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1. Abstract

Currently ongoing age of the dynamic development of the space industry brings the mankind 
closer to the routine manned space flights and space tourism. That progress leads to a demand for 
intensive astrobiological research aimed at improving strategies of the pharmacological 
protection of the human cells against extreme conditions. Although routine research in space 
remain out of our reach, it is worth noticing that unique severe environment of the Earth’s 
stratosphere have been found to mimic subcosmic conditions, giving rise to the opportunity for 
use of stratospheric surface as a research model for the astrobiological studies. Our study 
included launching balloon into the stratosphere containing the human normal and cancer cells 
treated with various compounds to examine whether these medicines are capable to protect the 
cells against the stress caused by rapidly varying temperature, pressure and radiation, especially 
UV. Due to oxidative stress caused by irradiation and temperature shock, we used natural 
compounds which display antioxidant properties, namely catechin isolated from green tea, 
honokiol derived from magnolia, curcumin from turmeric and cinnamon extract. “After-flight” 
laboratory tests displayed the most active antioxidants as potential agents which can minimize 
harmful impact of extreme conditions to the human cells.

2. Introduction

The world's first hydrogen balloon was created over 200 years ago in Paris, which started the era 
of scientific ballooning(1). Dynamic development of this technique has enabled the advanced 
research  in atmospheric science, aerobiology, and meteorology (2), remaining promising tool in 
astrobiology and space biology. In stratosphere the temperature generally drops down -40°C, 
atmospheric pressure is at 1 kPa, the relative humidity of air is lower than 1%, solar UV 
irradiance is about 100 W/m2 and cosmic radiation is at the level of 0.1 mGy/d (3–5). 
Stratospheric flights could potentially provide us with a valuable information about the stress 
response in living organisms after exposure to different severe environmental factors rapidly 
varying at the same time, which is hard to be mimicked in the laboratory. Moreover, we can 
examine if some medicines are able to support the viability of living organisms and cells in such 
an extreme environment. The exposure of varied biological samples to the stratospheric 
conditions opens the possibility to observe many changes in the cells’ functioning e.g. decreased 
viability, dysfunction of cellular organelles and their localization, cell cycle arrest, changes of 
gene expression and DNA damage (6,7). Additionally, irradiation in the stratosphere affects the 
cells either by direct or indirect pathways (water radiolysis, therefore exacerbating the oxidative 
stress (8)), causing e.g. mitochondrial function disturbance (9), DNA damage, proteins and lipids 
peroxidation correlated with disruption of the cell membrane (10), that altogether may lead to the 
cell death (8,10) (Fig 1). Furthermore, stratospheric flights provide unique cyclic changes of 
linked environmental factors, including radiation, overload, pressure, temperature, wind and 
vibrations, which are impossible to be simulated altogether in laboratory. The wide use of 
balloons provides numerous advantages including lower overall project costs, recoverable and 
massive payloads (up to 3600 kg) and more rapid and flexible flight(3).
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Fig 1. Effect of the radiation on the DNA. 
High-energy particles could affect DNA damage either by direct pathway or indirect pathway. 
Free radicals and by-products of the process of water radiolysis contribute to an increase of the 
oxidative stress in the cell affecting the DNA. Survival of the cell depends on the extent of the 
DNA damage (8–10). This figure was prepared using Servier Medical Art, available from 
www.servier.com/Powerpoint-image-bank.

It is known that natural substances derived from plants demonstrated positive impact on living 
cells including their protective role against diverse factors generating oxidative stress. Green tea 
polyphenols, such as epigallocatechin gallate, epicatechin gallate, epigallocatechin, epicatechin 
and catechin (11), are one of the strongest antioxidants and the long-term consumption of green 
tea extracts increases the activity of oxidative stress enzymes (12) (e.g. superoxide dismutase), 
inhibits lipo- and cyclooxygenase, xanthine oxidase, activator protein 1 and NF-κB transcription 
factors activity (13) and protects cells against radiation(14). Previous meta-analyses suggest a 
protective role of green tea against numerous cancer types (15–20). Similar properties are 
displayed by honokiol. This magnolia-derived compound inhibits UVB-induced 
immunosuppression and induces apoptosis in malignant cells (21). Chilampalli et al. (2010) 
showed that pretreatment with honokiol is efficient in preventing skin carcinogenesis induced by 
UV (22). Furthermore, honokiol inhibits photocarcinogenesis by targeting UVB-induced 
inflammatory mediators and cell cycle regulator (23,24). Turmeric compounds are another free 
radicals’ scavengers. A yellow spice curcumin displays anti-inflammatory (25), antibacterial (26), 
antiviral (27), anti-cancer (28), proapoptotic (29), neuroprotective (30,31), hepatoprotective (32) 
activity, promotes autophagy (33), affects the cytochrome P-450 enzyme system (34) and phase 
II enzymes (35). Curcumin is able to deactivate different forms of free radicals, such as reactive 
oxygen and nitrogen species (36), modulate the activity of GSH, catalase, and SOD enzymes 
which reduce oxidative stress (37,38). It can inhibit ROS-generating enzymes such as 
lipoxygenase/cyclooxygenase and xanthine hydrogenase/oxidase (39–41). Additionally, 
curcumin shows photosensitizing properties - it can absorb radiation of the appropriate 
wavelength damaging the tissue by free radicals and facilitating cell death (42). Different forms 
of free radicals can be scavenged by turmeric compounds. Similar properties are displayed by 
organic compounds found in cinnamon extract. Beside the antioxidant activity, cinnamon 
presents radioprotective potential. Azab et al. (2011) have revealed that extract of cinnamon 
improves the disturbance of the antioxidant system. Furthermore, this substance triggers 
protective action against protein and lipid oxidation via alteration of membrane structure (43). 
Thus, the main aim of this study was to evaluate the effect of stratospheric environment on two 
living cell lines: human ovarian cancer cells (SKOV-3) and Chinese hamster ovary cells (CHO-
K1) in the presence of various natural compounds and investigate the protective role of these 
drugs. Additionally, the effect of radiation on the examined cells was observed. First, the 
adherent cells were seeded at equal density (500 000 cells/well) on 6-well plates. After 24-hour 
incubation with various antioxidant the cells were detached, suspended in freezing medium 
Bambanker™ (Nippon Genetics, Cat. no. BB01) (1,5 × 106 cells/300 μL) and placed in 
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microtubes 30 minutes before the balloon flight. Then the samples were transported on ice to the 
starting point and placed in a radiation transmitting gondola, located on the upper side of 
environmental measurement unit with accelerometer and temperature, pressure and UV sensors. 
One half of the samples was covered with aluminum foil to protect the cells against irradiation – 
mostly UV (the samples described in the study as “protected against radiation”), another half was 
sent into the stratosphere without the protective layer (described as “not protected against 
radiation”). As a result, we were able to evaluate the effect of radiation on examined cells in the 
presence of various antioxidants. As a control we used the appropriate number of cells incubated 
at 37°C in a humidified incubator with 5% CO2. Directly after landing, the biological samples 
were transported on ice to the specialized laboratory, where after-light tests were performed. The 
cells were seeded on 96-well plates (10 000 cells/well) and incubated in an appropriate drug 
solution for 24 hours to perform membrane permeabilization assay and intracellular reactive 
oxygen species generation assay, and for 24, 48 and 72 hours to evaluate mitochondrial activity 
in MTT assay. Modified versions of these assays (adding reagents into the cells’ suspension, 
appropriate incubation, centrifugation and seeding on 96-well plates) were used to analyze the 
suspended (not adherent to multiwell plates) cells directly after the balloon landing (0 h). 
Additionally, the cells were plated on 6-well plates and incubated in the appropriate drug solution 
for 24 hours to perform cell cycle assay, and for 7 days to carry out clonogenic assay. To analyze 
the expression of manganese-dependent superoxide dismutase (SOD2) the cells were seeded on 
10-well diagnostic microscopic slides and fixed after 24 hours. Immunocytochemical staining 
was carried out in the two following days. Furthermore, neutral comet assay was performed to 
analyze DNA damages associated with the balloon flight. The scheme of the completed 
experiment is provided below (Fig 2). 

