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Abstract	

Repertoire	sequencing	is	enabling	deep	explorations	into	the	cellular	immune	response,	including	
the	characterization	of	commonalities	and	differences	among	T	cell	receptor	(TCR)	repertoires	
from	different	individuals,	pathologies,	and	antigen	specificities.	In	seeking	to	understand	the	
generality	of	patterns	observed	in	different	groups	of	TCRs,	it	is	necessary	to	balance	how	well	each	
pattern	represents	the	diversity	among	TCRs	from	one	group	(sensitivity)	vs.	how	many	TCRs	from	
other	groups	it	also	represents	(specificity).	The	variable	complementarity	determining	regions	
(CDRs),	particularly	the	third	CDRs	(CDR3s)	interact	with	MHC-presented	epitopes	from	putative	
antigens,	and	thus	encode	the	determinants	of	recognition.	We	here	systematically	characterize	the	
predictive	power	that	can	be	obtained	from	CDR3	sequences,	using	representative,	readily	
interpretable	methods	for	evaluating	CDR	sequence	similarity	and	then	clustering	and	classifying	
sequences	based	on	similarity.	An	initial	analysis	of	CDR3s	of	known	structure,	clustered	by	
structural	similarity,	helps	calibrate	the	limits	of	sequence	diversity	among	CDRs	that	might	have	a	
common	mode	of	interaction	with	presented	epitopes.	Subsequent	analyses	demonstrate	that	this	
same	range	of	sequence	similarity	strikes	an	appropriate	specificity/sensitivity	balance	in	
distinguishing	twins	from	non-twins	based	on	overall	CDR3	repertoires,	classifying	CDR3	
repertoires	by	antigen	specificity,	and	distinguishing	general	pathologies.	We	conclude	that	within	
this	fairly	broad	range	of	sequence	similarity,	matching	CDR3	sequences	are	likely	to	share	
specificities.	
	
Keywords:	antigen-specific	recognition;	CDR	classification;	immune	repertoire;	sequence	
similarity;	T	cell	receptor	
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Introduction	

The	recognition	by	T	cell	receptors	(TCRs)	of	non-self	peptide	epitopes	presented	by	major	
histocompatibility	complex	(MHC)	proteins	drives	the	cellular	immune	response	against	the	non-
self	offender.	In	the	case	of	intracellular	non-self	peptides,	e.g.,	infected	or	cancerous	cells,	the	
ternary	peptide-MHC-TCR	recognition	can	lead	to	the	killing	of	abnormal	cells	presenting	these	
peptides;	in	the	case	of	extracellular	non-self	peptides,	e.g.,	pathogens	or	biotherapeutics,	it	can	lead	
to	the	development	of	a	humoral	response	to	neutralize	or	clear	the	antigens	containing	these	
peptides.	Consequently,	modeling	and	predicting	MHC	and	TCR	recognition	propensities	supports	
wide-ranging	applications,	for	example:	developing	vaccines	against	infectious	diseases	(1–6)	as	
well	as	understanding	escape	mechanisms	(7–10),	identifying	cancer	neoantigens	and	developing	
specifically	targeted	vaccines	(11–14),	discovering	potential	drivers	of	allergy,	autoimmunity,	and	
tolerance	(15–18),	and	understanding	and	mitigating	anti-biotherapeutic	immune	responses	(19–
27).	
	
In	the	MHC:peptide:TCR	recognition	process	(28),	the	TCR	represents	the	main	source	of	variability	
and	training	in	distinguishing	of	self	vs.	non-self	peptides.	MHC	is	genetically	encoded	and	even	the	
effective	diversity	across	global	populations	due	to	allelic	variation	is	limited	due	to	its	mode	of	
recognition	of	the	peptide	via	a	fixed	binding	groove,	with	degeneracy	among	the	binding	groove	
pockets	holding	the	peptide	side-chains	(29,	30).	In	contrast,	TCR	diversity,	produced	by	VDJ	
recombination	and	resulting	in	hypervariable	complementarity	determining	regions	(CDRs),	with	
theoretical	diversity	estimated	to	be	perhaps	1015	(31)	and	practical	diversity	in	any	individual	
roughly	106	(32–34).	An	individual’s	repertoire	diversity	is	shaped	by	thymic	training	against	self	
along	with	a	lifetime	of	exposure	to	different	antigens,	but	is	presumably	much	smaller	than	that	of	
all	possible	antigens,	and	there	is	substantial	degeneracy,	with	different	TCRs	able	to	recognize	the	
same	antigenic	region	and	the	same	TCR	able	to	accommodate	different	antigenic	regions	(35–38).	
Thus	numerous	interesting	and	important	questions	center	on	the	relationship	between	TCR	
diversity	and	recognition	propensities,	including	the	impacts	of	genetics	vs.	training	and	exposure,	
the	ability	of	CDRs	to	accommodate	antigenic	diversity,	and	commonalities	across	pathology-	or	
antigen-specific	populations.	
	
The	advent	of	large-scale	repertoire	sequencing	(39,	40),	initially	for	CDRs	alone	(32,	41–43),	and	
more	recently	even	for	paired	α/β	chains	(44,	45),	provides	opportunities	to	gain	insights	into	
patterns	of	TCR	diversity	and	recognition.	An	early	study	tackled	the	importance	of	genetics	by	
studying	pairs	of	monozygous	twins,	and,	among	other	analyses,	found	that	twin	pairs	had	more	
identical	CDR3	sequences	than	non-twins	(46).	More	recent	publications	have	shifted	the	focus	
from	identical	sequences	to	similar	sequences.	Paired	a/β	TCRs,	resulting	from	single-cell	
sequencing	and	antigen-specific	selection,	could	be	classified	very	well	according	to	their	epitope	
specificities,	and	the	sequences	elucidated	patterns	conferring	those	specificities	(47).	Similarly,	
epitope-specific	repertoires	from	a	variety	of	viral	infection	contexts	pooled	across	many	subjects	
revealed	distinctive	motifs,	and	furthermore	the	CDRs	from	a	set	of	M.	tuberculosis	subjects	
clustered	into	groups	with	strong	MHC	associations	enabling	design	of	specific	MHC-peptide-TCR	
interactions	(48).	An	extensive	analysis	of	available	TCR	sequence	data	from	a	wide	range	of	
subjects	revealed	pathogen-specific	MHC-TCR	associations	along	with	structural	insights	into	MHC	
and	TCR	covariation	(49).		
	
