
1

1 Regional fat depot masses are influenced by protein-coding gene variants
2
3
4 Matt J. Neville1,2¶, Laura BL. Wittemans3¶, Katherine E. Pinnick1, Marijana Todorčević1, Risto 

5 Kaksonen4, Kirsi H. Pietiläinen4,5, Jian’an Luan3, Robert A. Scott3, Nicholas J. Wareham3, 

6 Claudia Langenberg3, Fredrik Karpe1,2*

7
8 1Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of 

9 Medicine, University of Oxford, Oxford

10 2Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford

11 3MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of 

12 Metabolic Science, Cambridge

13 4Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of 

14 Helsinki, Helsinki, Finland

15 5Abdominal Center, Endocrinology, Helsinki University Hospital, Helsinki, Finland

16
17 *Corresponding Author:

18  Fredrik.Karpe@ocdem.ox.ac.uk 

19
20 ¶ These authors contributed equally to this work

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 25, 2019. ; https://doi.org/10.1101/526434doi: bioRxiv preprint 

https://doi.org/10.1101/526434
http://creativecommons.org/licenses/by/4.0/


2

22 Abstract

23 With the identification of a large number of genetic loci associated with human fat 

24 distribution and its importance for metabolic health, the question arises as to what 

25 the genetic drivers for discrete fat depot expansion might be. To date most studies 

26 have focussed on conventional anthropometric measures such as waist-to-hip ratio 

27 (WHR) adjusted for body mass index. We searched for genetic loci determining 

28 discrete fat depots mass size using an exome-wide approach in 3 large cohorts.

29 Here we report an exome-wide analysis of non-synonymous genetic variants in 

30 17,212 participants in which regional fat masses were quantified using dual-energy 

31 X-ray absorptiometry. The missense variant CCDC92S70C, previously associated with 

32 WHR, is associated specifically with reduced visceral and increased leg fat masses. 

33 Allele-specific expression analysis shows that the deleterious minor allele carrying 

34 transcript also has a constitutively higher expression. In addition, we identify two 

35 variants associated with the transcriptionally distinct fat depot arm fat (SPATA20K422R 

36 and UQCC1R51Q). SPATA20K422R, a rare novel locus with a large effect size specific 

37 to arm, and UQCC1R51Q, a common variant exome-wide significant in arm but 

38 showing similar trends in other subcutaneous fat depots. In terms of the 

39 understanding of human fat distribution, these findings suggest distinct regulation of 

40 discrete fat depot expansion.

41

42 Author summary

43 Human fat storing tissues are heterogeneous and comprise functionally and 

44 structurally distinct regional fat depots, the relative size of which appear to have 

45 significant implications for health. Whilst it is known that inter-individual differences in 

46 fat distribution have genetic drivers, studies to date have focussed on crude 
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47 anthropometric approximations of region fat masses rather than precise measures. 

48 Here we describe an exome-wide analysis of a large collection of men and women 

49 who have undergone body scanning using dual-energy X-ray absorptiometry (DXA) 

50 to better define regional fat masses and identify new genetic drivers for human fat 

51 distribution. With this approach we identify three gene regions associated with 

52 distinct fat depots which can help to explain the variation in fat distribution between 

53 people and may lead to a better understanding of the depot specific fat 

54 tissue expansion.
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56 Introduction
57
58 Beyond associations with chronic disease and overall obesity, as defined by body-

59 mass index (BMI), it is becoming increasingly apparent that there is an even stronger 

60 relationship between body fat distribution and cardio-metabolic disease[1, 2]. For 

61 example, Yusuf et al.[1] showed that waist-to-hip ratio (WHR) is a stronger predict of 

62 myocardial infarction than BMI. To date, the overwhelming majority genome and 

63 exome-wide association studies on fat distribution have focussed on waist and hip 

64 circumference and WHR[3, 4]. While these measures are easy and cheap to obtain 

65 on a large scale, they do not capture all variation in fat distribution. For example, 

66 WHR does not capture peripheral fat stored in the upper limbs and the distribution of 

67 overall central fat over the subcutaneous and visceral compartments, of which the 

68 latter have been suggested to have discordant effects on cardio-metabolic risk[5-8]. 

69 Furthermore, circumference-based estimates of fat accumulation do not take into 

70 account differences in lean mass and bone structure and mass. Therefore, additional 

71 genetic association studies that call upon direct measures of regional fat mass would 

72 help unpick mechanisms underlying the expansion of distinct fat depots.

73 Quantification of distinct fat depot masses requires imaging methods with post-image 

74 processing to derive delineation of tissues, such as magnetic resonance imaging or 

75 dual x-ray absorptiometry (DXA). We have therefore formed a large consortium with 

76 DXA-derived regional body fat measurements together with capability to pursue an 

77 exome chip discovery project of exonic gene coding variants relating to distinct fat 

78 depot size. We hypothesise that by identifying fat depot-specific genetic loci we may 

79 gain better insight into the site-specific role of adipose tissue to disease aetiology.

