview images to binary images in 124

ImageJ. 125

Data 126

The data used in this research comes from an experiment using PC3 prostate cancer 127

cells. The experiment is first run on 10 SMLM images from CAVIN1/PTRF absent PC3 128

cells, which from now on will simply be referred to as PC3 cells. It is then rerun on PC3 129

cells transfected with CAVIN1/PTRF-GFP, called PC3-PTRF cells. Due to problems in 130

the data gathering, cell 6 of the PC3 cells and cell 7 of the PC3-PTRF cells were 131

omitted from the data, leaving us with 9 PC3 and 9 PC3-PTRF cells. The experiment 132

additionally captured lower resolution wide-field microscopy images of the GFP channel 133

of PC3-PTRF cells to identify the location of CAVIN1/PTRF within each cell Figure 2. 134

This mask provides us with a strong indication of where the caveolae are located and 135

hence, we use it as a ground truth to label the blobs. Therefore, the blobs in 136

PC3-PTRF data are labelled as PTRF-positive (PTRF+) and PTRF-negative (PTRF-). 137

We used this mask and the known biology that caveolae contain more than 60 Cav1 138

molecules [19] to stratify the PTRF+ blobs into PTRF+≥ 60 and PTRF+< 60. Since 139

caveolae cannot exist in PC3 cells, all blobs in PC3 cells were labeled as PTRF-negative 140

(not caveolae or scaffold) as shown in the red color in Figure 1 —B. 141

For our binary classification task, the 9 PC3 cells provide us 14491 negative blobs. 142

The PC3-PTRF cells provide us 857 positive blobs (PTRF+≥ 60) and 10009 negative 143

blobs (PTRF- and PTRF+< 60). To solve this data imbalance, we randomly 144

downsample the negatives from 24500 blobs to 857 blobs to match the number of 145

positives blobs. Figure 1 —B and and Figure 2 show the blobs from the two populations 146

and their corresponding class labels before and after the number of molecules 147

stratification respectively. 148
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Results and Discussion 149

Data pre-processing 150

We adopt the computational pipeline of Khater et al. [19] to de-noise the clusters by 151

eliminating probable duplicate points caused by the imaging technique (via their 152

iterative merging algorithm) as well as removing single molecules not attached to a 153

larger structure (via the filtering module). Their pipeline then segments each cluster 154

into individual cellular structures, i.e., blobs. Figure 1 — A shows two cells from both 155

populations (PC3 and PC3-PTRF) after the denoising and segmentation of the blobs. 156

Figure 1 — B shows the blob labelling of PC3-PTRF cell using the corresponding 157

CAVIN1/PTRF mask that creates two types of blobs, PTRF-positive (PTRF+) that 158

match with the mask and PTRF-negative (PTRF-) not-caveolae blobs outside the mask. 159

The caveolae structures have a minimum of 60 Cav1 molecule per blob [19]. Therefore, 160

in Figure 2 we show the PTRF+ blobs are stratified based on the number of molecules 161

into PTRF+≥ 60 and PTRF+< 60. The PC3 cell expresses one type of blob in the 162

absence of CAVIN1/PTRF protein. Hence, they mainly have one class label. 163

Data representation 164

The application of the pre-processing pipeline results in a set of segmented blobs and 165

their associated labels identifying them as caveolae (PTRF+≥ 60) or not-caveolae 166

(PTRF- and PTRF+< 60) as seen in Figure 1 — C and D respectively. The blobs are 167

left in the original point cloud format. While this representation has some benefits, it 168

also has drawbacks and is not commonly used in deep learning. We, therefore, 169

investigate a number of different input representations. Figure 3 A-D shows the different 170

representations a given blob can take for the different machine and deep learning tasks. 171

Input (x) 172

Our SMLM dataset is 3D, i.e. contains location information for each molecule in all 173

three dimensions. While the extra dimension provides additional information, which can 174

improve the analysis of the data, three dimensional data also poses a number of possible 175

pitfalls if one is not careful with how it is represented. The first is the size of the data. 176

The first versions of SMLM were only two dimensional, and therefore images can be 177

neatly represented on a plane divided into pixels. If we expand this idea into three 178

dimensions by dividing a 3D area into voxels, we get an exponential increase in size. 179