Fig 2. The schematic representation of the procedure of balloon flight and the preparation 
of biological samples. 
This figure was prepared using Servier Medical Art, available from 
www.servier.com/Powerpoint-image-bank.

3. Material and Methods

3.1. Cell culture

Human ovarian cancer cells (SKOV-3) and Chinese hamster ovary cells (CHO-K1) were 
obtained from the American Type Culture Collection (ATCC, London, UK). Cells were cultured 
as a monolayer in Dulbecco’s modified Eagle medium (DMEM, Sigma-Aldrich, USA; for 
SKOV-3 cells) and Ham's F-10 Nutrient Mix (F-10, Sigma-Aldrich, USA; for CHO-K1 cells) 
containing 2 mM L-glutamine, 10% fetal bovine serum (FBS, Sigma-Aldrich) and 20 units 
penicillin and 20 µg streptomycin/mL (Sigma-Aldrich) at 37°C in a humidified incubator with 
5% CO2. For the experiments, the cells were washed with Dulbecco's Phosphate Buffered Saline 
(PBS, Bioshop, UK) and detached from the flask’s surface using 0.25% trypsin with 0.02% 
EDTA (Sigma-Aldrich, Poland). 
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3.2. Chemical substances

For the experiments, we used four compounds with antioxidative potential: (±)-catechin hydrate 
(Sigma, Cat. no. C1788), curcumin (Sigma-Aldrich, Cat. no. C1386), honokiol (Sigma-Aldrich, 
Cat. no. H4914) and cinnamon oil (Avicenna-Oil, Cat. no. 1011/5). Each drug solution was 
freshly prepared before the experiment. Catechin was firstly dissolved in 96% ethanol to give a 
stock solution of 5 mM concentration and afterwards diluted to 10 μM concentration with culture 
medium. Honokiol and curcumin were dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, 
Cat. no. D8418) to the 5 mM concentration and subsequently diluted to 10 μM (curcumin) and 2 
μM (honokiol) concentrations with growth medium. Cinnamon was prepared by dilution in the 
PBS buffer to the 1000 μg/L concentration and then diluted again to 2 μg/L concentration with 
culture medium. 

3.3. MTT assay

The viability of cells was determined using the standard MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] assay (MTT, Sigma-Aldrich, PL).  The cells were incubated on 96-
well plate (Perkin Merkel) in the concentration 10 000 cells/well for 3 hours (37°C) in 0,5 mg/ml 
MTT solution in PBS buffer (100 μl/well). The absorbance was measured in 0h (directly after the 
balloon flight), 24h, 48h and 72h incubation after balloon landing at 570 nm (Multiplate reader 
EnSpire, Perkin Elmer). Acidified isopropanol (100 μL/well, 0.04 M HCl in absolute isopropanol 
per well) was used to dissolve the formed formazan crystals.

3.4. Cell death assay

After landing, the cells were plated on 6-well plates (200 000 cells/well) and incubated for 24 
hours in the appropriate drug solution. Following incubation, the culture medium was removed 
cells were washed with PBS buffer and detached from the surface using trypsin-EDTA solution. 
Subsequently, they were stained with Annexin V-APC Apoptosis Kit with PI (BioLegend, Cat. 
no. 640932) and analyzed with FACS Calibur flow cytometer (Becton Dickinson) in order to 
indicate the percentage ratio of early and late apoptotic and necrotic cells. 

3.5. Membrane permeabilization assay

Fluorescent dye YO-PRO-1 (Invitrogen, Cat. no. Y3603) was used to evaluate the plasma 
membrane permeabilization resulting from the low-temperature and radiation cell damage during 
the balloon flight. The cells were seeded on black 96-well plates (Perkin Elmer) and stained in 1 
μM YO-PRO-1 diluted in growth medium for 10 minutes. After 10 min. of incubation and 
washing with PBS, the intracellular fluorescence of YO-PRO-1 was measured with excitation 
wavelength of 491 nm and the emission wavelength of 509 nm. Membrane permeabilization 
assay was evaluated directly after balloon flight (0h) and 24h after landing (24h). 

3.6. Intracellular ROS generation assay 

The level of the reactive oxygen species (ROS) in cells was determined with the DCF (2,7-
dichlorofluorescein) assay (Life Technologies, Poland). For experiments, the stock solution of 
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carboxy-H2DCFDA (50 µg/mL in sterile DMSO; Sigma, Poland) was established at the RT in the 
dark and then diluted in a cell culture medium without FBS. The cells were seeded on black 96-
well plates. After washing with PBS the reagent was added to the cell culture to a final 
concentration of 5 µM and cells were incubated at 37˚C in darkness for 30 min. After the 
incubation, the fluorescence of DCF in wells was measured every 30 minutes for 90 minutes total 
(with excitation wavelength of 495 nm and the emission wavelength of 530 nm). Intracellular 
ROS generation assay was evaluated directly after balloon flight (0h) and 24 hours after landing 
(24h).