80

81 Results and discussion
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82

83 We tested the associations of coding genetic variants covered on the Illumina 

84 Human Exome Bead chip with regional fat masses measured by DXA (GE Lunar 

85 iDXA). Our analyses included up to 17,212 participants of European ancestry from 

86 the Oxford Biobank[10], Fenland[11] and EPIC-Norfolk[12] cohorts (Table 1 and 

87 Table S1). We fitted within each cohort additive, recessive and dominant models for 

88 six DXA-derived adipose tissue regions, i.e., arm fat, leg fat, gynoid fat, total android 

89 fat, visceral abdominal fat and subcutaneous abdominal fat (Table S1), using 

90 RAREMETALWORKER[13]. The regional fat phenotypes were adjusted for the first 4 

91 principal components, age and total body fat percentage and the residuals were 

92 rank-based inverse normally transformed for men and women separately. Meta-

93 analyses of the single variant association statistics were performed in 

94 RAREMETAL[14]. Only non-synonymous variants were considered and the cut-off 

95 for exome-wide statistical significance was p<2E-7. Three non-synonymous variants 

96 reached exome-wide significance (Fig1, Table 2 and S2 Table): rs11057401, a 

97 common missense variant in Coiled-Coil Domain Containing 92 (CCDC92S70C); 

98 rs62621401, a novel low-frequency missense variant in Spermatogenesis 

99 Associated 20 (SPATA20K422R) and rs4911494, a common missense variant in 

100 Ubiquinol-Cytochrome C Reductase Complex Assembly Factor 1 (UQCC1R51Q). An 

101 additional 30 non-synonymous variants reached suggestive significance across 38 

102 tests (p<10-6, S3 Table), including a large haplotype block on chromosome 17 

103 containing 8 missense variants across the SPPL2C, MAPT, KANSL1 genes and 

104 GDF5S276A in LD with UQCC1R51Q.

105

106 Table 1. Study Cohorts
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Study name
Sample size (% 
men) Genotyping array

QC Passed 
Variants. Total Na

Polymorphic 
variants. N

Fenland-ExomeChip 1145 (45.8%) Illumina Exome BeadChip v1.0 240859 95739

Fenland-CoreExome 997 (45.2%) Illumina Infinium Core Exome 24 v1 array 234179 85218

Fenland-Axiom 7363 (47.5%) Affymetrix UK Biobank Axiom array 58240 57864

EPIC-Norfolk 3101 (45.0%) Affymetrix UK Biobank Axiom array 56837 52020
Oxford Biobank Exome 
Chip 3281 (43.7%) Illumina Exome BeadChip v1.0 245138 125912

Oxford Biobank Axiom 1325 (41.4%) Affymetrix UK Biobank Axiom array 62732 56820
107 a Counts represent the number of variants in each dataset that overlap with the Illumina Exome 
108 Beadchip v1.0 content after standard QC metrics are applied. 
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109 Table 2. Primary Exome-Wide significant findings

rsID
Chr:Position 
(GRCH37) Gene

Amino acid 
Change

Ref 
Allele

Alt 
Allele

DXA derived Fat 
Depot N

Alternate Allele 
Frequency Effect Size Effect Size SD Pvaluea

Haplotype region 
(GRCH37)b

Number of SNPs in 
LD with index SNPc

Total Android Fat 17184 0.321 -0.065 0.012 3.5E-08

Visceral Fat 16967 0.321 -0.063 0.012 1.3E-07
rs11057401 12:124427306 CCDC92 S70C T A

Leg Fat 17184 0.321 0.075 0.012 4.9E-10

chr12:124403769-
124495203 99

              

rs62621401 17:48628160 SPATA20 K422R A G Arm Fat 17204 0.016 -0.293 0.043 1.5E-11
chr17:48623825-
48633043 7

              

rs4911494 20:33971914 UQCC1 R51Q C T Arm Fat 17197 0.616 -0.063 0.012 1.3E-07
chr20:33887955-
34194423 129

110 a Exome-wide significance was set to 2E-7

111 b The haplotype region is defined as the furthest 3’ and 5’ SNPs with a R2 >0.9 with the index SNP
112 c SNP count is based on 1000 genome SNP data with SNPs in high LD (R2>0.9) with the index SNP
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113 The rs11057401 CCDC92S70C variant (EAF=0.32) is predicted to cause a deleterious 

114 amino acid change as assessed by predictSNP[15]. The minor allele of rs11057401 shows 

115 significant opposing effects on android, specifically visceral fat mass, and lower body fat, 

116 in a sex-combined additive model (total abdominal fat mass=  -0.065, SD 0.0119, p=3.5E-

117 8; visceral abdominal fat mass=  -0.063, SD 0.0119, p=1.3E-7; leg fat mass=  0.075, SD 

118 0.02, p=4.9E-10) (Table 2). These data extend WHR associations reported by Justice, et 

119 al.[3] and Lotta et al.[11] at this locus. Lotta et al.[11] describe the contribution of leg fat-

120 mass; here we demonstrate an additional opposing effect specifically on abdominal 

121 visceral fat mass but not for abdominal subcutaneous fat mass, which would correspond to 

122 the already observed association with increased waist circumference but with the present 

123 analysis showing that the effect is confined to the intra-abdominal fat depot only. Found on 

124 chromosome 12q24, CCDC92 is ubiquitously expressed with highest levels in adipose 

125 tissue, brain and testes. It is a nuclear protein interacting with the centriole-ciliary 

126 interface[11] and may also be involved in DNA repair[16]. The lead variant tags a large 

127 haplotype of at least 99 SNPs (r2>0.9) across a number of genes including the putative 

128 transcription factor Zinc Finger Protein 664 (ZNF664) and Dynein Axonemal Heavy chain 

129 10 (DNAH10) (Table 2). There is also strong evidence for multiple eQTL signals across 

130 this haplotype which includes three genes, i.e. CCDC92, DNAH10 and ZNF664[17]. 