TCR	repertoire	sequencing	thus	provides	the	opportunity	to	generalize	from	a	set	of	samples	to	
patterns	than	are	predictive	of	relationships	among	subjects,	pathologies,	antigens,	HLA	
restrictions,	and	so	forth	(47,	49–51).	As	always	in	statistical	/	machine	learning	approaches,	one	
must	thread	the	needle	between	under-generalization,	missing	out	on	predictions	that	would	be	
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true	(i.e.,	lacking	sensitivity),	and	over-generalization,	making	predictions	that	end	up	not	being	
true	(i.e.,	lacking	specificity).	Here,	we	systematically	investigate	that	specificity-sensitivity	balance	
over	a	number	of	different	datasets	and	types	of	predictions,	and	show	that	in	general	there	is	
“sweet	spot”	in	which	a	range	of	appropriate	trade	offs	hold,	enabling	a	sufficient	number	of	
confident	predictions	of	TCR	function	from	sequence.	
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Results	

In	order	to	evaluate	the	relative	extent	of	sequence	similarity	within	and	between	groups	of	related	
CDRs,	we	study	a	variety	of	different	CDR	sets,	using	representative	approaches	based	on	local	
sequence	similarity,	nearest-neighbor	classification,	and	hierarchical	clustering.	So	as	to	provide	a	
consistent	and	interpretable	basis	for	drawing	conclusions,	we	focus	only	on	CDR3,	using	a	local	
alignment	score	that	we	term	CDRdist	to	assesses	similarity	(technically	dissimilarity,	as	lower	is	
better),	with	0	indicating	an	exact	match	and	1	no	identifiable	similarity.	We	assess	the	predictive	
power	of	the	score	by	using	it	to	perform	nearest-neighbor	classification,	predicting	the	group	(e.g.,	
associated	antigen	or	disease)	to	which	one	CDR	belongs	based	on	the	known	group	of	the	most	
similar	CDR,	checking	whether	the	predicted	group	is	correct	or	not,	and	thereby	evaluating	both	
sensitivity	(fraction	of	CDRs	from	a	group	that	are	correctly	predicted	to	be	in	that	group)	and	
specificity	(fraction	of	CDRs	predicted	to	be	in	a	group	that	actually	are	in	that	group).	In	order	to	
evaluate	only	the	impacts	of	similarity,	without	being	confounded	by	duplicates	which	can	render	
classification	trivial,	we	do	not	consider	exact	matches.	In	order	to	gain	deeper	insights	into	how	
the	degree	of	similarity	impacts	classification	performance,	we	slide	a	threshold	from	0	to	1,	making	
a	prediction	only	if	the	nearest	neighbor	is	sufficiently	similar,	and	assessing	how	relaxing	the	
required	similarity	manifests	in	specificity	vs.	sensitivity	trade-offs	(Fig.	1).	The	similarity	score	
also	provides	the	basis	for	clustering,	elucidating	sequence	similarity-based	groupings	for	CDRs	and	
revealing	sequence	patterns	conferring	the	observed	performance	trade-offs.	We	apply	these	
general	approaches	to	characterize	several	datasets:	CDR	groups	defined	by	structure,	evaluating	
sequence	variation	within	and	between	clusters;	repertoires	from	twins,	studying	the	relative	
similarity	between	an	individual	and	their	twin	vs.	others;	a	number	of	different	human	and	murine	
repertoires,	assessing	CDR	distinctiveness	as	it	relates	to	antigen	specificity	as	well	as	underlying	
pathology.	
	
Extent	of	sequence	similarity	within/between	structural	clusters	
	
STCRDab	(52)	structurally	clusters	CDR3s	into	canonical	classes,	separately	for	α	and	β,	and	
separately	by	length(s).	A	set	of	CDR3	sequences	and	associated	structural	classes	were	
downloaded	and	investigated	for	relative	intra-	vs.	inter-class	sequence	similarity.	After	removing	
duplicates,	there	were	142	unique	sequences	across	four	α	groups	and	six	β	groups	(Tab.	1).	While	
it	is	common	for	structural	clusters	to	be	characterized	by	their	individual	sequence	profiles,	we	
also	sought	to	understand	the	extent	to	which	the	sequence	pattern	from	one	cluster	could	be	
generalized	before	encroaching	on	another	cluster.		
	
The	distance	from	each	unique	CDR	to	the	most	similar	(but	distinct)	CDR	within	its	structural	class	
tends	to	be	smaller	than	the	distance	to	the	most	similar	(but	distinct)	CDR	from	another	class	(Fig.	
2(a,b)).	When	the	distance	is	less	than	about	0.2	or	0.3,	the	closest	CDR	tends	to	be	within	the	same	
structural	class,	while	when	it	is	above	about	0.6	or	0.7,	the	CDRs	tends	to	be	within	different	
classes.	This	observation	supports	the	use	of	nearest-neighbor	classification,	predicting	structural	
class	from	sequence	matches,	which	we	elaborate	to	study	specificity-sensitivity	trade-offs	by	
subjecting	it	to	a	similarity	threshold;	i.e.,	only	make	a	prediction	if	the	nearest	neighbor	is	closer	
than	a	given	threshold.	When	the	threshold	is	less	than	about	0.2,	many	CDRs	are	unclassified	but	
those	that	are	tend	to	be	correct;	between	0.2	and	0.4,	the	number	of	unclassified	CDRs	drops	
substantially	while	still	retaining	high	specificity;	and	above	that	range	the	specificity	drops	in	
order	to	obtain	further	sensitivity	(Fig.	2(c,d)).		
	