3.7. Immunocytochemical staining

Immunocytochemical staining was performed using the ABC method in order to investigate the 
effect of stratospheric conditions and antioxidative drugs on the expression of manganese-
dependent superoxide dismutase (SOD2) in SKOV-3 and CHO-K1 cells. After landing, the cells 
were seeded on 10-well diagnostic microscopic slides (Thermo Fisher Scientific) and incubated 
for 24 hours in the appropriate drug solution. After incubation, cells were fixed and dehydrated 
using 4% paraformaldehyde (PFA, Sigma-Aldrich,) for 10 minutes. The, the cells were stained 
using the EXPOSE Mouse and Rabbit Specific HRP/DAB Detection IHC kit (Abcam, United 
States; Cat. no. ab80436). The enzyme expression was visualized with the mouse monoclonal 
antibody anti-SOD2 (Santa Cruz, USA, Cat. no. sc-362300) diluted 1:200 with the PBS buffer. 
After the overnight incubation with the primary antibody, cells were incubated with the 
secondary antibody conjugated with horseradish peroxidase (HRP). Next, samples were 
incubated with a diaminobenzidine-H2O2 mixture in order to visualize the HRP label. Between 
particular steps the samples were rinsed using 1% Triton X-100 in PBS. The cells were stained 
with hematoxylin for 3 minutes to visualize nuclei. The immunocytochemical reaction was 
evaluated with double-blinded method using upright microscope (Olympus BX51, Japan). Then 
the percentage of stained cells was estimated and the intensity of immunocytochemical reaction 
evaluated according the scale: (-) negative, (+) weak, (++) moderate and (+++) strong.

3.8. Clonogenic assay

Clonogenic assay is a technique allowing for the assessment of cell survival and proliferation 
following the exposition to the tested compounds. After balloon landing, the cells were plated in 
appropriate dilutions (150 cells/well) into 6-well-plates at appropriate drug solution. Multi-well-
plates were placed in an incubator and left there for 7 days until large colonies (> 1 mm) were 
formed (50 cells or more). After incubation, growth medium was removed, and the cells were 
washed with PBS. Fixation and staining of clones was done with a mixture of 0.5% crystal violet 
in 4% paraformaldehyde (PFA, Sigma-Aldrich, USA) for 10 minutes. Then, the plates were 
rinsed with water and left to dry at room temperature. Counting of clones was performed the 
following day.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2019. ; https://doi.org/10.1101/526376doi: bioRxiv preprint 

https://doi.org/10.1101/526376
http://creativecommons.org/licenses/by/4.0/


7

3.9. Neutral comet assay 

For detection of DNA damages associated with the exposure to extreme environment during the 
balloon flight, neutral comet assay method described by Collins (44) was used. Directly after the 
balloon flight, CHO-K1 and SKOV-3 cells were suspended in freezing medium Bambanker™ 
(Nippon Genetics, Cat. no. BB01) (1 × 105 cells /50 μL) and frozen for further analysis. After 
defrosting and centrifugation with PBS, the cells at the concentration 1 × 105/ml were mixed with 
low temperature melting agarose (Sigma) at ratio 1:10 (v/v) and spread on a slide. Slides were 
submerged in precooled lytic solution (2.5 M NaCl, 100 mM EDTA, pH 10, 10 mM Tris base 
and 1 % Triton X-100) at 4C for 60 min. After lysis and rinsing, slides were equilibrated in TBE 
solution (40 mM Tris/boric acid, 2 mM EDTA, pH 8,3), electrophoresed at 1,2 V/cm for 15 min 
and then silver staining was performed (45). For scoring the comet patterns, 200-300 nuclei from 
each slide were assessed. Additionally, the samples were stained using fluorescent dye Green 
Dead Cell Stain (Thermo Fisher Scientific, Cat. no. S34860). The images were acquired on a 
fluorescence microscope (Olympus Nikon). For each measurement, at least 50 cells per sample 
were counted and the CometScore 2.0 software was used to analyze the comets. The tail DNA 
percentage was taken as a quantified index of DNA damage.

3.10. Confocal microscopy and cell morphology analysis

Confocal laser scanning microscopy (CLMS) was used for the visualization of cell membrane 
damage and morphology. After the balloon flight, the cells were grown on coverslips for 24 
hours. Subsequently, the cells were washed 3 times with PBS and quickly submerged in staining 
solution CellMask™ Deep Red Plasma Membrane Stains (at a concentration of 0,5 μg/ml 
dissolved in growth medium; Molecular Probes, Cat. no. C10046, Ex./Em. 649/666 nm) for 10 
minutes at 37˚C. Next, the staining solution was removed and the coverslip were rinsed with PBS 
three times. After washing out with PBS, nuclear DNA was stained with DAPI (4,6-diamidino-2-
phenylindole; 0.2 μg/ml, Ex./Em. 358/461 nm). In the end the cells were mounted in fluorescence 
mounting medium (DAKO). For imaging, Olympus FluoView FV1000 confocal laser scanning 
microscope (Olympus) was used. The images were recorded by employing a Plan-Apochromat 
60× oil-immersion objective. 

3.11. Stratospheric equipment

The balloon was filled with helium and its position was tracked by APRS-supported services: 
www.habhub.com and www.aprs.fi. The telemetry was emitted through RTTY 70 cm/APRS 2 m 
signal, supported with GPS/GSM tracker. On-board computer (ATMEGA328P) was equipped 
with sensors located at the top wall (for UV radiation (ML8511), pressure (BMP085), and 
temperature (DHT22) measurements), additional UV sensors at the side wall of gondola and 
accelerometer (MPU6050) inside the box. To compare stratospheric and Earth UV irradiation, the 
UV ML8511 sensor was used which is designed especially for surface measurement of UV 
spectra (UVA (280-400 nm) and UVB (260-280 nm)). As it is mentioned in the specification, this 
sensor has a nominal operation range of -20°C to 70°C suggesting the monitoring of UV would 
only be valid up to roughly the minute 30 of the flight. This means that some of the random 
variation seen in Fig 1C may be an artefact of the electronics which is not operating adequately at 
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these lows temperatures. It often happens that the electronic produces too much noise when it 
goes below certain temperature thresholds and furthermore here is exposed to moisture freezing. 
However, grounded analyses displayed that the sensor may be used in temperatures below -20 
which cause insignificant disturbances of measurements.

3.12. Statistics

Statistical significance was determined by unpaired T-Student tests for cytotoxicity tests and two-
way analysis of variance (ANOVA). Differences between treated samples and control cells with 
p values ≤0.05 were assumed to be statistically significant. The results were analyzed with the 
Microsoft Office Excel 2017 and GraphPad Prism 7.0 software. 

4. Results

4.1. Balloon flight and stratospheric conditions analysis

The biological samples were launched to the stratosphere on 30th of April 2018, from Wrocław, 
Poland (51°06'23.6" N 17°03'32" E) at 11:30 AM. The balloon reached the stratosphere at 
maximal altitude of 30 298 m. The mission lasted about 2 hours: 90 min of ascent and 25 min of 
descent and ended at 1:25 PM. The biological samples were collected directly after landing in 
Sulisław, Poland (52°23'49.9" N 18°45'52.8" E) and transported to the laboratory. During the first 
stage of ascending phase recorded ambient temperature dropped to -22°C. Subsequently, when 
the balloon reached the ozonosphere, the ambient temperature increased to -2°C. At the highest 
altitude, the temperature reached the lowest level of -35°C (Fig 3A) and the lowest pressure 
(1252 Pa) was measured (Fig 3B). Measurements provided by two UV sensors show rapid 
variations of UV radiation, indicating continuous rotations of the gondola (Fig 3C). Voltage level 
of 1170 mV correlates with the highest score (11) in the UV Index-exposition scale, which shows 
extreme exposure to the UV radiation causing immediate damage of unprotected human skin and 
eyes (46). On the right side of the chart there is a clearly visible period when the parachute was 
opened, and the gondola was stabilized. In the upper parts of the atmosphere, the UV dose was 
greater more than two times than the dose correlating with the maximum dose in the UV-Index 
scale (reaching nearly 2463 mV).