131 Previous GWAS studies have also associated SNPs in this haplotype with a reduction in 

132 insulin resistance[11], improvements in metabolic syndrome[18], reduced WHRadjBMI[3, 

133 4], increased adiponectin levels[19] and with increased plasma HDL-cholesterol and 

134 reduced triglyceride concentrations[20-22]. Ablation of CCDC92 and DNAH10 in mouse 

135 OP9-K cells impairs adipogenesis and reduced lipid accumulation[11]. To further define 

136 the likely causative gene or genes in this complex region we undertook a number of gene 

137 expression studies in human regional adipocytes and whole adipose tissue. CCDC92 and 
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138 ZNF664 showed very similar expression profiles between abdominal subcutaneous 

139 (ASAT), gluteal subcutaneous (GSAT) and arm fat (Fig 2 and 3, Fig S1-3), whilst DNAH10 

140 expression could not be detected in cDNA from either of the diverse human adipose 

141 tissues or cultured primary human preadipocytes making it an unlikely target. Across a 

142 panel of 52 paired ASAT and GSAT cDNA samples (Fig S1), qPCR showed small 

143 differences in expression of CCDC92 and ZNF664 between ASAT and GSAT as well as 

144 between lean and obese individuals. In a cultured human primary preadipocyte 

145 differentiation time course experiment, both CCDC92 and ZNF664 showed a significant 

146 upregulation by day 4 of differentiation (Fig 2 A and B) but no difference in expression 

147 levels was observed between preadipocytes of ASAT and GSAT origin. Whilst this study 

148 focusses on exonic coding variants, recent studies have highlighted the need for caution 

149 when dissociating the analysis of such variants from surrounding eQTL signals[23]. To that 

150 end we also sought to investigate the reported eQTL signals at this locus, for both 

151 CCDC92 and ZNF664 (GTEx project[17] and[11] using allele-specific qPCR; a method that 

152 allows us to assess expressed allelic imbalance in heterozygous individuals and thus an 

153 eQTL. This showed a highly statistically significant increased expression of transcripts 

154 found on the minor allele haplotype for both genes (ASAT 5.8%, GSAT 4.9%, Fig 3 A and 

155 B). Of functional importance is that this allelic expression imbalance would result in the 

156 increased expression of the predicted deleterious serine-70-cysteine amino acid 

157 substitution in the CCDC92 protein. Interestingly, zinc finger proteins such as ZNF664 

158 have been suggested to regulate the expression of near-by genes[18]. The observed co-

159 regulatory expression pattern of ZNF664 and CCDC92 could then possibly be due to the 

160 eQTL acting on ZNF664 which then upregulates the CCDC92 deleterious variant. Further 

161 work needs to be done to investigate this.

162
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163 The rs62621401 SPATA20K422R is a rare novel variant (EAF 0.016). This amino acid 

164 substitution is not predicted to be damaging and allele-specific qPCR on paired ASAT and 

165 GSAT cDNA samples of five Oxford Biobank participants heterozygous for rs62621401 did 

166 not reveal any suggestive eQTL (Fig 3C) either. This variant shows a large effect size and 

167 is the first locus to be associated with arm fat mass (Arm fat =  -0.29, SD 0.043, p-

168 value=1.5E-11, Table 2 and Fig 1B) with an estimated per-allele effect size in the Oxford 

169 Biobank (n=4,606) of 125g less arm fat mass (-5.8%, CI -9.3% to -2.3%) in men and 67g (-

170 2.6%, CI -5.3% to 0.4%) in women (approximate fat mass (grams) per allele after adjusting 

171 for covariates with % change in parentheses, Table S1). SPATA20, linked to 

172 spermatogenesis in mice[24], is highly expressed in human testes but also ubiquitously 

173 expressed, including in adipose tissue. SPATA20 is a putative member of the thioredoxin 

174 family and other members of this family have been shown to be involved in preadipocyte 

175 proliferation[25] and pro-adipogenic Wnt signalling[26]. SPATA20 expression was higher 

176 in men than women, although this was only significant for GSAT (p=0.01) (Fig S1). 

177 Expression of SPATA20 during adipocyte differentiation showed an increase between 

178 days 0 to 7 of adipogenesis then a drop back to pre-differentiation levels between days 7 

179 and 14 (p=8.3E-8, Fig 2C) suggesting a role for this gene in adipocyte development. 

180 Surprisingly, despite the arm-specific association, expression of SPATA20 was similar 

181 between arm fat, ASAT and GSAT (Fig S2 A). However, qPCR assessment of a number of 

182 developmental genes (Homeobox genes) in arm fat compared to ASAT and GSAT showed 

183 significant differences (Fig S2 B) indicating that arm fat is developmentally distinct from the 

184 other fat depots assessed. It is therefore possible that SPATA20 is involved in an arm-

185 specific developmental pathway.