In	order	to	more	directly	explore	the	relationship	between	sequence	similarity	and	structural	
similarity,	structures	were	downloaded	from	STCRDab	and	the	CDR3β	loops	extracted	for	those	in	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/526467doi: bioRxiv preprint 

https://doi.org/10.1101/526467
http://creativecommons.org/licenses/by-nc-nd/4.0/


which	electron	density	was	present.	When	the	same	sequence	was	present	in	multiple	structures,	a	
representative	was	chosen	as	that	with	minimal	sum	of	main-chain	root	mean	squared	deviation	
(RMSD)	to	the	others.	For	each	such	CDR,	the	most	similar	sequence	in	its	STCRDab	structural	class	
and	the	most	similar	sequence	from	another	class	were	compared,	in	terms	of	both	CDRdist	and	
RMSD.	This	comparison	(Fig.	3)	thus	elaborates	the	implications	of	Fig.	2,	characterizing	when	a	
closer	(and	close	enough)	sequence	implies	a	closer	structure.	Some	examples	are	illustrated,	
limited	to	cases	with	good	sequence	similarity,	such	that	a	classification	decision	would	be	made	
under	the	thresholding	approach	above.	In	(a),	sequence-based	classification	is	correct,	but	actually	
does	not	yield	the	best	structural	match.		In	(b-d),	classification	is	also	correct,	and	in	these	cases	
yields	similar	(b),	better	(c),	and	much	better	(d)	structural	matches.	In	(e)	and	(f),	classification	
according	to	STCRDab	classes	is	incorrect	but	actually	consistent	with	the	relative	structural	
similarity:	the	other	structure	is	more	similar	(e)	or	about	the	same	(f);	we	note	however	that	in	(e)	
neither	structure	is	particularly	similar.	Finally,	in	(g)	classification	is	incorrect,	and	the	closest	
sequence	in	the	same	structural	class	is	more	similar	to	that	in	the	other	class.		
	
This	analysis	helps	calibrate	the	general	level	of	confidence	one	can	have	that	two	CDRs	of	a	given	
degree	of	local	sequence	similarity	are	likely	to	adopt	similar	structures,	under	a	readily	
interpretable	classification	approach.	
	
CDR	similarity	across	repertoires	from	twins	
	
An	early	landmark	study	in	TCR	repertoire	analysis	characterized	three	pairs	of	monozygous	twins,	
evaluating	general	characteristics	of	the	repertoires	(e.g.,	diversity)	as	well	as	the	extent	of	identity	
across	subjects	(46).	The	investigation	revealed	that	the	number	of	identical	CDR3	sequences	
between	two	individuals	was	significantly	increased	if	they	were	twins.	We	sought	to	relax	the	
identification	of	identical	sequences	across	individuals	to	allow	for	different	degrees	of	similarity,	in	
particular	to	test	whether	twins	had	more	similar	sequences	than	non-twins.	As	throughout	this	
paper,	we	explicitly	did	not	consider	exact	matches,	in	this	case	thereby	evaluating	the	“residual”	
information	beyond	the	previously	studied	identity.	In	order	to	focus	the	analysis	on	the	strongest	
signal,	we	considered	only	the	1000	most	abundant	CDR3	sequences	from	each	repertoire,	with	
read	counts	ranging	from	over	100,000	down	to	around	100.		Zvyagin	et	al.	(46)	observed	that	
shared	clonotypes	were	significantly	higher	among	the	most	abundant	CDR3β	sequences	for	any	
pair	of	individuals,	and	this	was	even	more	evident	for	twins,	so	we	focused	on	these	more	
significant	sequences.		
	
For	each	unique	CDR	from	each	subject,	the	closest	non-identical	CDR	in	each	other	subject	was	
identified.	These	matches	served	as	the	basis	for	evaluating	nearest-neighbor	classification,	
assessing	whether	the	closest	CDR	was	from	a	twin	(correct)	or	a	non-twin	(incorrect).	Over	the	
range	of	required	similarity	thresholds,	the	number	of	correct	classifications	outpaces	that	of	
incorrect	ones	(Fig.	3),	though	not	as	strongly	as	for	the	structural	clusters.		For	CDR3a,	at	a	
threshold	of	0.2	about	49%	of	each	twin	pair’s	CDRs	are	correctly	classified	and	about	21%	
incorrectly	classified,	with	the	remaining	29%	unidentified.	Raising	the	threshold	to	0.3	yields	
roughly	59%	correct,	but	at	the	cost	of	roughly	29%	incorrect,	leaving	only	12%	unidentified.	
Further	increases	in	the	threshold	continue	this	trend,	with	0.4	resulting	in	64%	correct	but	32%	
incorrect,	and	4%	unidentified.	Results	for	CDR3β	follow	the	same	sensitivity-specificity	trend	over	
this	range,	but	at	a	lower	accuracy:	at	a	threshold	of	0.2,	there	are	about	30%	correct	vs.	16%	
incorrect;	at	0.3	the	trade-off	is	48%	correct	vs.	30%	incorrect,	and	at	0.4,	56%	correct	vs.	37%	
incorrect.	Overall,	since	identical	sequences	were	explicitly	excluded	from	the	classification,	this	
result	demonstrates	that	twin	repertoires	share	not	only	more	identical	sequences,	but	also	more	
similar	sequences.	
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To	quantify	the	significance	of	the	difference	in	twin	vs.	non-twin	nearest	neighbors,	the	
distribution	of	the	closest	twin	distance	was	compared	to	that	of	the	closest	non-twin	match	with	a	
Mann-Whitney	U	test.	CDR3β	matches	between	twins	in	pair	A	are	closer	to	each	other	than	to	their	
closest	non-twin	matches	(p-value	7	x	10-4)	as	are	those	in	twin	pair	D	(1	x	10-9);	however,	the	
distinction	does	not	hold	for	twin	pair	C	(0.24).	For	CDR3a,	however,	only	twins	A	are	significantly	
different	from	others	(0.017),	with	C	marginally	above	a	5%	cutoff	(0.07)	and	D	insignificant	
(0.198).	Interestingly,	the	CDR3a	classification	performance	is	better	than	that	for	CDR3β,	even	
though	the	overall	distributions	are	more	similar,	suggesting	that	focusing	specifically	on	close-
enough	pairs	reveals	additional	valuable	information	distinctive	of	twin	pairs.	
	