Since the maximum range of our data is 512 nm, using 1 nm as our subdivision unit, an 180

increase from 2D to 3D increases the size of a single blob from 262 thousand 218 pixels 181

to 134 million 227 voxels. The second pitfall is the sparsity of each input data. The 182

largest number of points belonging to a single blob is 512 points. If we encode this data 183

in a 2D plane such that each point is encoded as a pixel with a value of 1 and every 184

other pixel is has a value of 0, the ratio of effective bits (non-zero) is 29/218 = 0.2%. 185

Expanding this to three dimensions and the ratio drops to 29/227 = 3e− 4%. From the 186

above, it is clear that a voxel representation is ill-suited for the task at hand. Instead, 187

we represent the data in three ways that avoid the above pitfalls. 188

(i) Expert features: Relies on a simple analysis of the blob to generate hand 189

selected features reducing the input down to a size of 28 floating point numbers. 190

(ii) Multi-view: Transforms the 3D point cloud by projecting it onto three 191

orthogonal 2D planes forming three 512×512 arrays of pixels. 192
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(iii) Point cloud: Keeps the original point cloud representation from SMLM. When 193

stored as a set of points, the data ratio of effective bits is 100%, and has a size of a 194

number of points (512) × number of dimensions (3). 195

Output (y) 196

We defined the output to be a one-hot encoding of the two classes, i.e. y = [1, 0] for 197

positives, and y = [0, 1] for negatives. The two deep learning models (multi-view - CNN 198

and point cloud - PointNet below) first find a set of representative features 199

x′ → h(x′) = X ′, which are then linearly combined and passed through a softmax 200

function X ′ → σ(wTX ′ + b) = ŷ, where w is a learned set of weights and b is learned 201

bias. From this it follows that x→ f(g(x)) = σ(wTh(g(x) + b). This approach 202

significantly outperformed using a sigmoid to output a single number between 0 and 1. 203

Different machine learning ML models 204

We have developed three models to best match the input representation. 205

Expert features - random forest classifier 206

The first model relies on 28 hand-crafted features that were chosen to capture different 207

properties of the blobs based on known biology (Figure 3 — C). The 28 features 208

describe the size (volume, XYZ range), shape (spherical, planar, linear), topology 209

(hollowness), and network measures (degree, modularity, characteristic path, etc.) of 210

each individual blob. To extract the shape features, we represented each blob as 3D 211

point cloud centered at the blob mean of the points positions. Then, we used the 212

eigendecomposition of the N × 3 matrix of every blob (Figure 3 — D) to extract the 213

eigenvalues associated to the eigenvectors of the 3D matrix representation using the 214

principal components analysis PCA method. The extracted eigenvalues are used to 215

extract the different shape features of the blob. We mainly extracted the planer, linear, 216

spherical, and fractional anisotropy (FA) shape features of every blob [20]. The volume 217

is calculated using the convex hull of the Delaunay triangulation of the 3D matrix of the 218

blob (Figure 3 — D). The hollowness features are extracted from the distance to 219

centroid of the blob. We calculated the minimum, maximum, average, median, and the 220

standard deviation of the distances from every point to the centroid of the blob. To 221

extract the network features for every blob we represented the blob as a network where 222

the nodes represent the points and the edges represent the proximity between every pair 223

of nodes. We picked the proximity threshold for the network construction such as every 224

blob in our dataset is one connected component. Then, the network features [21] are 225

extracted from the constructed network for every blob [19]. The final feature vector is 226

composed of all the extracted features and has a dimension of 1× 28 [19] (Figure 3 — 227

C). 228

We then trained a random forest (RF) classifier using 100 trees in Matlab based on 229

the extracted features from all the blobs in the dataset and using the binary labels of 230

every blob. A 10-fold cross-validation is used to evaluate the classification results as 231

seen in the first row of Table 1. A leave-one-cell-out is used in another experiment to 232

evaluate the classification results also as shown in the first row of Table 2. 233

Multi-view - CNN 234

The second model uses a Convolutional Neural Net (CNN) on projections of the point 235

clouds onto 3 planes (xy, yz, xz) representation as shown in Figure 3 —A. A simple 236

CNN model using alternating layers of convolutions and pooling and two final fully 237