Fig 3. The environmental analysis. 
(A) The temperature fluctuations [°C] during the balloon flight outside the payload; the sensor 
was located at the top wall of gondola. (B) The pressure fluctuations [Pa] during the balloon 
flight, the sensor was located at the top wall of gondola. (C) UV radiation fluctuations [mV] 
during the balloon flight. The 1st UV sensor was located at the top wall of gondola, the 2nd UV 
sensor measured UV radiation at the side wall.

4.2. Cells viability

Fig 4. Cells viability verified by MTT assay after the balloon flight.  
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by the aluminum 
foil against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells 
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protected by aluminum foil against radiation (*p ≤ 0.05). Data are presented as the mean 
percentage relative to control cells, which were not sent into the stratosphere.

Following the flight, we observed a decrease of the mitochondrial activity of CHO-K1 and 
SKOV-3 cells not protected against radiation and not incubated with antioxidants (Fig 4A, 4C). 
The presence of antioxidants, except for curcumin, caused increase in the CHO-K1 cells’ 
viability. The most protective effect of antioxidants was observed in CHO-K1 cells incubated 
with catechin and honokiol. Studies have shown a slight increase of mitochondrial activity in 
normal cells after treating with cinnamon. Curcumin was the most lethal for these cells (72h - 
25%) (Fig 4A). There was also observed a significant increase in the mitochondrial activity in 
CHO-K1 cells protected against radiation, especially after catechin and honokiol treatment (Fig 
4B). 

The results have shown that SKOV-3 cells not protected against radiation display similar 
mitochondrial activity after balloon flight - about 70% in comparison to CHO-K1 cells (Fig 4C). 
Furthermore, it was observed that curcumin and cinnamon were the most lethal for SKOV-3 
cells, as their mitochondrial curcumin and cinnamon activity was decreasing repetitively 
approximately to the 18% and 30%. Other substances used in this experiment exert the less lethal 
effect on SKOV-3 cell line. The most protective antioxidant for that cells was catechin. However, 
there was no increase of mitochondrial activity in SKOV-3 cells incubated with honokiol. It was 
observed that curcumin significantly diminished mitochondrial metabolism in both cell lines.

The mitochondrial activity of cancer cells incubated without antioxidants and protected against 
radiation remained unchanged (approximately 100%) in all 72 hours (Fig 4D). Directly after the 
flight we observed the highest mitochondrial activity when the antioxidants were applied. A 
significant decrease was observed after usage of curcumin – 88% after 24 hours, 79% after 48 
hours and 71% after 72 hours. However, a smaller but still significant drop was observed after 
cells’ incubation with cinnamon. Catechin and honokiol application generated results similar to 
the control cells and cells without antioxidants.

4.3. Intracellular reactive oxygen species (ROS) generation 

Directly after the stratospheric flight (0h), a significant decrease in intracellular ROS generation 
in CHO-K1 cells not protected against radiation in case of pre-treatment with catechin and 
honokiol was observed (Fig 5A). However, after 24 hours, an increased level of ROS was 
detected. In case of CHO-K1 not protected against radiation and pretreated with catechin, the 
lowest and relatively constant level of ROS was detected. Those results confirmed that catechin 
displays the most valuable protective role from all of the tested compounds. 

Furthermore, directly after the balloon flight and 24h incubation there was a reduced level of 
oxidative stress after pretreatment with various antioxidants in CHO-K1 cells protected against 
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radiation measured (Fig 5B). However, it was still similar to the cells incubated in antioxidant-
free medium.

Moreover, our studies revealed that in SKOV-3 cells not protected against radiation, the level of 
oxidative stress after pretreatment with curcumin and catechin is almost the same as in the cells 
incubated without antioxidant (Fig 5C). Treatment with honokiol and cinnamon resulted in the 
increase of ROS generation. 

In the case of SKOV-3 cells protected against radiation, a higher level of ROS in cells incubated 
with curcumin and cinnamon was observed (Fig 5D). The results indicated that those compounds 
could have display antitumor activity by generating reactive oxygen species in cancer cells, 
which was reflected in our research. After 24 hours, the level of oxidative stress for all the tested 
compounds and cells without antioxidant was at 80%.

In summary, our results have shown that intracellular ROS generation is related to the exposure 
to stratospheric conditions, especially radiation, and treatment with the examined antioxidants 
which act differently in various cells.

Fig 5. Intracellular reactive oxygen species generation verified by DCF assay after the 
balloon flight.  
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by the aluminum 
foil against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells 
protected by aluminum foil against radiation (*p ≤ 0.05). Data are presented as the mean 
percentage relative to control cells, which were not sent into the stratosphere.

4.4. Membrane permeabilization

Reduced membrane permeabilization is crucial due to the greater cells protection against harmful 
radiation and temperature shock. Directly after the stratospheric balloon flight (0h), high 
membrane permeabilization in CHO-K1 cells not protected against radiation was observed (Fig 
6A). After 24 hours the membrane permeabilization for all samples decreased significantly. 
However, it was observed that the cells after preincubation with catechin have less permeable cell 
membranes when compared to the other samples. In the case of CHO-K1 cells not protected 
against radiation, a constant level of cell membrane permeabilization regardless to the type of 
antioxidant was observed (Fig 6B).

Our studies indicated a decreased membrane permeabilization in SKOV-3 cells not protected 
against radiation and incubated with antioxidants (Fig 6C).  The same dependency was observed 
in case of SKOV-3 cells protected against UV radiation (Fig 6D). Of all the tested compounds, 
once again catechin showed the best protective effect due to the reduced permeability of the 
plasma membrane. 

Fig 6 Cell membrane permeabilization determined by YO-PRO-1 fluorescence after the 
balloon flight.  
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(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by the aluminum 
foil against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells 
protected by aluminum foil against radiation (*p ≤ 0.05). Data are presented as the mean 
percentage relative to control cells, which were not sent into the stratosphere.

4.5. Cell death 

Cell death assay revealed different values of apoptotic and necrotic cells after the balloon flight. 
We noticed the increased percentage ratio of necrotic cells in case of CHO-K1 cells exposed to 
radiation in comparison to CHO-K1 cells protected against radiation (Fig 7A-B, Tab. 1, Fig 8). 
Incubation with catechin, honokiol or curcumin resulted in a reduced level of total apoptotic 
cells, whereas the cinnamon revealed the strongest proapoptotic agent. 