186
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187 The rs4911494 UQCC1R51Q (EAF=0.62) variant was also associated with a loss of arm fat 

188 mass (Table 2 and Fig 1 C) but not predicted as damaging by predictSNP. Whilst exome-

189 wide significance is only observed for arm fat, there is a trend towards less fat in all 

190 peripheral and subcutaneous fat depots in both genders (Fig 1 C and Table S1) for the 

191 effect allele as described here. Although it should be noted that the minor allele 

192 (MAF=0.38) would be associated with an increased fatmass. UQCC1 is involved with 

193 mitochondrial respiratory chain complex III protein expression[27] and is structurally similar 

194 to the mouse Bfzb controlling mouse brown fat[28]. Previous associations at this locus 

195 include height[29], weight[30], WHRadjBMI[3] and osteoarthritis[31]. Another missense 

196 variant in the nearby canonical Wnt signalling gene GDF5 (rs224331) is in LD with 

197 rs4911494 (r2>0.9) and reaches suggestive significance with arm fat in women (p=8.97E-

198 07, SD0.027,  0.13, Table S3). During adipogenesis, expression of UQCC1 increases 

199 (p=2.4E-22, Fig 2D) but with no difference between ASAT and GSAT in cultured 

200 preadipocytes. Allele-specific qPCR showed that the minor allele (rs4911494) was 

201 associated with a small but statistically significant decrease in expression of UQCC1 in 

202 ASAT (per allele percentage change in expression = -1.25%, p=8.7E-4; Fig 3D). It is 

203 unclear whether this small change, if confirmed, would be biologically relevant. GDF5 

204 expression was not detected in adipose tissue cDNA samples. However, during 

205 adipogenesis GDF5 showed transient expression at day 2, highlighting the possibility that 

206 GDF5 is a regulator of early adipocyte differentiation. 

207

208 Conclusion

209 This study represents the largest exome chip meta-analysis on DXA-derived discrete fat 

210 depots masses to date. The value of better-defined fat depot regions is illustrated at the 

211 CCDC92 locus. The CCDC92S70C variant shows a clear signal for visceral fat mass, but 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 25, 2019. ; https://doi.org/10.1101/526434doi: bioRxiv preprint 

https://doi.org/10.1101/526434
http://creativecommons.org/licenses/by/4.0/


12

212 none for the adjacent subcutaneous abdominal fat mass and an opposing effect on lower-

213 body fat mass most clearly observed in the whole leg. This is an important distinction from 

214 previous waist and WHR associations. Whether these opposing effects are because 

215 genetic variation at this locus has direct opposing adipose tissue mass effects in the 

216 depots or one depot is simply compensating to the mass change in the other is unclear 

217 and will require further investigation. A previous study investigating computerised 

218 tomography (CT) scan-derived visceral and subcutaneous fat mass also found 

219 associations at the CCDC92 locus with ZNF664 (rs1048497) and DNAH10 

220 (rs1316952)[32] but these SNPs are both in low LD with the index variant in this study (r2 

221 0.34 and 0.18, respectively) and may represent independent signals. No other loci 

222 associated with CT-derived visceral fat measures[32] were replicated to suggestive 

223 significance. These data and the depth of previous GWAS findings at the CCDC92-

224 ZNF664 locus highlight this as an important region in regulating adipose tissue distribution. 

225 In addition, we report two coding variants associated with arm fat: a novel low-frequency 

226 variant in SPATA20 with a large effect size that seems to only effect arm fat and a 

227 common variant in UQCC1 that additionally seem to have weak effects in other 

228 subcutaneous fat depots. Overall, when comparing these data to equivalent exome 

229 analysis using anthropometric measures[3] there were few replicated loci. Whilst this lack 

230 of replication is likely to be partly due to a lower power compared with significantly larger 

231 datasets using conventional anthropometric measures, we have identified a locus, not 

232 found for any traditional anthropometric traits, for arm fat and refined the tissue-specific 

233 association for another locus (CCDC92), highlighting the value of more defined regional fat 

234 measures.

235 Regional fat depots have distinct physiological regulation with an impact on the whole 

236 body metabolic homeostasis, with distinct transcriptomes demonstrating functional 
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237 differences and differences in origin[7]. This study provides genetic evidence for overall, 

238 distinct regulation of regional fat depot sizes.

239

240
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241 Materials and methods

242 Population cohorts

243 Oxford biobank. The Oxford Biobank (OBB) cohort (http://www.oxfordbiobank.org.uk) 

244 consists of an age-stratified random sample of apparently healthy men and women (aged 

245 30 to 50 years) of European ancestry resident in Oxfordshire, UK, as described 

246 previously[10]. All participants gave written, informed consent to participate, and studies 

247 were approved by the Oxfordshire Research Ethics Committee (08/H0606/107+5). A total 

248 of 3,281 individuals from the Oxford Biobank had both measures of fat mass with GE 

249 Lunar iDXA[33] and Illumina Human Exome Beadchip genotypes after QC checks. An 

250 additional 1,325 individuals contained DXA data and Affymetrix UK Biobank Axiom array 

251 genotype data from which overlapping ExomeChip data was extracted for the purposes of 

252 this study (Table 1).

253

254 Fenland. The Fenland study is a population-based cohort study of participants without 

255 diabetes born between 1950 and 1975. Participants were recruited from general practice 

256 surgeries in Cambridge, Ely and Wisbech (UK) and underwent detailed metabolic 

257 phenotyping and genome-wide genotyping.

