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 1 

ABSTRACT 46 
 47 
Understanding how students learn is crucial for helping them succeed. We examined brain function in 48 
107 undergraduate students during a task known to be challenging for many students – physics problem 49 
solving – to characterize underlying neural mechanisms and determine how these support 50 
comprehension and proficiency. Further, we applied module analysis to response distributions, defining 51 
groups of students who answered using similar physics conceptions, and probed for brain differences 52 
linked with different conceptual approaches. We found integrated executive, attentional, visual motion, 53 
and default mode brain systems cooperate to achieve sequential and sustained physics-related 54 
cognition. While accuracy alone did not predict brain function, dissociable brain patterns were observed 55 
when students solved problems using different physics conceptions, and increased success was linked to 56 
conceptual coherence. Our analyses demonstrate that episodic associations and control processes 57 
operate in tandem to support physics reasoning, offering potential insight to support student learning. 58 
 59 
 60 
 61 
KEYWORDS: educational neuroscience, physics education, fMRI, functional connectivity, problem 62 
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 64 
 65 
 66 
 67 
 68 
 69 
 70 
  71 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/526574doi: bioRxiv preprint 

https://doi.org/10.1101/526574
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

New innovations in transforming science education to promote success and broaden participation 72 
require an understanding of how students learn. Evidence has shown that learning interventions, both 73 
long- and short-term, can be accompanied by lasting, content-related brain changes, suggesting 74 
classroom instruction may influence the measurable neural processes by which students consolidate, 75 
access, or store information (1, 2). Physics in particular can be a challenging discipline for many students 76 
as it requires both a conceptual understanding and recall of physical principles, along with acquisition of 77 
procedural skills for solving problems. Neuroimaging studies on physics learning indicate cognition about 78 
physical concepts (e.g., velocity, acceleration, force) are encoded into specific neural representations 79 
(3), and these representations may change during progressive stages of physics learning (4). Moreover, 80 
problem solving is known to engage an extensive frontoparietal central executive network (CEN), both 81 
generally across domains of knowledge (5) and specifically regarding physics concepts (6). Collectively, 82 
these findings highlight a putatively influential role science learning may have on functional brain 83 
architecture and underscore the complexity of neural processes linked with proficiency in physics 84 
problem solving. 85 
 86 
Insight into the scientific learning process may be gained by considering the obstacles students 87 
encounter. A wealth of cognitive science and education research has identified consistent patterns in 88 
how students think about physics, with a preponderance of studies focusing on difficulties mastering 89 
Newtonian mechanics (7–9). Physics students consistently struggle to learn key concepts and novice 90 
students are known to invoke intuitive but incorrect ideas of physical causality when solving problems 91 
(10, 11). These misleading conceptions frequently interfere with a student’s ability to successfully 92 
acquire new physics knowledge (12) and a broad, but sometimes conflicting, body of literature has 93 
attempted to characterize these ideas to support conceptual change across instruction (13–17). One 94 
model posits these so-called “folk physics” notions (18, 19) may be implicitly linked to associative 95 
memory, with naïve reasoning arising from context-based extrapolations of remembered personal 96 
experiences (20). Another describes students’ reasoning as being based on common sense, but weakly 97 
organized, physical intuitions (21). Yet another view argues ontological differences in the way students 98 
think about physical processes impact how persistent incorrect conceptions are across instruction (14). 99 
A contrasting opinion holds that students use ontological categories dynamically and that the range of 100 
physics reasoning processes may be better explained by varying levels of coherence (integration of 101 
concepts) and robustness (applicability across contexts) in how students build patterns of associations 102 
between their existing cognitive resources (e.g., memories, beliefs, facts; (15, 22)). Despite these many 103 
models, little is known about the underlying neural processes of how students access, deploy, and 104 
attempt to resolve physics conceptions during reasoning. The limited work that has been done on this 105 
topic indicates the anterior cingulate cortex (ACC) may be engaged when students view physically causal 106 