January 21, 2019 6/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/526327doi: bioRxiv preprint 

https://doi.org/10.1101/526327
http://creativecommons.org/licenses/by/4.0/


connected (FC) layers worked well. Variations to this model showed no discernible 238

improvement. The layers of the CNN are as follows (Figure 4): conv1 (3x32), 239

pool1(3x3), conv2 (32x64), pool2 (3x3), conv3 (64x128), pool3 (3x3), conv4 (126x256), 240

pool4 (3x3), conv5 (256x512), pool5 (3x3), FC (256), FC (512), FC (2). A ReLu 241

activation function was used on every layer except for the final fully connected layer, 242

which uses a softmax activation. A cross entropy loss was used for the objective 243

function, with the addition of a L2 weight regularization term. 244

Point cloud - PointNet 245

The third model is based on PointNet, which takes as input a set of 3D points. Minimal 246

changes were made to the model described in [22]. In summary, PointNet uses the 247

symmetric max function to enable its input to be unordered, as in the case of a point 248

cloud. A number of hidden layers are used before the max function to transform the 249

points into a higher dimensional space. The output of the max function is a 250

representation of the point cloud and is passed through an FC network to classify the 251

blob. For more detail see [22]. The alterations made are the removal of the dropout 252

layer and of the data jittering, both of which were found to lower results. Consistent 253

with the multi-view model, a cross entropy loss was used. 254

Evaluation Methodology 255

To evaluate our model, we divide the 1714 blobs (the positive and the sampled negative 256

blobs) into a training set, a validation set, and a test set in two different ways. The first 257

way of creating the sets involves mixing the blobs of each cell, then keeping 200 blobs as 258

a test set, using 100 blobs as a validation set, and using the remaining 1414 blobs as a 259

training set. The second way is keeping cell 1, containing 124 blobs, as a test set, using 260

cell 2, containing 100 blobs, as validation, and using the remaining 1290 blobs from the 261

other cells as a training set. Each of the above sets is balanced in terms of negative and 262

positive blobs. The use of the two groupings reveals if the data from one cell can be 263

generalized to other cells. 264

Mixed blobs 265

Table 1. Test set results on mixed cells

Accuracy Sensitivity Specificity

Features 0.92 0.97 0.86
Multi-view 0.92 0.98 0.85
Point cloud 0.81 0.79 0.83

Results using sets made with blobs from each cell.

From the above results, we see that the hand designed features and multi-view 266

models generate similar results, while the point cloud model falls behind. A fundamental 267

difference between the point cloud input and the other inputs is that it is un-ordered i.e. 268

a blob can be mapped to more than one representation. The hand designed features 269

have a human chosen order. The multi-view input is a projection of the data on a 2D 270

plane, which forces the data into a geometrical ordering. In point clouds, however, 271

changing the order of the points does not change the underlying blob. The results would 272

support the hypothesis that a useful order to data benefits data analysis. 273

While it does perform worse on the primary metrics, it is important to note that the 274

point cloud input does have some advantages. First, compared to the hand designed 275

features, it does not require any preliminary analysis or expert knowledge. Second, 276
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compared to multi-view, the input data size is significantly smaller, and consequently, 277

the model trains significantly faster. Finally, if segmentation of caveolae was a concern, 278

both hand designed features and multi-view would encounter major obstacles, but it has 279

been demonstrated in [22] that it is possible to segment point clouds using PointNet. 280

Cell-wise blobs 281

Table 2. Test set results using segregated cell

Accuracy Sensitivity Specificity

Features 0.94 0.97 0.90
Multi-view 0.94 0.98 0.90
Point cloud 0.83 0.72 0.96

Results using sets where each set uses different cells.

From the cell-wise results, we can show that knowledge learned can be generalized to 282

other cells. This is important as it demonstrates the usefulness of this model on 283

unlabeled blobs from future cells. The small increase in performance could be due to 284

the slightly larger training set, or simply that the randomly chosen test cell contained 285

an easier set of blobs to identify. 286

In both tables, the multi-view and hand selected features approaches performed 287

similarly well. However, we believe that an increase in dataset size may be more 288

beneficial to the deep learning approach, meaning that using a larger dataset may allow 289

the multi-view approach to surpass the hand selected features. We hope to test on a 290

larger dataset in the future to confirm this hypothesis. 291

The higher sensitivity (in both Table 1 and Table 2) suggests that our learned models 292

are capable to identify the caveolae blobs more accurately, whereas the relative lower 293

specificity means that our learned models are less accurate in identifying the scaffolds. 294

This opens the door for further study of the scaffolds and suggests that those biological 295

structures are more complex and have higher variation than the positive blobs. We 296

expect more than one sub-category in the negative blobs. Moreover, the negative blobs 297

in PC3 population might be different from the negative blobs in PC3-PTRF population 298