258 A total of 1,145 individuals from the Fenland cohort had both measures of fatmass with GE 

259 Lunar iDXA[33] and Illumina Human Exome BeadChip genotypes after QC checks 

260 (Fenland-ExomeChip, Table 1), a further 997 had Illumina Infinium Core Exome data and 

261 7,363 had Affymetrix UK Biobank Axiom array genotype data from which overlapping 

262 ExomeChip data was extracted for the purpose of this study (Table 1).

263
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264 EPIC-Norfolk. EPIC-Norfolk is a prospective cohort study of individuals aged between 40 

265 and 79 years and living in Norfolk county in the UK at the time of recruitment. EPIC-Norfolk 

266 is a constituent cohort of the European Prospective Investigation of Cancer (EPIC). 

267 A total of 3,101 individuals had Affymetrix UK Biobank Axiom array genotype data from 

268 which overlapping ExomeChip data was extracted for the purposes of this study (Table 1).

269
270
271 DXA-derived depot-specific fat mass measures

272 For all cohorts’ depot-specific fat mass was quantified using GE Lunar iDXA (GE 

273 Healthcare, Bucks, UK). As previously described[33] these give high precision estimates of 

274 body composition. The standard setting of the Encore software (version 14.0; GE 

275 Healthcare, Bucks, UK) was used to automatically define regions of interest ensuring that 

276 boundaries were consistent between cohorts. The descriptives for the DXA measures 

277 used are presented in Supplementary Table 1. Visceral fat mass and android 

278 subcutaneous fat mass were not measured directly. Visceral fat mass was calculated 

279 using an algorithm within the Encore software as described elsewhere[33, 34] and the 

280 android subcutaneous fat mass was calculated by subtracting the visceral fatmass from 

281 total android fat mass. The DXA scanning was calibrated as per manufacturer’s 

282 instructions. 

283

284 Exome-wide genotype analysis

285

286 Datasets. Six data sets from three cohorts, Oxford Biobank[10], Fenland[35] and EPIC-

287 Norfolk[12] (Table 1), equalling a total of 17,212 individuals of European ancestry were 

288 compiled for this analysis. The Illumina Exome BeadChip v1.0 genotype content was used 

289 as the base content. Where other genotype arrays were used (see Table 1) only the 
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290 content overlapping with the Illumina ExomeChip were selected. The breakdown of 

291 descriptives for each of the 6 datasets can be found in S1 Table. Standard quality control 

292 (QC) metrics were employed on each dataset separately and individuals and loci that 

293 failed QC removed before association analysis.

294

295 Single-Variant analysis. All DXA-derived phenotypes were log-transformed, adjusted for 

296 age, first 4 principal components (PCs) and percentage total fat mass (calculated as the 

297 percentage of total fat mass (grams) to total mass (grams)) and the residuals inverse 

298 normal transformed in the R statistical environment. Percentage total fat mass adjusted for 

299 age and PC1-4 was also included in the analysis to assess collider bias. Individual 

300 datasets were analysed separately in sex-combined and sex-specific analyses using 

301 RAREMETALWORKER[13] (http://genome.sph.umich.edu/wiki/RAREMETALWORKER). 

302 To account for cryptic relatedness, kinship matrices were first calculated and added into 

303 the analysis. Single-variant analysis was performed with, additive, recessive and dominant 

304 models.

305

306 Meta-analysis. Meta-analysis was carried out centrally using RAREMETAL[14]. Variants 

307 were excluded of they had a call rate <90%, Hardy-Weinberg equilibrium p-value <1E-7 

308 and markers on Y chromosome or mitochondrial genome. Exome-wide significance for the 

309 single-variant analysis was set, based on the full ExomeChip content, as p<2E-7. A 

310 suggestive significance was set to p<E-6. 

311 For this analysis we focussed on non-synonymous variants only, therefore all non-coding 

312 variants and synonymous variants were filtered out post meta-analysis. The exome-wide 

313 significant findings are presented in Fig 1 and S1 Table; the additional suggestive 

314 significant findings are presented in S3 Table.
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315

316 Additional informatics

317 For the three exome-wide significant loci the amino-acid substitutions was assessed 

318 for functional significance using the predictSNP online consensus tool[15] 

319 (https://loschmidt.chemi.muni.cz/predictsnp1/). This allows for assessment across a 

320 number of different tools to generate a consensus assessment. For CCDC92 the S70C 

321 missense variant was assessed; for UQCC1 the R51Q was assessed and for SPATA20 

322 three different proteins as products of different splice variants were assessed (K422R, 

323 K406R and K362R).

324

325

326

327 Adipose tissue gene expression panels

328 Six genes found within the three index SNP LD boundaries (Table 2) were 

329 assessed for expression levels across a collection of human adipose tissue gene 

330 expression panels. Applied Biosystems Taqman assay-on-demand qPCR assays were 

331 selected for each gene that also avoid the index SNPs presented here, for CCDC92 (ABI 

332 assay, hs01556139), ZNF664 (ABI assay, hs00921074), DNAH10 (ABI assay, 

333 hs1387352), SPATA20 (ABI assay, hs00256188), UQCC1 (ABI assay hs00921074) and 

334 GDF5 (ABI assay, hs00167060).

335

336 For tissue panels, subcutaneous adipose tissue biopsies were collected by needle biopsy 

337 as previously described[36]. For cell-cultured human primary preadipocytes, of both 

338 abdominal subcutaneous fat (ASAT) and gluteofemoral fat (GSAT) origin, a differentiation 

339 time course (n=6) was performed as described in Todorčević, et al.[37]. All biopsies and 
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340 cells were homogenized in Tri-reagent (cat. no. T9424, Sigma-Aldrich, UK) and RNA was 