scenes that conflict with their strongly held intuitions (23). Additionally, episodic, associative, and spatial 107 
recall are know to be supported by hippocampal and retrosplenial cortex (RSC) activity (24, 25), and 108 
reasoning processes are linked with the dorsolateral prefrontal (dlPFC) and posterior parietal cortex 109 
(PPC) activity (5). However, no prior work has identified the specific neural processes that underlie 110 
physics reasoning nor any neurobiological differences associated with students different use of incorrect 111 
physics conceptions. Such an understanding would inform existing behavioral models and might help us 112 
more fully understand how students learn physics. 113 
 114 
We acquired functional magnetic resonance imaging (fMRI) data from 107 undergraduate students after 115 
the conclusion of a semester of university-level physics instruction. During fMRI, students were 116 
presented with questions adapted from the Force Concept Inventory (FCI; (26)), a widely adopted test of 117 
conceptual problem solving that presents scenarios of objects at rest or in motion and asks students to 118 
choose between a Newtonian solution and several reasonable Non-Newtonian alternatives, each of 119 
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which mirror common confusions. Physics and baseline perceptual questions (Fig. S1) were presented as 120 
blocks composed of three sequential view screens (e.g., “phases”): problem initiation in which students 121 
viewed text and a figure describing a physical scenario (Phase I), question presentation in which the 122 
students viewed a physics question about the scenario (Phase II), and answer selection wherein four 123 
possible answer choices were displayed for selection (Phase III). Brain activity across full questions (All 124 
Phases), as well as within each phase, was assessed. We then explored putative links between the 125 
neural substrates of physics problem solving and accuracy, difficulty, strategy, and student 126 
conceptualization of physics ideas. First, we probed for brain-behavior correlations revealed by 127 
parametric modulation of the BOLD signal in independent meta-analytically defined a priori reasoning 128 
and memory-linked regions of interest (ROIs; Fig. S2) located in the left dlPFC, ACC, left PPC, left 129 
hippocampus, and RSC, and across the whole brain. Second, because student response patterns across 130 
FCI questions are heterogeneous and even incorrect answer choices provide meaningful information 131 
about students’ conceptions (27), we distinguished sub-types of “physics thinkers” based on their FCI 132 
answer choices. Specifically, we applied community detection to FCI answer distributions to identify sub-133 
groups of similarly responding students and contrasted brain activity between groups to examine 134 
differential ways of thinking about the behavior of physical phenomena. 135 
 136 
RESULTS 137 
 138 
Physics problem solving engages visual motion, central executive, and default mode processes. FCI 139 
responses (mean accuracy = 61%, mean response time (RT) = 20.2s) were consistent with previous 140 
reports (27, 28) and significantly differed (p<0.001) from control responses (mean accuracy = 98%, mean 141 
RT = 15.8s), suggesting overall task compliance. Maps of FCI > Control blocks revealed activation across a 142 
fronto-temporo-parietal network, including the prefrontal cortex (PFC), left dorsal striatum, PPC, RSC, 143 
and dorsal posterior cingulate cortex, lateral occipitotemporal cortex (V5/MT+), and cerebellum (Fig. 1a; 144 
Table S1). To tease apart constituent neural processes, we analyzed sequential phases of the problem-145 
solving process and observed multiple dissociable whole-brain networks linked with problem initiation 146 
(Phase I), question presentation (Phase II), and answer selection (Phase III). Phase I was associated with 147 
a similar activity pattern as the FCI > Control contrast, Phase II maps were characterized by right-148 
emphasized dorsal posterior parietal and V5/MT+ engagement, and Phase III maps included medial 149 
anterior and posterior nodes of the default mode network (DMN; Fig. 1b-d; Table S2). These network 150 
transitions from fronto-temporo-parietal (Phase I) to dorsal attention (DAN; Phase II) followed by 151 
default mode cooperation (Phase III) points to the potentially important role V5-DMN-CEN interactions 152 
may have within physics reasoning processes. Meta-analytic functional decoding, which is a technique 153 
used to provide data-driven inferences about which mental functions are likely associated with specific 154 
brain activation patterns (see SI for more details), was performed on the resulting unthresholded z-155 
statistic maps using Neurosynth (29), indicating that switching, default mode, motion perception, and 156 
reasoning processes may be important in physics problem solving (Fig. 1 radar plots; Table S3).  157 
 158 
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 159 
 160 