(i.e. the CAVIN1/PTRF might also affect the structure of the scaffolds). We leave this 299

investigation for the future as it requires more biological experiments and data. 300

Hand crafted VS. deep features 301

Multiple data representations have a critical impact on the performance of the final 302

semantic learning task. For classification task, the separability of the classes is highly 303

dependent on the features and the way they were extracted. Figure 5 shows the t-SNE 304

visualization of the features where the high-dimensional feature space is projected onto 305

a 2-dimensional space [23]. The hand crafted and multi-view CNN features are more 306

clustered and separable compared to the PointNet features. However, the classes in this 307

2D projected view are not perfectly separable. This is likely due to the negative class 308

having many complex subcategories, which depicts the complexity of the classification 309

tasks at hand. 310

The trade-offs between the different methods used to represent and classify the blobs 311

in this work involve time and space (memory) complexity of training and inference, 312

classification accuracy achieved, interpretabilty of the discriminant features, and the 313

level of automation required (amount of human involvement). 314

The key advantage of deep learning is that it avoids the manual process of 315

constructing and selecting hand designed and engineered features and that it boasts fast 316
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inference. However, the requirement of large training dataset, large computational 317

resources for training, and its opaque uninterpretable, black box models are still major 318

issues in deep learning. 319

Deep learning approaches that operate directly on unstructured data, such as 320

PointNet that consumes the point cloud directly without any transformation, have the 321

additional advantage of retaining the compactness and precision of the original data. 322

We hypothesize that the inferior classification accuracy performance of PointNet is 323

due to its unordered input. PointNet was originally tested using a dataset that is an 324

order of magnitude larger than ours, and it is possible that with a larger dataset the 325

model would be able to learn to overcome the unordered nature of its input. 326

Multi-view CNN capitalizes on the highly successful CNNs to achieve superior 327

performance in classification accuracy but at the expense of long training times and 328

requiring large underlying representations, i.e. a large number of small pixels, needed to 329

diminish quantization errors (compared with the pure 3D point cloud input adopted by 330

PointNet). 331

Albeit being easily interpretable (which Multi-view CNN and PointNet are not) and 332

achieving higher accuracy than PointNet, hand crafted features used in conjunction 333

with classical machine learning approaches (e.g. RF) require prior expert knowledge of 334

the biological structures in order to design and select features, which is may not always 335

be feasible especially in scientific discovery. 336

Conclusion 337

Our research into the analysis of super resolution images using machine learning 338

algorithms has yielded a number of successful techniques that can be used to accurately 339

and automatically predict whether or not a blob is a caveolae. Both using hand selected 340

features, as well as applying a convolutional neural net to projections of the point cloud, 341

performed similarly well while using PointNet on a point cloud was less successful. 342

Classifying biological structures at the cell membrane is of importance as it allows the 343

biologist to study the relationship between structure and function. It could also be used 344

to identify biomarkers for the different structures that could enable drug design at the 345

molecular level and potentially lead to disease therapy. 346

Future work 347

Further research on this topic would greatly benefit from additional labelled data. 348

SMLM data for both PC3 and CAVIN1/PTRF from the same labeled cell would provide 349

additional and more precise labels than the current method which relies on a wide-field 350

TIRF CAVIN1/PTRF mask of lower resolution. Additional data would include double 351

labeled SMLM images with high-resolution localizations for both Cav1 and 352

CAVIN1/PTRF that would provide us with a more accurate ground truth blob label. 353

While the current methodology relies on binary classification, caveolae or 354

not-caveolae, it is likely that the not-caveolae class may be better represented as many 355

classes. Using unsupervised methods such as k-means or mixture of Gaussians can allow 356

us to subclassify the non-caveolae structures into more representative classes [19]. 357

Applying similar models to ones described in this paper to a multi-class version of the 358

problem may increase performance if the classes are better a representation of the true 359

data. 360

Future work could also involve examining methods for interpreting deep learning 361

models (e.g. [24]) applied to biological structures, and exploring research trends in 362

unsupervised deep learning. It will also be interesting to explore developing deep neural 363
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network layers from the ground up particularly targeted to processing typical visual 364

patterns seen in biological structures (as opposed typical man-made objects common in 365

computer graphics applications). 366
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2 µm

PC3PC3-PTRF

PTRF+

PTRF-

PTRF+ blob PTRF- blob

PTRF-

a)

b)

c) d)