The highest percentage ratio of late apoptotic cells was observed after curcumin treatment of 
CHO-K1 cells protected against radiation (Fig 7B). Interestingly, incubation with honokiol and 
cinnamon resulted in the increased level of early apoptotic cells. The lowest level of total 
apoptotic cells was observed after the catechin treatment. 

SKOV-3 cells not protected against radiation showed the increased percentage ratio of apoptotic 
cells (Fig 7C) in comparison to the cells protected against radiation. The highest level of dead 
cells was observed after treatment with curcumin and cinnamon, whereas honokiol exhibited 
antiapoptotic properties. 

In case of SKOV-3 cells protected against radiation, similar percentage ratio of apoptotic cells, 
for the cells both incubated with incubated with and without antioxidants was observed. (Fig 7D). 
The highest level of necrotic cells was revealed for the cells treated with honokiol and curcumin. 
However, the reduced percentage ratio of apoptotic cells was detected only for the cells incubated 
with cinnamon.

Fig 7. The percentage ratio of undamaged, necrotic, early and late apoptotic cells evaluated 
by Annexin V-APC/PI staining 24-hour after balloon flight.  
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by the aluminum 
foil against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells 
protected by aluminum foil against radiation.
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Tab. 1. Cell death evaluation of CHO-K1 and SKOV-3 cells protected and not protected 
against radiation, treated with various antioxidants, after 24-hour incubation after balloon 
flight. Results expressed as percentage of cells.

CHO-K1 cells undamaged necrosis total 
apoptosis SKOV-3 cells undamaged necrosis total 

apoptosis

not protected 
against radiation

not protected 
against radiation

control 84 6 10 control 85 5 10

w/o antioxidant 67 12 22 w/o antioxidant 75 8 17

catechin 73 10 17 catechin 71 9 20

honokiol 71 9 20 honokiol 77 9 15

curcumin 72 10 18 curcumin 64 12 24

cinnamon 61 14 25 cinnamon 65 11 24

protected          
against radiation

protected     against 
radiation

control 84 6 10 control 85 5 10

w/o antioxidant 83 7 10 w/o antioxidant 89 3 8

catechin 84 8 8 catechin 85 4 11

honokiol 80 5 15 honokiol 86 5 9

curcumin 69 7 24 curcumin 87 5 8

cinnamon 77 9 14 cinnamon 90 4 6

Fig 8. The comparison of early and late apoptotic CHO-K1 and SKOV-3 cells protected by 
aluminum foil and not protected against radiation, treated with various antioxidants, after 
24-hour incubation after the balloon flight. 
Results are represented as dot plots.

4.6. SOD2 expression

Immunocytochemical staining method enabled detection of the significant differences in SOD2 
expression after the balloon flight in both examined cell lines (Fig 9, Tab. 2). After the 
stratospheric flight, we observed a weaker expression of the manganese-dependent superoxide 
dismutase in SKOV-3 cells in comparison to CHO-K1 cells in the presence of the same 
antioxidant compounds. CHO-K1 cells treated with catechin and cinnamon extract were the most 
immunoreactive. After the balloon flight only CHO-K1 cells exhibited the increased SOD2 
reactivity in comparison to control cells whereas the opposite changes were observed in SKOV-3 
cells. The obtained results indicate that the examined antioxidants induced SOD2 activity in 
normal cells more effectively than in cancer cells. 

Fig 9. The representative microphotographs of the immunoreactivity of the manganese-
dependent superoxide dismutase (SOD2) in CHO-K1 and SKOV-3 cells protected and not 
protected against radiation. 
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Tab. 2. The immunocytochemical reaction with SOD2 antibody in CHO-K1 and SKOV-3 
cell lines after the balloon flight in the presence of various compounds, taking into account 
the exposure and the protection against radiation (% - percentage of stained cells, RI – 
Reaction Intensity).

control w/o antioxidant catechin honokiol curcumin cinnamon

% RI % RI % RI % RI % RI % RI

CHO-K1 protected 
against radiation

90% +/++ 100% ++ 95% ++/
+++ 95% +++ 100% +++ 100% ++/

+++

CHO-K1 not 
protected against 

radiation
80% ++ 85% +/++ 90% +++ 100% ++/++

+ 100% ++/++
+ 100% +++

SKOV-3 protected 
against radiation 95% ++/++

+ 50% + 70% +/++ 80% +/++ 90% ++ 70% +/++

SKOV-3 not protected 
against radiation 95% ++/++

+ 70% +/++ 100% +/++ 95% ++ 100% ++ 100% ++

4.7. Clonogenic assay

The clonogenic assay confirmed the protective role of selected antioxidants which enhanced cell 
survival after exposure to the stratospheric environment (Fig 10, 11). Differences in number of 
colonies between the protected and unprotected cells indicate the cytotoxic properties of 
radiation. Furthermore, this assay confirmed that CHO-K1 were more sensitive to high energy 
particles in the stratosphere. We observed more and bigger colonies in CHO-K1 cells, especially 
among the protected cells. The least efficient in cell protection was curcumin whereas the highest 
number of colonies was observed after cinnamon and catechin pretreatment.

Comparison of MTT, cell death and clonogenic assay for SKOV-3 cells not protected against 
radiation and treated with cinnamon revealed a decrease of cell viability after the balloon flight, 
however, proliferation ability was not affected. It suggests that cinnamon first, may cause 
increased cell death after the flight and then promote cells’ multiplying. We did not observe this 
effect for curcumin treatment.  

Fig 10. Number of colonies after 7-day incubation. 
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by aluminum foil 
against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells protected 
against radiation (*p ≤ 0.05). Data are presented as the mean percentage relative to control cells, 
which were not sent into the stratosphere.

Fig 11. Colony formation in clonogenic assay after 7 day incubation. 
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected against radiation, 
(C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells protected against radiation, 
1 – control cells, 2 – w/o antioxidant, 3 – catechin, 4 – honokiol, 5 – curcumin, 6 – cinnamon. 
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4.8. DNA damage in the stratosphere

In neutral comet assay we were able to distinguish four types of comets. Figure 12 shows the 
detailed categorization method used for the evaluation of our samples that allows us to divide the 
observed nuclei into three groups: undamaged, apoptotic and intermediately damaged (Tab. 3). 
Comparison of CHO-K1 and SKOV-3 cells not protected against radiation revealed protective 
role of antioxidants in DNA damage among CHO-K1 cells, however, curcumin and cinnamon 
promoted DNA destruction in SKOV-3 cells. In the cells protected against radiation antioxidants 
acted differently. In the normal cells we observed more undamaged cells after preincubation with 
catechin and honokiol, whereas in the cancer cells cinnamon additionally reduced the percentage 
ratio of cells with DNA damages. These results suggest that the protective role of antioxidants in 
DNA damages depends on the presence of radiation resulting in various activity of these 
substances in cells. 

Tab. 3. DNA damage evaluation of CHO-K1 and SKOV-3 cells protected and not protected 
against radiation, treated with various antioxidants, directly after balloon flight. Results 
expressed as percentage of cells.