Fig. 1. Activation of FCI > Control for a) problem solving across all phases, b-d) across each sequential problem 161 
phase, and e) parametric modulation across all phases by problem difficulty. Adjacent radar plots depict functional 162 
decoding results of the top ten weighted terms for each network. 163 
 164 
Decoding sequential phases indicated problem initiation may reflect visuospatial attention, 165 
perceptual/motor, and memory retrieval; question presentation was associated with switching, visual 166 
short-term memory, and numbers, and answer selection was linked to DMN-related terms (e.g., 167 
unconstrained (free), mentalizing, and ambiguous), consistent with mental exploration of a solution. 168 
Next, to assess information exchange across GLM-identified regions during problem solving, we 169 
performed task-based functional connectivity (FC) analyses for three seeds centered on peaks of the 170 
overall FCI > Control map located in the left V5/MT+, the left dlPFC, and the RSC. Psychophysiological 171 
interaction (PPI) results (Fig. 2; Table S4) revealed greater physics problem solving-related coupling 172 
(relative to control conditions) of the left V5/MT+ with DAN brain areas, the left dlPFC with V5/MT+ and 173 
DMN areas, and the RSC with frontoparietal, DMN, and salience network (SN) regions. These outcomes 174 
suggest complex visual information may be carried through a dorsal stream to frontoparietal regions 175 
that direct CEN-DMN network exchanges during physics reasoning. 176 
 177 

 178 
 179 

Fig. 2. Whole-brain PPI task-based functional connectivity associated with FCI > Control for a) left V5/MT+, b) left 180 
dlPFC, and c) RSC seeds. 181 
 182 
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Difficulty, but not accuracy and strategy, modulate brain activity during problem solving. To relate 183 
brain function to behavioral measures impacting student success, we tested our hypotheses that activity 184 
in meta-analytically derived ROIs (e.g., left dlPFC, left PPC, ACC, left hippocampus, and RSC) would be 185 
parametrically modulated by student-reported strategy and normative problem difficulty (30), but not 186 
answer accuracy. While no significant BOLD signal modulations were observed in these a priori ROIs, an 187 
exploratory whole-brain parametric modulation analysis revealed DAN and occipital activity were 188 
positively modulated by problem difficulty (Fig. 1e; Table S5). This indicates that the physics reasoning 189 
network is consistently activated regardless of whether or not a correct answer is achieved and does not 190 
reflect students’ perception of their reasoning strategy. Importantly, the most salient relation appears 191 
to be between degree of difficulty and engagement of brain regions linked with visuospatial perceptual, 192 
memory, and attentional processes, as assessed by functional decoding (Fig. 1e right). This may indicate 193 
mental states associated with memory, spatial or motion perception, and/or visualization may be 194 
especially engaged when problem difficulty is increased. 195 
 196 
Students demonstrate dissociable brain activity linked to knowledge fragmentation. We next 197 
performed module analysis (31) on students’ answer patterns to probe potential relationships between 198 
brain activity and students’ conceptual coherence (i.e., integration of physics knowledge; (22)) and to 199 
assess if distinct reasoning profiles were rooted in underlying functional brain differences. We analyzed 200 
answer distributions using a community detection algorithm (32) to parse student sub-groups who 201 
provided similar responses across FCI questions. Percent overlap was assessed between answers 202 
provided by each group and previously identified “conceptual modules” present in the FCI test ((31); 203 
Table S6). Conceptual modules are communities of incorrect FCI answer choices that are usually 204 
selected together. They represent students’ dissociable non-Newtonian (incorrect) notions about 205 
physical phenomena, some of which demonstrate a high degree of conceptual coherence, while others 206 
are more suggestive of a fragmented collection of physics ideas (21, 31, 33). The set of conceptual 207 
modules selected by a group (their reasoning profile) represents distinguishable arrangements of 208 
student’s (mis)interpretations and confusions about the physical world. Module analysis detected 209 
thirteen student groups across 107 students who answered similarly to each other during FCI problem 210 
solving (Fig. 3a). Four groups had 10 or more members (i.e., normative groups). ANOVA indicated a 211 
significant difference in mean framewise displacement (FD) head motion between groups one or more 212 
of the groups (F(3, 178) = 8.213, p << 0.001). Post-hoc multiple comparison Turkey HSD tests indicated 213 
students in Group D showed to significantly greater head motion (p < 0.05). The three remaining the 214 
normative groups had no significant differences of in-scanner head motion and were thus selected for 215 
further analysis. The remaining three groups’ answer distributions were characterized based on 216 
prevalence of conceptual modules (Fig. 3b). These groups, composed of 24, 17, and 10 students, were 217 
carried into group-level neuroimaging analyses to assess brain activity and connectivity differences 218 
during problem solving. 219 
 220 
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 221 
 222 