To	explore	patterns	of	similarity	and	differences	within	and	between	twin	pairs,	CDRs	in	each	
individual’s	repertoire	were	clustered	according	to	CDRdist	at	a	maximum	distance	of	0.3.	Clusters	
from	the	different	individuals	were	then	compared	according	to	an	aggregate	similarity	score,	
clusterdist,	computed	as	the	sum	of	cluster	member	distances.	Fig.	5	illustrates	some	of	the	patterns	
of	cluster	specificities,	with	motifs	revealing	the	determinants	of	specificity	(or	not).	In	these	
examples,	a	C-terminal	TGELFF	appears	to	be	common	to	some	CDRs	in	all	of	the	individuals,	while	
DRE***QPQHF	is	more	specific	to	individual	A1,	and	G**YEQYF	distinguishes	the	twin	pair	A1/A2	
from	the	other	individuals.		
	
	
Classification	of	epitope	specificity	by	CDR	similarity		
	
As	discussed	in	the	introduction,	a	pair	of	seminal	studies	published	in	2017	studied	epitope-
specific	TCR	repertoires	across	many	individuals.	This	section	characterizes	sensitivity-specificity	
trade-offs	in	predicting	within	these	datasets	which	epitope	each	CDR3	recognizes	based	on	the	
epitopes	for	similar	CDR3s.	
	
Dash	et	al.	(47)	used	pMHC-tetramer	selection	and	single-cell	amplification	to	collect	4635	paired	
α/β	TCR	sequences	from	10	epitope-specific	repertoires.	The	1211	unique	CDR3a	and	1244	unique	
CDR3b	mouse	sequences	came	from	78	mice	and	were	associated	with	the	epitopes	NP,	PA,	F2,	and	
PB1	(presented	during	influenza	infection)	and	M38,	m139,	and	M45	(presented	during	murine	
cytomegalovirus	infection).	The	276	unique	CDR3b	and	294	unique	CDR3a	human	sequences	came	
from	32	humans	and	were	associated	with	the	epitopes	M1	from	influenza	virus,	pp65	from	human	
cytomegalovirus,	and	BMLF1	from	Epstein-Barr	virus.	Among	other	analyses,	a	nearest-neighbor	
classification	approach	was	employed	to	predict	epitope	specificity	based	on	a	specialized	sequence	
similarity	score	comparing	entire	TCR	sequences	with	both	α/β	chains,	using	BLOSUM	substitution	
scores	with	higher	weight	given	to	both	CDR3	regions.	With	nearest	neighbor	classification,	78%	
(mouse)	and	81%	(human)	of	the	TCRs	were	assigned	to	their	correct	epitope	group.	We	again	
sought	to	characterize	how	specificity	and	sensitivity	vary,	and	as	throughout	the	paper	directly	
focused	on	unpaired	CDR3	only	and	the	single	most	similar	sequence	to	a	given	one.	
	
Fig.	6	illustrates	performance	over	the	range	of	allowed	sequence	similarity	thresholds.	At	0.2,	55%	
of	the	mouse	CDR3bs	are	classified	correctly,	as	are	43%	of	the	human	ones,	with	18%	mouse	and	
5%	human	incorrect.	Relative	to	the	CDRs	that	are	actually	identified	(73%	mouse	and	48%	
human),	these	fractions	are	75%	mouse	correct	and	89%	human	correct,	comparable	to	the	
previous	results	(78%	and	81%,	respectively).	Thus	even	using	just	the	CDR3b	alone,	if	the	single	
closest	neighbor	is	close	enough	then	it	is	highly	predictive	of	the	epitope	group.	Relaxing	the	
threshold	to	0.3	yields	more	correct	classifications,	59%	mouse	and	53%	human,	at	the	cost	of	more	
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incorrect,	31%	mouse	and	8%	human	(8%).	Consequently	the	accuracy	among	those	identified	is	
somewhat	lower	but	still	comparable,	66%	mouse	and	86%	human.	Further	relaxing	the	threshold	
continues	to	yield	further	increases	for	both	correct	and	incorrect	classifications,	e.g.,	at	0.4,	62%	of	
the	mouse	sequences	are	correctly	classified	vs.	13%	incorrectly,	and	59%	correct	vs.	17%	
incorrect	for	human,	which	translates	to	63%	mouse	and	78%	human	correct	among	those	
identified.	Thus	the	suitable	balance	between	accuracy	and	number	of	predictions	again	appears	to	
fall	in	the	0.2	to	0.4	range	as	we	observed	first	in	the	structural	clusters	as	evidence	of	similar	
conformation.	Similar	trends	hold	for	analysis	of	the	CDR3a	sequences,	but	CDR3b	sequences	had	
greater	predictive	power,	particularly	for	murine	sequences.	Other	studies,	e.g.,	(46,	48),	have	
likewise	found	CDR3b	sequences	to	be	more	informative	than	CDR3a	sequences.	
	
Each	of	the	epitope-specific	repertoires	was	clustered,	and	as	with	the	twins	dataset,	the	clusters	
were	evaluated	for	relative	specificity.	Within	the	murine	and	human	groups	of	repertoires,	the	
cluster	similarity	score	clusterdist	was	computed	for	each	pair	of	clusters.	Each	cluster’s	specificity	
to	its	repertoire	was	characterized	by	the	smallest	clusterdist	to	a	cluster	from	a	different	
repertoire,	since	a	relatively	small	clusterdist	indicates	that	the	sequence	pattern	defining	a	cluster	
common	to	epitopes	in	other	repertoires	while	a	relatively	large	score	indicates	that	no	cluster	in	
another	repertoire	has	similar	epitopes.	Fig.	7	illustrates	some	examples	of	relatively	specific	and	
relatively	non-specific	clusters	at	a	threshold	of	0.3.	For	example,	TCS*GTGG*NYAEQFF	is	common	
to	both	PB1	and	M38	from	mice,	with	a	distance	of	only	0.1	between	the	two	clusters.		On	the	other	
hand,	SCG**GTNEKLFF	is	distinct	to	the	human	BMLF1	repertoire.	Its	closest	motif	is	
ATGRGG*IGEQYF	in	p65	at	a	distance	of	0.72,	which	is	relatively	large,	indicating	that	
SCG**GTNEKLFF	is	unique	to	BMLF1.		
	