CHO-K1 cells undamaged apoptotic 
damaged

intermediately 
damaged SKOV-3 cells undamaged apoptotic 

damaged
intermediately 

damaged

not protected 
against radiation

not protected 
against radiation

w/o antioxidant 79 9 12 w/o antioxidant 71 1 28

catechin 84 3 13 catechin 82 1 18

honokiol 84 1 15 honokiol 83 1 16

curcumin 91 1 9 curcumin 64 0 36

cinnamon 83 7 10 cinnamon 61 1 38

protected          
against radiation

protected     against 
radiation

w/o antioxidant 90 2 8 w/o antioxidant 54 1 45

catechin 91 0 9 catechin 74 0 25

honokiol 93 2 5 honokiol 83 1 16

curcumin 83 0 17 curcumin 52 0 48

cinnamon 89 2 8 cinnamon 70 1 29

Fig 12. Different types of DNA damage visualized by comet assay. 
(A) comet type 0 and 2; (B) comet type 0, 2 and 3; (C) comet type 0 and 1; (D) comet type 0, 1 
and 3. Type 0 – size of the head the normal nucleus size, tail absent; type 1 – size of the head the 
normal nucleus size, tail size less than normal nucleus size, type 2 – size of the head less than half 
size of normal nucleus, tail size more than 2 times the normal nucleus size, type 3 – size of the 
head the normal nucleus size, tail size about 2 times the normal nucleus size. 
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Furthermore, using CometScore software we were able to perform the analysis of the pictures of 
comets and determine the percentage ratio of the damaged DNA accompanying the flight (Fig 
13). Our studies showed that cancer cells were more vulnerable to UV radiation exposure causing 
an increase of the presence of DNA in tail. The most active compound preventing DNA damage 
was cinnamon extract, both for normal and cancer cells. In the case of protected cells, honokiol 
and curcumin enabled the most efficient preservation.

Fig 13 DNA damage evaluation of CHO-K1 and SKOV-3 cells protected and not protected 
against radiation, treated with various antioxidants, directly after balloon flight. 
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected against radiation, 
(C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells protected against radiation 
(*p ≤ 0.05). Results expressed as percentage of damaged DNA presented in tail of comet. 

4.9. Confocal microscopy and cells’ morphology analysis

Fluorescence staining revealed slightly differences in the cell morphology after the balloon flight 
in both examined cell lines (Fig 14). After the stratospheric flight, we observed more slender 
spikes in both cell lines. CHO-K1 and SKOV-3 cells treated with honokiol, curcumin and 
cinnamon extract were morphologically similar to the control cells. The cells exposed to radiation 
were enlarged, especially CHO-K1 cells incubated without antioxidant and protected against 
radiation. Some nuclei were fragmented, in particular in the cells not protected against radiation. 
However, the incubation with antioxidant resulted in an increased percentage ratio of cells with 
condensed nuclei with many nucleoli.

Fig 14 The representative photographs of the morphology of CHO-K1 and SKOV-3 cells 
protected and not protected against radiation stained with CellMask™ Deep Red (cell 
membranes) and DAPI (nuclei). 

5. Discussion

During the balloon flight the cell samples were exposed to several fluctuating stressful factors, 
namely radiation, temperature, pressure and overload. However, as long as the exposure to these 
factors does not reach extreme levels, most of the cells are still able to survive due to their natural 
capability of activating a variety of specific defensive pathways. The stress response could be 
dramatically different among various types of cells, notably normal and cancer cells. Therefore, 
the application of meticulously selected compounds could either alleviate or exacerbate the 
consequences of the exposure to rapidly varying temperature, pressure and UV conditions during 
stratospheric balloon campaign – depending on their various properties and type of cells – hence 
influencing not only the survival but also recovery of cells after the experiment. Natural 
medicines, such as catechin, curcumin, cinnamon extract and honokiol have been recently 
gaining much attention as therapeutic compounds for cancer prevention and treatment. Our study 
represents the first attempt at discovering compounds exhibiting protective properties in space by 
launching the human normal and cancer cells into the stratosphere on a meteorological balloon.
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There is a huge ambiguity among the available data concerning quantification of the absorbed 
dose of cosmic rays depending on the length of the flight and height reached during the 
meteorological balloon mission. The intensity of the radiation varies depending on parameters 
such as location and time unit, latitude and longitude, ozone depth and solar activity (47). The 
average dose of ionizing radiation reaching the atmosphere is estimated at around 2-20 μSv (48). 
In the stratosphere, 30 000 meters above the Earth's surface, the UV radiation is much higher than 
on the sea level (6). The lower the height, the thicker the protective layer of the atmosphere and 
the higher the radiation exposure (49). During the flight the cells were deprived of the protective 
effect of the ozonosphere and troposphere (which naturally protect Earth against radiation), 
resulting in decreased cell viability after the flight. 

During the experiment half of the samples was covered by aluminum foil. Therefore, we were 
able to evaluate the effect of radiation (mainly UV and high energy particles such as α, β-) on 
examined cells in the presence of various compounds. We observed an increased mitochondrial 
activity and decreased level of apoptotic cells after pretreatment with various antioxidants, 
especially among CHO-K1 cells. Catechin was the most efficient in radioprotection of normal 
cells, whereas honokiol appeared to be the most protective for cancer cells. These results were 
reflected by intracellular ROS measurements and comet assay. We did not observe significant 
differences in DCF fluorescent signal between SKOV-3 cells protected and not protected against 
radiation. However, in MTT and cell death assay and immunocytochemical staining the results 
were altered. It could indicate that radiation-related death in SKOV-3 cells was not strictly related 
to the oxidative stress and caused direct cell damage. 