Fig 1. The process of obtaining Cav1 blobs (clusters) for the various
learning tasks. Filtering, segmenting and labeling the blobs from the PC3
and CAVIN1/PTRF-transfected PC3 cells (PC3-PTRF cells) a) 3D view of
PC3 and PC3-PTRF cells showing all the blobs (3D clusters) within a cell after
applying the 3D SMLM Network Analysis computational pipeline [19]. The pipeline
contains modules to reconstruct the Cav1 molecules via the iterative merging of the
localizations, filtering the noisy localizations, and segmenting the Cav1 blobs. The
different colors show the segmented Cav1 blobs within the cell. b) The blobs are
color-labelled as PTRF-positive (PTRF+) and PTRF-negative (PTRF-). It shows that
PC3 cell only has PTRF- blobs (non-caveolae blobs) that appear in red while the
PC3-PTRF cell has both PTRF- and PTRF+ blobs that appear in red and blue
respectively. c) A sample PTRF+ blob taken from the PC3-PTRF cell showing the
Cav1 molecules distributions. d) A sample PTRF- blob taken from the PC3 cell
showing the Cav1 molecules distributions.
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Wide-�eld CAVIN1/PTRF mask
Wide-�eld CAVIN1/PTRF mask 

after morphological closing
Wide-�eld CAVIN1/PTRF regions

Cav1 blobs
Overlay wide-�eld CAVIN1/PTRF

 mask and Cav1 
Cav1 labelling

3 µm

Cav1
3 µm

PTRF+
PTRF-

CAVIN1 mask

PTRF+ < 60
PTRF+ ≥ 60

PTRF-

Fig 2. The process of obtaining the ground truth labels for the Cav1 blobs
using wide-field CAVIN1/PTRF mask. The ground truth labels are
necessary to train the deep learning and machine learning models to
identify the Cav1 blobs types automatically. The first row shows the imaged
wide-field TIRF CAVIN1/PTRF mask before and after morphological closing. The
morphological closing operation is used to close the small holes in the consecutive
regions of CAVIN1/PTRF mask. The CAVIN1/PTRF regions are delineated in yellow
to highlight the locations of the CAVIN1/PTRF regions in the cell. The second row
shows the Cav1 blobs and the overlay of the Cav1 blobs with the wide-field
CAVIN1/PTRF mask to label the blobs into PTRF+ and PTRF-. The caveolae
structures have a minimum of 60 Cav1 molecule per blob [19] that can be used to
stratify the PTRF+ blobs into PTRF+≥ 60 and PTRF+< 60. Our goal is to use
machine and deep learning approaches to automatically identify the PTRF+≥ 60 blobs
(caveolar domains) from the rest of the non-caveolar domains (i.e. PTRF+< 60 and
PTRF-) using different features and data representations of the blobs.
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Shape features:

x-range: 15
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Hollowness features:
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Network features:
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Fig 3. Possible input representations of a point cloud with range R and
number of points N . a) Three projections of the 3D point cloud onto 2D planes.
Requires 3×R2 values to represent. b) A voxel representation. Requires R3 values to
represent. c) Hand crafted features. Requires 28 values to represent d) A point cloud.
Requires 3×N values to represent. Where N is the number of points per blob

Convolution + Max-Pool Convolution + Max-Pool Convolution + Max-Pool Convolution + Max-Pool Convolution + Max-Pool Dense Dense

3@512x512

32@256x256

64@128x128 128@64x64

256@32x32

512@16x16

1x256

1x128

1x2

Fig 4. The architecture of the network used in the multi-view - CNN. The
layers of the CNN are: conv1 (3x32), pool1(3x3), conv2 (32x64), pool2 (3x3), conv3
(64x128), pool3 (3x3), conv4 (126x256), pool4 (3x3), conv5 (256x512), pool5 (3x3), FC
(256), FC (512), FC (2)
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Multi-view CNN features Point cloud - PointNet features  Hand designed features

t-SNE visualization of the various features

Fig 5. 2D t-SNE visualization of the projected feature space from the
various data representations used for identifying the Cav1 blobs. We
visualize the projection of high-dimensional feature space into 2-dimensional space using
t-SNE from the multi-view CNN, point cloud - PointNet, and hand crafted features.
Every point in the t-SNE plot represents the projected features of a blob. The red,
green, and blue points represent the projected features of the PTRF-, PTRF+< 60, and
PTRF+≥ 60 blobs respectively.
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