As	the	threshold	varies,	the	resulting	clusters	evolve,	as	illustrated	in	Fig.	8	for	some	examples.	As	
the	threshold	increases,	clusters	tend	to	become	larger,	containing	more	unique	sequences,	and	are	
therefore	more	diverse	and	less	specific.	In	particular,	for	the	NP	cluster,	the	nearest	cluster	in	a	
different	repertoire	at	0.2	is	at	a	clusterdist	of	0.52,	but	that	falls	to	0.19	for	the	0.3	NP	cluster;	
similarly,	for	PB1-F2	the	nearest	other-repertoire	cluster	at	0.2	is	0.61	away,	down	to	0.38	at	0.4.		
	
Turning	to	the	other	recent	large	TCR	repertoire	study,	Glanville	et	al.	(48)	collected	2,068	unique	
sequences	using	the	pMHC	tetramers	to	isolate	antigen-specific	T	cells	spanning	eight	tetramer	
antigen-HLA	specificities:		pp50	associated	with	HLA+A1	(271	sequences),	NP177	associated	with	
HLA-B7	(213),	pp65	+	HLA-A2	(155),	pp65	+	HLA-B7	(56),	BMLF1	+	HLA-A2	(700),	M1	+	HLA-	A2	
(56	sequences),	and	NP44	+	HLA-A1	(24	sequences).	Their	analysis	of	this	data	showed	that	the	
antigen-specific	repertoires	tended	to	share	more	similar	sequences,	and	revealed	some	2-,	3-,	and	
4-mer	motifs	enriched	in	different	repertoires.	We	sought	to	build	on	this	analysis	by	once	again	
systematically	evaluating	the	extent	of	generalization	and	predictiveness	supported	by	sequence	
patterns.	
	
Nearest-neighbor	classification	was	performed	for	each	pair	of	specificities	at	thresholds	of	0.2,	0.3,	
and	0.4,	predicting	the	epitope+HLA	of	one	CDR	based	on	that	of	the	most	similar	one	(Fig.	9).	NP44	
and	pp65	associated	with	HLA-B7	generally	do	very	well,	and	BMLF1	also	does	relatively	well.	
NP177	and	pp65	associated	with	HLA-A2	are	more	easily	confused	with	other	epitopes.	On	average,	
over	all	the	pairwise	comparisons,	a	threshold	of	0.2	yields	about	21%	correctly	classified	vs.	3%	
incorrectly	classified,	with	71%	unidentified.	Raising	the	threshold	to	0.3	yields	42%	correct	vs.	8%	
incorrect	with	52%	unidentified	sequences,	and	0.4	continues	the	trend	to	59%	vs.	16%	with	25%	
unidentified.	The	standard	deviations	on	these	correct	percentages	are	around	11-13%,	as	some	
pairs	are	clearly	quite	better	than	others.	Overall,	these	tests	confirmed	that	the	0.2	to	0.4	range	
balances	accuracy	and	a	sufficient	number	of	predictions	for	the	epitopes	in	this	dataset.	
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Classification	of	pathology	by	CDR	similarity	
	
McPAS-TCR	catalogues	TCR	sequences	from	T	cells	associated	with	various	pathological	conditions	
in	humans	and	mice	(53).	This	repository	allowed	us	to	move	up	from	epitope	specificity	to	
pathology	specificity,	evaluating	how	well	CDR3b	similarity	supports	classification	of	the	general	
pathology	from	which	it	was	derived.	The	McPAS-TCR	human	TCR	sets	with	at	least	50	unique	CDR	
sequences	were	downloaded	and	split	into	two	groups:	“small”,	with	fewer	than	400,	and	“large”	
with	more	than	400,	yielding	a	relatively	equal	number	of	repertoires	per	group	with	relatively	
balanced	number	of	sequences	per	repertoire	(Tab.	2).	All	pairs	of	pathologies	within	the	same	size	
group	were	then	subjected	to	nearest-neighbor	classification,	predicting	the	pathology	of	one	CDR	
based	on	that	of	the	most	similar	one.	
	
The	pairwise	classification	performance	(numbers	of	correct,	incorrect,	and	unidentified)	was	
calculated	for	thresholds	of	0.2,	0.3,	and	0.4,	in	the	common	“sweet	spot”	of	performance	across	all	
studies	(Fig.	10).	On	average	over	all	pairwise	classifications	in	the	small	repertoire	group,	the	
percentage	of	correct	classifications	increases	from	21%	at	0.2	to	36%	at	0.3	and	52%	at	0.4,	traded	
off	against	2%,	7%,	and	15%	incorrect,	respectively,	as	the	fraction	of	identified	sequences	goes	
from	26%	up	to	44%	and	finally	68%.	Likewise,	for	the	pairwise	classifications	in	the	large	
repertoire	group,	the	fraction	of	correct	classifications	averages	26%	at	0.2,	52%	at	0.3,	and	66%	at	
0.4,	with	corresponding	incorrect	classification	averages	of	5%,	14%,	and	22%	and	identified	
averages	of	38%,	61%,	and	finally	87%.	Over	all	these	comparisons,	the	standard	deviations	for	
correct	fractions	ranges	from	6%	to	13%,	with	some	pairs	clearly	much	better	than	others.	In	
general,	larger	repertoires	are	able	to	classify	more	sequences	than	small	ones,	and	do	so	at	a	
higher	accuracy,	presumably	due	to	simply	having	a	higher	probability	of	containing	a	sufficiently	
close	sequence.	Some	infectious	diseases	such	as	influenza,	yellow	fever,	HIV,	and	hepatitis	C	all	do	
particularly	well	in	the	classification	task,	even	against	each	other.	Cancers	seem	to	be	confused	
with	autoimmune	diseases,	and	diabetes	performs	poorly.	Further	studies	are	required	to	ascertain	
whether	differences	in	classification	performance	across	specific	pathologies	and	general	pathology	
types	reflect	inherent	immunological	differences	or	reveal	artifacts	in	experimental	procedures	that	
can	perhaps	be	mitigated	with	systematic	integration	methodologies.	
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Discussion		