According to the time of cell death after the irradiation, two types of the apoptosis can be 
distinguished: fast apoptosis occurring straight after G2 arrest and late apoptosis, when cell death 
is preceded by one or more cell divisions. Widely understood radiosensitivity has been 
demonstrated to vary among different cell types or even populations (10). For instance, 
radiosensitive cells such as thymocytes (50) or lymphocytes (50) tend to undergo fast apoptosis, 
whereas Yanagihara et al. (1995) described human gastric epithelial tumor cells which exhibited 
delayed radiation-induced apoptosis scarcely 12h after irradiation, reaching maximum from 72 to 
96h (51). We observed a higher percentage ratio of apoptotic cells among normal cells (CHO-K1) 
as compared to cancer cells (SKOV-3). Our studies suggest that normal cells are more 
radiosensitive to fast apoptosis than tumorous cells, which resulted in earlier and more intensive 
apoptosis among CHO-K1 cells. The significant differences were also shown in response to 
different antioxidants of each cell type, which should be highlighted as particularly interesting in 
case of curcumin, which acted as light-sensitizer and induced cell death more effectively in 
SKOV-3. Similar results were observed after treatment with catechin, which promoted apoptosis 
more frequently in SKOV-3 than CHO-K1. Furthermore, we noticed less and smaller SKOV-3 
colonies in comparison to CHO-K1 in clonogenic assay that indicated a delayed radiation-
induced death of cancer cells. Additionally, the performed tests highlighted the considerable 
impact of honokiol and catechin on recovery of the cells after the flight, proving cytoprotective 
role of antioxidant after radiation exposure.
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Radiation-related DNA strand breaks, confirmed in comet assay, have been demonstrated to 
initiate the expression of p53 (52), which promotes cytochrome C release from the mitochondria 
(53) and activation of caspase cascade leading to apoptosis (54). SOD2 is the essential 
mitochondrial antioxidant enzyme which plays a crucial role in protection against radiation in 
cells (55,56) by scavenging the free radical superoxide (57). Overexpression of SOD2 stabilizes 
mitochondrial membrane and protect complexes I and III of the respiratory chain from radiation-
induced damages (58), decreases the release of cytochrome C, resulting in the apoptosis blockage 
(59). Due to the intranuclear localization of SOD2 gene, SOD2 is synthesized in the cytoplasm 
and subsequently imported into the mitochondria via the mitochondrial protein influx (MPI), 
where a manganese ion is combined with SOD2 to make active enzyme (60). The research 
conducted on mammalian cells has demonstrated a decrease of the mitochondrial protein import 
through MPI caused by radiation which leads to the accumulation of precursor proteins outside 
mitochondria degraded by proteasomes (61) and the reduced number of mitochondrial proteins. 
Furthermore, Azzam et al. (2012) revealed that MPI proteins may be damaged by irradiation, 
resulting in deficient protein import (62). Accordingly, mitochondria play a critical role in 
radioprotection by affecting SOD2 activity through Cdk1-p53-mediated SOD2 regulation. 
Transcriptional factors promoted by reduction of ROS production induce transcription of SOD2-
regulated genes causing adaptive response to the oxidative stress. Thus, medicines that increase 
SOD2 activity enhance mitochondrial membrane stability and block the activation of apoptosis. 
Natural derivatives used in our study have been displayed as radioprotective substances 
(22,63,64) promoting SOD2 activity (65–68). Our studies revealed a significantly increased 
amount of SOD2 in in normal cells treated with the analyzed antioxidants whereas we observed 
less viable cancer cells and increased ROS generation among cancer cells treated with these 
compounds. Curcumin occurred to be the most efficient  radioprotective substance in normal 
cells while it displayed radio- and photosensitive activity in SKOV-3 cells.

According to the data recorded by on-board sensors, the temperature varied between -36C and 
20C. Lower cultivation temperature is contributed to a decreased cellular metabolism (69), 
projecting on prolonged preservation of cell viability. However, moderately cold temperature 
conditions (-60 to -15°C) remain the main limiting factor affecting the cell viability (70). During 
the flight, the biological samples were exposed to this stressful temperature zone for 2 hours and 
experienced repeated cycle of chilling and warming while the balloon was ascending and 
descending (Fig 3): first when temperature dropped down to -21C, second when it raised to -2C 
and third when it dropped down to -36C before raising to 20C in the landing area. However, the 
air density in the stratosphere is about 1000 times lower than on sea level and because of that the 
temperature exchange between the biological samples and air was limited, resulting in the 
relative temperature stability of cells. Along with extensive structural damage of the cell, freezing 
and thawing cycles are associated with oxidative stress and consequently mitochondrial 
disturbance, cell membrane permeabilization or DNA damage (71), finally leading to death either 
on apoptotic or necrotic pathway (72,73), which was reflected in our research. The biological 
samples after the balloon flight were characterized with increase of ROS generation and 
percentage ratio of dead cells; however, treatment with selected antioxidants limited these 
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processes. We speculate that antioxidants could have reorganized the chemical structure of cell 
membrane resulting in its increased stability in lower temperature and decreased 
permeabilization, which was measured in YO-PRO-1 assay directly after the balloon flight and 
highlighted in CLSM analysis. In this process catechin was the most efficient in CHO-K1 cells. 
However, we noticed that membrane permeability  increased after incubation with curcumin in 
CHO-K1 cells not protected against radiation after the flight while it was strongly reduced in 
SKOV-3 cells exposed to the stratospheric conditions.

A number of studies suggest that cryopreservation and low temperature affect the cell sensitivity 
to radiation (74). According to this, the data concerning utilization of frozen Chinese-hamster-
fibroblasts revealed the decrease in X-ray-induced damage of cells stored at (-196)C in 
comparison to cells irradiated at room temperature (75). Information from cryocrystallography 
demonstrates that very low temperatures (-173C) stop the diffusion of free radicals caused by 
irradiation which leads to less harmful cell damages induced by X rays (76). Due to this fact, the 
increased survival of cells affected by freezing may be associated with reduced oxidative stress 
and damage at low temperature (74). Altogether, the data suggest that freezing can protect cells 
from radiation-induced damage and apoptosis, affecting cell viability after the flight.

There is a huge ambiguity between different cell types in their response to the temperature-
related stress. Our experiment confirms that mechanisms of cellular responses to oxidative stress 
are strongly associated with the type of a cell. In general, treatment with antioxidants resulted in 
increased viability in normal cells whereas oxidative stress was intensified in cancer cells. 
However, the SOD2 expression was higher in normal cells. It shows that molecular antioxidative 
mechanism of different antioxidants varies in diverse types of cells: the genomic mechanism 
associated with the increased expression of antioxidative enzymes is predominant in normal cells 
whereas in cancer cells the antioxidants and their metabolites work as scavengers of free radicals 
and do not induce intensively the expression of protective proteins.

It is worth noting that the atmospheric pressure during the flight decreased to 1hPa. However, it 
is not possible to draw indisputable conclusions about the influence of the pressure on the 
samples due to a fact that in our research the cells were surrounded by the layer of the liquid 
medium, which remained frozen after the temperature drop. Despite its shortcomings, this 
method still provides exposure for the decreased pressure to a relatively large extent, which 
probably influenced the cells homeostasis and hence, the presented data. Notably, among 
available literature low-pressure cultivating have been proven to influence homeostasis, 
morphology and proliferation of mammalian cells (77), which become more rounded and less 
spindle-shaped and show numerous blebs around their margins. Mitochondria and nucleus take 
more rounded shape due to edema and cell membrane creating bubbles causing cell death (78).