341 extracted with a standard Tri-reagent protocol. A total of 500ng RNA was used for cDNA 

342 synthesis following standard protocols and random hexamer primers using the cDNA 

343 Reverse Transcription Kit (Life Technologies, UK). Real-time PCR reactions were 

344 performed on a 1/40 cDNA dilution using Taqman Assays-on-Demand (Applied 

345 Biosystems) and Kapa Probe Fast Mastermix (Kapa Biosystems) in triplicate in a 6µl final 

346 volume and run on an Applied Biosystems 7900HT machine. Expression was assessed 

347 within each panel using a relative qPCR approach[38] and normalised using the previously 

348 assessed stably expressed endogenous control genes[36]. For the Lean/Obese Oxford 

349 Biobank panel (S1 Fig) the geometric mean of PPIA, PGK1, PSMB6 and IPO8 were used. 

350 IPO8 was not used in a paired arm, ASAT and GSAT panel (S2 Fig) as it was not stably 

351 expressed between arm and the other depots. PPIA and PGK1 were used as endogenous 

352 controls for primary cell culture experiments.

353 Neither DNAH10 or GDF5 could be detected above background in whole tissue cDNA 

354 panels. GDF5 was however detected in a 14-day in vitro adipocyte differentiation time 

355 course.

356

357 Data for a panel of 52 paired ASAT and GSAT biopsy samples was used to assess 

358 expression between sexes, between ASAT and GSAT fat depots, and between lean and 

359 obese individuals. Descriptives for this panel are presented in S1 Fig. As both SPATA20 

360 rs62621401 and UQCC1 rs4911494 were associated with arm fat mass their expression, 

361 along with CCDC92 and ZNF664 was assessed in a paired arm, ASAT and GSAT cDNA 

362 panel. As there is no published data on arm fat transcriptomics the additional HOX gene 

363 transcripts HOXA5, HOXB8, HOXC8, HOXC9 and HOXC11 were assessed as these are 
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364 known to be differentially expressed between ASAT, GSAT and visceral fat (These data 

365 are presented in S2 Fig).

366 The setup of a human primary adipocyte differentiation time course is described 

367 elsewhere[37]. Relative qPCR was run as above on the adipocyte panel for CCDC92, 

368 ZNF664, SPATA20, UQCC1 and GDF5. Data is presented in Fig 2. 

369

370 Allele-specific qPCR

371 Both the CCDC92 and the UQCC1 loci are associated with multiple eQTL signals. 

372 Whilst we only consider non-synonymous variants in this analysis this does not discount 

373 that the coding locus is also under the influence of an eQTL. To assess the available data 

374 from resources such as the GTEx portal and to assess any eQTL effect between ASAT 

375 and GSAT fat depots we used the combined resources available within the Oxford 

376 Biobank. 

377

378 Allele specific pPCR was run essentially as described in Fogarty et al.[39]. 

379 Taqman genotyping assays (Applied Biosystems) were selected to fall within the 

380 transcripts under investigation. For CCDC92 the index SNP assay performed poorly so the 

381 Proxy SNP rs9863 (ABI assay, C_206415_30) was selected. To assess the nearby gene 

382 ZNF664 a SNP in high LD with the CCDC92 index SNP that fell within the ZNF664 

383 transcript, rs1054852 (ABI assay, C_1169873_10), was selected. For SPATA20 the index 

384 SNP was used (rs62621401, ABI assay C_25983779_10) as was for UQCC1 (rs4911494, 

385 ABI assay, C_25472999_10). As was previously stated neither DNAH10, nor GDF5 could 

386 be detected in whole adipose tissue panels. Therefore, allele specific qPCR could not be 

387 assessed for these two genes.

388
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389 From a panel of 200 paired ASAT and GSAT cDNA samples available from the Oxford 

390 Biobank, heterozygous individuals were selected. For CCDC92 and ZNF664 28 paired 

391 ASAT and GSAT samples were selected, for UQCC1 there were 34 and for SPATA20 

392 there were 5. Genomic DNA (gDNA) for these individuals were also retrieved and diluted 

393 to 1.5ng/µl. The gDNA is used as the control comparison to the cDNA samples as there is 

394 an equal quantity of both alleles in heterozygous gDNA samples. By comparing the ratio of 

395 the Ct values from each allele (the ratio of the genotype assay Vic or Fam fluorophore 

396 signals) between cDNA and gDNA any allelic expression differences observed in the 

397 cDNA samples can be resolved. This is particularly relevant as technical variation exists 

398 with each genotyping assay; particularly pronounced in SPATA20 (Fig 3C).

399

400 Data are presented as the percentage of the minor allele Ct value compared to the major 

401 allele Ct. This is calculated by first generating a standard curve and regression statistic for 

402 each assay. A standard curve is generated from genomic DNA for individuals homozygous 

403 for the major allele (BB) and minor allele (bb). Genomic DNAs are diluted to 1.5ng/µl then 

404 BB and bb homozygotes are combined to ratios 80:20, 60:40, 50:50,40:60,80:20. 

405 Following qPCR analysis using the dual-labelled TaqMan Genotyping assays the ration of 

406 the B to b Ct values are calculated (Ct B minus Ct b) then plotted against the percentage 

407 of the minor allele in the dilution series. The linear regression statistic from this standard 

408 curve is then used to calculate the percentage minor allele expression of the unknown 

409 heterozygous individuals. The standard curves are presented in S3A-D Fig and allele-

410 specific qPCR data for heterozygous individuals are presented in Fig 3.