This	study	centers	on	the	use	of	a	representative	approach	to	assessing	TCR	similarity,	with	local	
alignments	between	size-matched	CDR3s	for	each	chain	separately,	and	a	relaxed	substitution	
scoring	matrix	combined	with	a	relatively	large	gap	penalty.	This	set	of	choices	strikes	a	balance	
between	looking	for	the	local	“hot	spots”	that	mediate	binding,	and	accounting	for	the	overall	
structural	context	in	which	those	hot	spots	are	situated.	While	the	detailed	outcomes	would	surely	
be	different	if	the	score	moved	in	one	direction	toward	global	alignment	or	in	the	other	direction	
toward	alignment-free	motifs,	the	same	general	specificity-sensitivity	trends	would	likely	hold.	In	
contrast,	integrating	information	across	all	six	CDRs	(and	even	framework	regions)	(47–49),	rather	
than	considering	only	CDR3α	or	CDR3β	independently,	would	likely	yield	higher	overall	
performance.	However,	we	felt	it	worthwhile	to	explore	how	much	information	was	encoded	just	in	
the	CDR3	regions,	and	found	them	to	be	strikingly	informative.	

The	1-nearest-neighbor	classifier	employed	here	for	specificity-sensitivity	assessments	is	one	of	the	
simplest	approaches	possible,	but	makes	it	straightforward	to	understand	and	analyze	the	basis	for	
predictions.	A	model-based	approach,	e.g.,	a	linear	classifier	or	even	a	nonlinear	model	(50,	51,	54,	
55),	could	give	better	predictive	performance,	but	would	also	confound	some	of	the	analyses	due	to	
the	differences	in	sizes	and	diversity	in	different	groups.	At	the	same	time,	a	statistical	learning	
approach	could	provide	insights	into	the	importance	to	different	groups	of	particular	CDRs	and	
particular	residue	positions,	directly	reveal	amino	acid	motifs	conferring	specificity,	and	so	forth.	In	
order	to	focus	on	the	information	provided	by	CDR	similarity	alone,	the	analyses	presented	here	did	
not	allow	for	identity	in	the	1NN	classification	and	did	not	consider	abundance.	This	made	the	
classification	task	somewhat	harder,	but	also	provided	a	uniform	basis	across	the	different	studies.	
In	a	specific	practical	application,	leveraging	identity	and	abundance	would	be	advantageous;	
statistical	learning	approaches	could	offer	a	natural	means	to	incorporate	this	information.	

Our	analysis	of	structural	clusters	provided	some	intriguing	insights	into	sequence-structure	
relationships,	while	the	rest	of	the	paper	explored	a	range	of	sequence-function	relationships.	The	
structural	analysis	was	somewhat	limited	due	to	limited	available	structures,	but	a	more	complete	
loop	modeling	approach	(56–58)	might	provide	additional	power.	The	functional	analysis	could	
benefit	from	incorporation	of	MHC	restriction	information	(49),	in	order	to	reveal	associations	
among	the	presented	antigens,	the	presenting	MHCs,	and	the	CDRs.	And	ultimately,	combining	
sequence,	structure,	and	function	in	an	integrated	model	could	provide	much	deeper	insights	into	
the	basis	for	specific	recognition.	

	
We	individually	analyzed	repertoires	for	pairs	of	twins	(46)	and	for	particular	antigen	specificities	
(47,	48),	along	with	aggregated	collections	of	pathology-related	repertoires	(53),	but	we	did	not	
seek	to	combine	information	across	these	different	studies.	An	integrative	analysis	could	provide	
insights	into	common	modalities	of	recognition,	as	has	been	shown	for	MHC	restrictions	(49),	but	
which	could	also	span	broader	functional	associations	across	antigens	from	different	pathogens	as	
well	as	from	different	“self”s.	An	integrative	analysis	could	thus	seek	to	account	for	private	and	
public	aspects	of	recognition,	gain	insights	into	genetics	vs.	exposure,	and	support	modeling	of	the	
development	of	immunity.	 	
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Conclusion	

This	paper	has	systematically	explored	the	utility	of	using	CDR3	sequence	similarity	to	predict	
structural	class	and	functional	group	(namely	antigen	specificity	or	pathology	association).	Based	
on	a	representative	measure	of	similarity	and	an	interpretable	classification	method,	the	
information	content	in	CDR3	alone	was	shown	to	support	highly	specific	predictions	at	a	
sufficiently	stringent	similarity	threshold,	and	to	maintain	good	specificity	even	while	increasing	
sensitivity	by	substantially	relaxing	the	threshold.	Furthermore,	patterns	supporting	predictions	
within	and	between	groups	were	shown	to	provide	insights	into	the	structural	and	functional	bases	
for	recognition.	We	conclude	that,	if	suitably	controlled	as	demonstrated	here,	predictive	
frameworks	can	productively	leverage	sequence	patterns	in	characterizing	and	predicting	TCR	
sequence-structure-function	relationships.	
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Methods	

Data	Processing.	When	data	was	processed	for	each	repertoire,	the	first	“C”	from	each	sequence	
was	removed,	and	duplicate	sequences	were	combined	within	each	repertoire.	
	