Remarkably, stratospheric balloon flights are accompanied with overloads. Accelerometer in the 
gondola shows that ascending and descending velocity is not permanent and because of that the 
biological samples were exposed to overloads. Numerous studies have investigated the effect of 
overloads on cells. For example, when animal cells are cultured under 10g (10g means 10 times 
higher force than Earth gravity), proliferation is increased by 20-30%, glucose consumption is 
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reduced, cell migration is inhibited by high overloads. At gravitational stress, cell may move to 
other metabolic pathways (79). On the other hand, overloads work as a natural antioxidant and 
reduce lipid membrane peroxidation (LPO). Induction of the passive mechanisms of 
biomembrane protection associated with changes in the phase status of the membrane is the most 
plausible explanation for the phenomenon being observed (80). In our experiment we noted 
changes in membrane permeability, which could have been affected by overloads. Zhan et al. 
(1999) revealed a protective effect of green tea polyphenols on 10g stress in rats (81) and our 
studies highlighted the value of natural antioxidants as protective agents in the gravitational 
stress. Furthermore, altered gravity deeply influences numerous biological processes in living 
organisms. Changes in gravitational values affect cell survival, development, and spatial 
organization. In addition, the indirect effects of altered gravity, such as those associated with 
hydrostatic pressure and fluid shear, strongly affect both in vitro and in vivo systems (82). Hence, 
in order to understand these phenomena, further research is necessary. 

5.1. Conclusions

In our study, were analyzed changes in the functions of normal and cancer cells that occurred due 
to exposure to high radiation, overloads as well as low temperature and pressure during 
stratospheric flight. Our work has led us to conclude that the application of the carefully selected 
medicines enables us to manipulate cellular stress response depending on the type of cells. 
Altogether, these findings suggest that honokiol and catechin have the best protective effect on 
the normal cells, whereas curcumin and cinnamon act as radio- and light-sensitizers increasing 
the percentage of apoptotic cancer cells and DNA damage. The results constitute a significant 
step towards the investigation of possible strategies for the cell protection in space environment 
and provide new insights into the application of the examined compounds for the prevention and 
treatment of cancer. We believe that our research will remain valuable for resolving the difficulty 
of the human and biological material protection in space. Because of its relatively low costs, our 
approach remains economic alternative for simulated subcosmic conditions conducted in the 
laboratory, which requires far more expensive, specialized measurements. 
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9. Figures legend

Fig 1. Effect of the radiation on the DNA. 
High-energy particles could affect DNA damage either by direct pathway or indirect pathway. 
Free radicals and by-products of the process of water radiolysis contribute to an increase of the 
oxidative stress in the cell affecting the DNA. Survival of the cell depends on the extent of the 
DNA damage (8–10). This figure was prepared using Servier Medical Art, available from 
www.servier.com/Powerpoint-image-bank.

Fig 2. The schematic representation of the procedure of balloon flight and the preparation 
of biological samples. 
This figure was prepared using Servier Medical Art, available from 
www.servier.com/Powerpoint-image-bank.

Fig 3. The environmental analysis. 
(A) The temperature fluctuations [°C] during the balloon flight outside the payload; the sensor 
was located at the top wall of gondola. (B) The pressure fluctuations [Pa] during the balloon 
flight, the sensor was located at the top wall of gondola. (C) UV radiation fluctuations [mV] 
during the balloon flight. The 1st UV sensor was located at the top wall of gondola, the 2nd UV 
sensor measured UV radiation at the side wall.

Fig 4. Cells viability verified by MTT assay after the balloon flight.  
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by the aluminum 
foil against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells 
protected by aluminum foil against radiation (*p ≤ 0.05). Data are presented as the mean 
percentage relative to control cells, which were not sent into the stratosphere.

Fig 5. Intracellular reactive oxygen species generation verified by DCF assay after the 
balloon flight.  
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(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by the aluminum 
foil against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells 
protected by aluminum foil against radiation (*p ≤ 0.05). Data are presented as the mean 
percentage relative to control cells, which were not sent into the stratosphere.

Fig 6 Cell membrane permeabilization determined by YO-PRO-1 fluorescence after the 
balloon flight.  
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by the aluminum 
foil against radiation, (C) SKOV-3 cells protected by aluminum foil against radiation (*p ≤ 0.05). 
Data are presented as the mean percentage relative to control cells, which were not sent into the 
stratosphere.

Fig 7. The percentage ratio of undamaged, necrotic, early and late apoptotic cells evaluated 
by Annexin V-APC/PI staining 24-hour after balloon flight.  
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by the aluminum 
foil against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells 
protected by aluminum foil against radiation.

Fig 8. The comparison of early and late apoptotic CHO-K1 and SKOV-3 cells protected by 
aluminum foil and not protected against radiation, treated with various antioxidants, after 
24-hour incubation after the balloon flight. 
Results are represented as dot plots.

Fig 9. The representative microphotographs of the immunoreactivity of the manganese-
dependent superoxide dismutase (SOD2) in CHO-K1 and SKOV-3 cells protected and not 
protected against radiation. 

Fig 10. Number of colonies after 7-day incubation. 
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected by aluminum foil 
against radiation, (C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells protected 
against radiation (*p ≤ 0.05). Data are presented as the mean percentage relative to control cells, 
which were not sent into the stratosphere.

Fig 11. Colony formation in clonogenic assay after 7 day incubation. 
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected against radiation, 
(C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells protected against radiation, 
1 – control cells, 2 – w/o antioxidant, 3 – catechin, 4 – honokiol, 5 – curcumin, 6 – cinnamon. 

Fig 12. Different types of DNA damage visualized by comet assay. 
(A) comet type 0 and 2; (B) comet type 0, 2 and 3; (C) comet type 0 and 1; (D) comet type 0, 1 
and 3. Type 0 – size of the head the normal nucleus size, tail absent; type 1 – size of the head the 
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normal nucleus size, tail size less than normal nucleus size, type 2 – size of the head less than half 
size of normal nucleus, tail size more than 2 times the normal nucleus size, type 3 – size of the 
head the normal nucleus size, tail size about 2 times the normal nucleus size. 

Fig 13 DNA damage evaluation of CHO-K1 and SKOV-3 cells protected and not protected 
against radiation, treated with various antioxidants, directly after balloon flight. 
(A) CHO-K1 cells not protected against radiation, (B) CHO-K1 cells protected against radiation, 
(C) SKOV-3 cells not protected against radiation, (D) SKOV-3 cells protected against radiation 
(*p ≤ 0.05). Results expressed as percentage of damaged DNA presented in tail of comet. 

Fig 14 The representative photographs of the morphology of CHO-K1 and SKOV-3 cells 
protected and not protected against radiation stained with CellMask™ Deep Red (cell 
membranes) and DAPI (nuclei). 

10. Tables

Tab. 1. Cell death evaluation of CHO-K1 and SKOV-3 cells protected and not protected 
against radiation, treated with various antioxidants, after 24-hour incubation after balloon 
flight. Results expressed as percentage of cells.

Tab. 2. The immunocytochemical reaction with SOD2 antibody in CHO-K1 and SKOV-3 
cell lines after the balloon flight in the presence of various compounds, taking into account 
the exposure and the protection against radiation (% - percentage of stained cells, RI – 
Reaction Intensity).

Tab. 3. DNA damage evaluation of CHO-K1 and SKOV-3 cells protected and not protected 
against radiation, treated with various antioxidants, directly after balloon flight. Results 
expressed as percentage of cells.
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