411

412 For CCDC92, ZNF664 and UQCC1 there were sufficient cDNAs in the 200 panel, however 

413 for SPATA20 there were only 5 individuals. Therefore, to improve the accuracy of the 
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414 SPATA20 analysis, each sample was run in triplicate 4x across the assay plate and the 

415 average of all 4 sets of triplicates calculated. A single outlier in the SPATA20 data was 

416 followed up in a second cDNA synthesis and persisted in both ASAT and GSAT samples. 

417 No phenotype differences were observed for this individual and no obvious genetic 

418 differences were found.

419

420 Statistical analysis

421 Statistical significance was assessed for each experiment in SPSS v24. For 

422 estimates of per allele grams fat mass change, log phenotype data was analysed in a 

423 general linear model and adjusted for age, PC1-4 and total %fat mass then estimated 

424 marginal means were calculated (S1 Table).

425
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560 Figure Captions

561 Fig 1. The effect size and direction of effect of Meta-analysis findings. Effect size and 

562 direction of effect of the three exome-wide significant missense variants: A. rs11057401 in 

563 CCDC92 (EAF=0.32), B. rs62621401 in SPATA20 (EAF=0.016) and C. rs4911494 in 

564 UQCC1 (EAF=0.62). Data is presented for the 6 DXA measures under investigation and is 

565 presented as the beta value ± SD. The meta-analysis significance level using an additive 

566 model for gender combined (All) as well as for gender stratified analysis, together with the 

567 N indicated to the right of the data in parentheses. DXA measures are Arm fat mass (Arm), 

568 Total android fat mass (Android), Subcutaneous android fat mass (Abdominal subcut), 

569 Visceral android fat mass (Abdominal visceral), Gluteal fat mass (Gynoid) and Leg fat 

570 mass (Leg). Exome-wide significant data (p<2E-7) are in bold and underlined.

571

572 Fig 2. Expression of candidate genes across a human primary adipocyte 

573 differentiation time course. cDNA expression of CCDC92 (A), ZNF664 (B), SPATA20 

574 (C), UQCC1 (D) and GDF5 (E) was measured over a 14-day adipogenic differentiation 

575 time-course using primary preadipocytes from abdominal subcutaneous (ASAT) and 

576 gluteal subcutaneous (GSAT) fat depots[37]. Data are shown as DDCt values (normalized 

577 to PPIA and PGK1; n=6, mean ± SEM). A multivariate general linear model was used to 

578 test for statistical significance between depots and time, and to assess depot x time 

579 interactions. p-values are presented in the shaded boxes, NS: non-significant.

580

581 Fig 3. eQTL assessment of exome-wide significant loci by allele-specific qPCR 

582 expression. Allelic expression was measured on 4 candidate transcripts in our three 

583 exome-wide significant regions using allele-specific qPCR. Data is presented as the % of 

584 the minor allele detected compared to the major allele, as described in the methods, with a 
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585 line indicating the mean and 95%CIs. To assess the rs11057401 eQTL haplotype the 

586 proxy SNP rs9863 was assessed for CCDC92 (A) and the transcribed region proxy SNP 

587 rs1054852 for ZNF664 (B). The index SNP rs62621401 was used to assess the SPATA20 

588 transcript (C) and the index SNP rs4911494 for UQCC1. Paired samples were compared 

589 between abdominal subcutaneous (ASAT) and gluteal subcutaneous (GSAT) and genomic 

590 DNA (gDNA). For each transcript ABI Taqman genotyping assays were selected that fall 

591 within the transcribed sequence. gDNA selected from the same individuals as the cDNAs 

592 acts as a paired control with presumed equal allele expression. Deviation from 50% for 

593 gDNA, particularly pronounced in SPATA20 (C), represents inherent imbalance in assay 

594 technical performance and position of optimal Ct between Vic and Fam fluorescence. By 

595 using paired gDNAs to selected cDNAs allelic expression imbalance can be resolved by 

596 comparing cDNA to its paired gDNA. Significance was assessed with paired t-test in 

597 SPSSv24. Mean differences between comparisons and statistical significance is presented 

598 in shaded boxes. NS: Non-significant. The single outlier seen for SPATA20 (C) was 

599 replicated in a second cDNA synthesis and both ASAT and GSAT. No phenotype 

600 differences were observed for this individual and no obvious genetic differences were 

601 observed.

602

603 Supporting information

604 S1 Fig. mRNA expression of candidate genes across a lean/obese adipose tissue 

605 gene expression panel. mRNA expression of the genes CCDC92, ZNF664, UQCC1 and 

606 SPATA20 across a panel of paired abdominal subcutaneous fat (ASAT) and gluteofemoral 

607 fat (GSAT) cDNA samples from the Oxford Biobank. The panel consisted of 25 male and 

608 29 female healthy individuals selected for either high or low BMI (Lean male, n=13, age 

609 44.5±0.9 yrs, BMI 22.7±0.3 kg/m2, fasting blood glucose 5.2±0.1 mmol/l; Obese males, 
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610 n=12, age 43.4±1.2 yrs, BMI 34.9±5.2 kg/m2, fasting blood glucose 5.6±0.1 mmol/l; Lean 

611 females, n=15, age 44±1.0 yrs, BMI 21.2±0.2 kg/m2, fasting blood glucose 4.8±0.1 mmol/l; 

612 Obese Females, n=14, age 44±1.0 yrs, BMI 33.6±0.6 kg/m2, fasting blood glucose 5.2±0.1 

613 mmol/l – data expressed as mean ±SEM). Data are shown as the mean ± SEM DDCt 

614 values (normalized to the geometric mean of the endogenous control genes PPIA, PGK1, 

615 IPO8 and PSMB6) as described previously[36, 38]. A multivariate general linear model 

616 was used to test for statistical significance between gender, fat depots and obesity and to 

617 assess interactions. P-values are presented in the shaded box, NS: non-significant. 