Sequence	similarity	score.	Given	a	pair	of	CDRs	to	evaluate	for	similarity,	local	alignment	was	
performed	using	the	Smith-Waterman	(SW)	algorithm	(59),	implemented	in	the	Python	package	
swalign	(60).	SW	was	applied	with	the	BLOSUM45	substitution	matrix	(61)	to	allow	for	biochemical	
diversity,	and	a	gap	penalty	of	-10	to	focus	on	matching	largely	gap-less	substrings.	Manual	
inspection	of	some	CDR	alignments	suggested	that	these	parameters	accomplished	the	intended	
goals.	So	as	to	generate	a	score	that	is	universally	comparable	across	different	CDR	sets,	the	
alignment	score	was	normalized	by	dividing	it	by	the	minimum	of	the	self	scores	of	the	two	
sequences.	To	provide	a	dissimilarity	measure	suitable	for	clustering,	the	normalized	score	was	
then	subtracted	from	1;	since	SW	scores	are	non-negative	and	self-scores	are	maximal,	the	final	
score	is	between	0	(identical)	and	1	(no	discernable	similarity).	Formally,	for	two	sequences	A	and	
B,	the	distance	is:	

𝐶𝐷𝑅𝑑𝑖𝑠𝑡(𝐴, 𝐵) = 	1 −	
𝑆𝑊(𝐴, 𝐵)

min	(𝑆𝑊(𝐴, 𝐴), 𝑆𝑊(𝐵, 𝐵))
	

	
Nearest	neighbor	classification.	Given	a	set	of	CDRs	that	are	labeled	as	belonging	to	one	of	two	or	
more	different	groups,	a	nearest	neighbor	classifier	predicts	the	label	of	another	CDR	based	on	
“nearby”	labeled	CDRs,	in	terms	of	the	sequence	similarity	score.	A	1-nearest	neighbor	classifier	
was	used	for	the	results	here,	making	the	assignment	on	the	single	closest	(but	not	identical)	CDR	
rather	than	taking	a	vote	among	several.	Furthermore,	the	allowed	similarity	was	thresholded,	such	
that	if	no	neighbor	was	sufficiently	similar,	then	no	prediction	would	be	made.	
	
Clustering.	CDRs	were	clustered	using	hierarchical	agglomerative	clustering	via	the	linkage	
function	in	the	scipy.cluster.hierarchy	package	of	scipy	(62),	with	the	sequence	similarity	score	as	a	
comparison	function.	The	resulting	dendrogram	was	cut	at	a	specified	sequence	similarity	
threshold	in	order	to	define	clusters.		
	
Cluster	similarity	score.	In	order	to	characterize	how	specific	or	non-specific	clusters	were	to	the	
repertoires	they	came	from,	the	distance	between	a	pair	of	clusters	was	computed	as	the	average	
pairwise	distance	between	their	members:	

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑖𝑠𝑡(𝐶1, 𝐶2) = 	
∑ ∑ 𝐶𝐷𝑅𝑑𝑖𝑠𝑡(𝑐, 𝑐=)>?∈AB>∈AC

|𝐶1||𝐶2|
	

	
Then	the	relative	specificity	of	a	cluster	to	its	repertoire	was	characterized	in	terms	of	its	distance	
to	clusters	from	other	repertoires,	with	a	small	score	indicating	non-specificity	(i.e.,	similarity	to	a	
cluster	from	another	repertoire).	

Logos.		Sequence	logos	were	generated	by	Weblogo	version	2.8.2	(63,	64)	in	conjunction	with	the	
biopython	(65)	motif	library	Bio.motifs.Motif. 
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Fig.	1.	Classifying	CDRs	by	sequence	similarity.	This	illustration	plots	in	a	schematic	low-
dimensional	space	the	locations	of	CDRs	from	three	classes	(red	circles,	blue	diamonds,	and	purple	
crosses),	and	gives	sequences	for	a	few.	Contour	rings	show	sequence	distances	of	0.2,	0.3,	and	0.4	
from	an	example	red	CDR	and	an	example	purple	CDR.	The	closest	CDR	to	the	center	red	one	is	also	
red,	so	1-nearest	neighbor	classification	would	be	correct.	In	contrast,	the	closest	CDR	to	the	center	
purple	one	is	actually	blue,	so	1-nearest	neighbor	classification	would	fail.	For	the	red	group,	
increasing	the	threshold	would	allow	considering	more	red	class	members,	along	with	some	
members	from	the	other	classes;	one	red	member	lies	outside	the	outermost	threshold	ring.	
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Fig.	2.	Sequence	similarity	in	STCRDab	structural	clusters.	(a,	b)	Minimum	sequence	distances	
within	(green)	vs.	between	(blue)	structural	classes	for	(a)	CDR3α	sequences	and	(b)	CDR3β	
sequences,	plotted	as	a	density	estimate.	(c,	d)	Accuracy	of	nearest-neighbor	classification	using	
sequence	similarity	to	predict	structural	cluster	for	(c)	CDR3α	sequences	and	(d)	CDR3β	
sequences.	As	the	threshold	required	to	make	a	classification	is	varied	from	0	to	1	(x-axis,	with	0	
indicating	identity),	the	number	of	sequences	(y-axis)	that	are	unclassified	(green	line)	decreases,	
trading	off	how	many	are	correctly	(blue	line)	vs.	incorrectly	(magenta)	classified.	
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Fig	3.	Sequence	similarity	differences	vs.	structural	similarity	differences.	Each	point	
represents	a	CDR3β,	and	its	coordinate	represents	the	difference	in	sequence	score	(x-axis)	and	
structural	similarity	(y-axis)	between	the	most	similar	sequence	in	its	STCRDab	structural	class	and	
the	most	similar	sequence	in	another	STCRDab	structural	class.	A	negative	number	indicates	that	
the	CDR	is	more	similar	to	the	neighbor	in	its	structural	class	than	to	the	other	neighbor;	i.e.,	left	
indicates	more	similarity	in	sequence	and	bottom	more	similarity	in	structure	to	an	in-class	CDR	
than	to	an	out-of-class	one.	Color	represents	the	sequence	score	between	the	CDR	and	the	in-class	
neighbor.	Structural	superpositions	highlight	example	relationships	between	a	target	CDR	(blue),	
its	in-class	neighbor	(green),	and	its	other	neighbor	(orange).		
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Fig.	4.	CDR3	similarity	in	twins	vs.	non-twins.	The	plots	track	the	performance	of	nearest-
neighbor	classification,	using	sequence	similarity	to	predict	whether	a	CDR	is	from	a	twin	or	an	
unrelated	individual.	As	the	threshold	required	to	make	a	classification	is	varied	from	0	to	1	(x-axis,	
with	0	indicating	identity),	the	fraction	of	sequences	(y-axis)	that	are	unclassified	(green	line)	
decreases,	trading	off	the	fraction	that	are	correctly	(blue	line)	vs.	incorrectly	(magenta)	classified.	
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Fig.	5.	Example	twin	motifs	with	different	specificity	patterns.	Motifs	represent	sequences	for	
four	different	clusters	from	subject	A1,	and	the	closest	clusters	to	each	of	those	in	each	of	the	five	
other	individuals.	The	x-axis	indicates	the	distance	from	the	A1	cluster	to	a	cluster	from	another	
individual,	assessed	as	the	average	over	pairs	of	CDRs.	Sets	of	clusters	illustrate	different	types	of	
patterns:	(common)	all	of	the	clusters	are	similar	to	the	cluster	from	A1	(within	0.3);	(twin-
distinct)	clusters	from	unrelated	individuals	are	closer	than	that	from	the	twin;	(twin-specific)	the	
twin’s	cluster	is	closer	than	those	from	other	individuals;	(A1-specific)	the	cluster	is	far	from	all	
clusters	from	all	other	individuals.	 	
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Fig	6.	Epitope	specificity	in	Dash	et	al.	repertoires.	The	plots	track	the	performance	of	nearest-
neighbor	classification,	using	sequence	similarity	to	predict	a	CDR’s	epitope	from	a	set	of	seven	
different	murine	epitopes	or	from	a	set	of	three	different	human	ones.		As	the	threshold	required	to	
make	a	classification	is	varied	from	0	to	1	(x-axis,	with	0	indicating	identity),	the	fraction	of	
sequences	(y-axis)	that	are	unclassified	(green	line)	decreases,	trading	off	the	fraction	that	are	
correctly	(blue	line)	vs.	incorrectly	(magenta)	classified.	
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Fig	7.	Example	relatively	specific	and	relatively	non-specific	epitope	clusters	in	Dash	et	al.	
repertoires.	Each	motif	represents	sequences	from	a	cluster	of	epitopes	at	a	0.3	threshold.	The	
distance	between	an	example	cluster	from	one	cluster	and	the	nearest	from	another,	computed	as	
the	average	over	pairs	of	their	CDRs,	is	annotated	at	the	curly	brace.	
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Fig	8.	Example	progression	of	clusters	in	Dash	et	al.	repertoires	as	the	threshold	is	relaxed.	
Motifs	represent	clusters	from	three	different	repertoires	(columns:	NP,	PB1,	PB1-F2)	at	three	
different	thresholds	(rows:	0.2,	0.3,	0.4).	
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Fig	9.	Epitope	specificity	in	Glanville	et	al.	repertoires.	Each	sub-plot	summarizes	performance	
of	nearest-neighbor	classification,	using	sequence	similarity	to	predict	a	CDR’s	epitope+HLA	from	a	
set	of	seven	different	possibilities.		The	bars	indicate	the	percentage	of	correct	(blue),	incorrect	
(magenta),	and	unidentified	(green)	predictions	between	a	pair	of	epitope+HLA	specificities	(row	
and	column)	at	thresholds	of	0.2,	0.3,	and	0.4.	
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Fig.	10.	Pathology	specificity	of	McPAS-TCR	repertoires.		Each	sub-plot	summarizes	
performance	of	nearest-neighbor	classification,	using	sequence	similarity	to	predict	a	CDR’s	
pathology	association	from	a	set	of	seven	different	small	repertoires	or	six	different	large	
repertoires.	The	bars	indicate	the	percentage	of	correct	(blue),	incorrect	(magenta),	and	
unidentified	(green)	predictions	between	a	pair	of	pathologies	(row	and	column)	at	thresholds	of	
0.2,	0.3,	and	0.4.	
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Tables	
	
	
	
Table	1.	Unique	CDRs	from	different	structural	classes	according	to	STCRDab	(52).	
	
Class	name	 Length(s)	 Number	of	unique	sequences	
A3-10-A	 10	 14	
A3-13-B	 13	 3	
A3-13-A	 13	 6	
A3-10_11_12-A	 10	 10	
	
Class	name	 Length(s)	 Number	of	unique	sequences	
B3-10_11_12_13-A	 10,	11,	12,	13	 56	
B3-10_11-A	 10,	11	 20	
B3-12-A	 12	 6	
B3-12-B	 12	 10	
B3-13_14-A	 13,	14	 14	
B3-14-A	 14	 3	
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Table	2.	Pathology-associated	repertoires	for	small	(a)	and	large	(b)	size-matched	groups.	
	
a)	
Pathology	 Category	 Size	
Allergy	 Allergy	 259	
Celiac	disease	(celiac)	 Autoimmune	 70	
Multiple	sclerosis	(MS)	 Autoimmune	 116	
Rheumatoid	Arthritis	(RA)	 Autoimmune	 270	
Clear	cell	renal	carcinoma	(clearcell)	 Cancer	 68	
Hepatitis	C	virus	(HepC)	 Pathogens	 85	
Yellow	fever	virus	(YF)	 Pathogens	 179	
	
b)	
Pathology	 Category	 Size	
Diabetes	Type	1	(diabetes)	 Autoimmune	 724	
Melanoma	 Cancer	 475	
Cytomegalovirus	(CMV)	 Pathogens	 921	
Epstein	Barr	virus	(EBV)	 Pathogens	 1061	
Human	immunodeficiency	virus	(HIV)	 Pathogens	 649	
Influenza	 Pathogens	 2939	
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