618 There were small but significant differences in expression of CCDC92, ZNF664 and 

619 UQCC1 between fat depots in lean individuals but this difference was lost and expression 

620 was significantly reduced, in obese individuals. This is in keeping with a general quiescent 

621 state observed in transcripts associated with adipocyte metabolic activity in obesity.

622

623 S2 Fig. mRNA expression of Candidate genes and Homeobox genes across a panel 

624 of 22 paired arm, abdominal subcutaneous adipose tissue (ASAT) and 

625 gluteofemoral adipose tissue (GSAT). mRNA expression of the candidate genes A: 

626 CCDC92, ZNF664, UQCC1 and SPATA20 and a selection of developmental HOX genes 

627 B: HOXA5, HOXB8, HOXC8, HOXC9 and HOXC11 were determined by real-time qPCR. 

628 Data are shown as the mean ±SEM DDCt values (normalized to PPIA, PGK1 and PSMB6; 

629 n=22). A univariate general linear model was used to test for statistical significance 

630 between depots. P-values for the HOX genes in B are presented in the shaded box.

631

632

633 S3 Fig. Allele specific qPCR standard curves and CCDC92-ZNF664 regression 

634 analysis. The standard curve and regression statistic used to calculate the percentage 
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635 minor allele expression with allele-specific qPCR is shown above for CCDC92 (A), 

636 ZNF664 (B), SPATA20 (C) and UQCC1 (D). To quantify any allelic expression imbalance 

637 for the four genes a standard curve was generated from genomic DNA for individuals 

638 homozygous for the Major allele (BB) and Minor allele (bb). Genomic DNAs are diluted to 

639 1.5ng/µl then BB and bb homozygotes were combined to ratios 80:20, 60:40, 

640 50:50,40:60,80:20 to generate a standard curve. Following qPCR analysis using dual 

641 labelled TaqMan Genotyping assays the ratio of the B to b allele Ct values are calculated 

642 (Ct B minus Ct b) then plotted against the percentage of the minor allele in the dilution 

643 series. The linear regression statistic from this (A, B, C and D above) is then used to 

644 calculate the percentage minor allele expression of our unknown individuals. For CCDC92 

645 (A), ZNF664 (B) and UQCC1 (D) three different pairs of homozygote individuals were used 

646 to generate each standard curve and a Mean ± SEM plotted for each dilution (A, B and D). 

647 For SPATA20 only one genomic DNA homozygote minor allele individual was available so 

648 an error bar cannot be displayed. 

649 As discussed in the main text there was an observed co-regulatory pattern of expression 

650 between CCDC92 and ZNF664 across different cDNA panels. To assess any correlation 

651 between these two genes within the samples, the allele-specific qPCR paired data points 

652 were plotted and regression statistic calculated (Graphs E and F). For both ASAT (E) and 

653 GSAT (F) there was a significant correlation, further supporting the co-regulatory pattern of 

654 expression. 

655

656 S1 Table. Population cohort descriptives.

657 S2 Table. Exome-wide significant loci. Detailed data on the three exome-wide 

658 significant loci described. DXA parameters are included for all measures and meta-

659 analysis statistics for the additive model. DXA measures are arm fatmass (Arm), Total 
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660 android fat mass (Android), Subcutaneous android fat mass (Subcut), Visceral android fat 

661 mass (Visceral), Gluteal fat mass (Gluteal) and Leg fat mass (Leg). Effect size data for 

662 suggestive exome-wide significance (p<=10-6) is shown in bold. Exome-wide significant 

663 data (p<2E-7) are in bold and underlined.

664 a The impact of missense variants were assessed using the PREDICTsnp online 

665 consensus tool[15] (https://loschmidt.chemi.muni.cz/predictsnp1/).

666 b Approximate fat mass (grams) changes per allele is shown where test reaches 

667 suggestive significance and were calculated as marginal means after adjusting for age, 

668 PCs1-4 and %fatmass as covariates in a general linear model, implemented in SPSS v24

669

670 S3 Table. Exome-wide loci showing suggestive level of statistical significance. 

671 Additional non-synonymous loci where statistical tests did not reach exome-wide 

672 significance but did reach a suggestive significance cut off of p<=10-6 are included above.

673 a Where it reaches suggestive significance the model is shown as Additive (add), 

674 Recessive(rec) or Dominant (Dom)

675 b The impact of missense variants were assessed using the predictSNP online consensus 

676 tool[15] (https://loschmidt.chemi.muni.cz/predictsnp1/).

677 c The cluster of 8 Missense SNPs found at the SPPL2C-MAPT-KANSL1 locus on 

678 chromosome 17 are part of a single haplotype that extends across ~400kb in this region 

679 containing >2300 SNPs (r2>0.9), rather than independent signals.

680
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