Fig. 3. a) Module analysis of student responses across FCI answer distributions. Heat map colors represent student 223 
responses to multiple-choice FCI questions and black horizontal lines distinguish groups identified by community 224 
detection. b) Scaled within-group overlap of incorrect FCI responses across a nine previously measured physics 225 
conceptual models ((31); Table S6) for top three normative groups. c) Group differences in problem solving-related 226 
brain networks (FCI > Control, all phases) across the three normative groups. Increased activity is shown for Groups 227 
A and B relative to Group C (top) and Group C relative to Groups A and B (bottom). No significant differences were 228 
observed between Groups A and B. 229 
 230 
Group A (n=24) achieved an accuracy rate of 77% across all FCI questions, indicative of being highly 231 
Newtonian thinkers (27). Of the non-Newtonian responses provided by this group, incorrect answers 232 
almost exclusively aligned with a common naïve physics idea known as the ‘impetus force’ (m1, Fig. 3b 233 
top), which is the incorrect belief that moving objects experience a propelling force. Group B (n=17) 234 
achieved an accuracy rate of 73% across all FCI questions, which is also indicative of high Newtonian 235 
thinking. The reasoning profile for Group B (Fig. 3b middle) indicated that students gave incorrect 236 
answers by either falling victim to the impetus force fallacy (m1) or to another common, but less 237 
coherent set of physics conceptions that we term the ‘confusion about gravitational action’ module 238 
(m9). Group C (n=10) achieved an accuracy rate of 53% across all FCI questions, indicative of non-239 
Newtonian thinking. The reasoning profile for Group C (Fig. 3b bottom) indicated that students’ 240 
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incorrect answers were primarily associated with 5 conceptual modules that each occurred at relatively 241 
similar rates: the ‘impetus force’ module (m1), ‘more force yields more result’ module (m2), ‘confusion 242 
relating speed and path’ module (m5), ‘sudden forces induce instantaneous path change’ module (m6), 243 
and ‘an object’s mass determines how it falls’ module (m7). 244 
 245 
We performed a whole-brain, one-way ANOVA to identify between-group differences in physics-related 246 
brain activity (FCI > Control, all phases). Omnibus results indicated that one or more sub-groups showed 247 
significantly different brain activity during problem solving. Post hoc tests were performed across each 248 
combination of group pairs (Fig. 3c; Table S7). Group A (vs. C) students demonstrated greater activity 249 
during problem solving in the left lateral orbitofrontal cortex (lOFC) as well as in the left inferior parietal 250 
lobule, bilateral V5/MT+, and right cerebellum. Group B (vs. C) students also exhibited greater activity in 251 
the left lOFC. Group C (vs. both A and B) students showed greater activity in the cuneus extending into 252 
the lingual gyri. Additionally, Group C students also showed increased activity relative to Group A in the 253 
caudal medial frontal gyrus, ACC, bilateral precentral and postcentral gyri along the precentral sulcus, 254 
bilateral anterior insular cortex (aIC), and left superior temporal gyrus. Overall, student who answered 255 
using more coherent physics conceptions, even if incorrect, showed increased reliance on a lOFC-256 
V5/MT+ network, whereas students who held less consistent ideas involving multiple conceptual 257 
approaches showed increased primary visual and salience network activity. One possible interpretation 258 
of these differences may be that, in the absence of stable and coordinated physics conceptions, 259 
students engage relatively more visual search processes for salient problem features. 260 
 261 
DISCUSSION 262 
 263 
Our fMRI results suggest that visualization, association, and mental exploration may be important 264 
mental processes that inform physics problem solving. When students solve physics problems they 265 
activate a network of bilateral dlPFC, left lOFC, PPC, RSC, and V5/MT+ areas, consistent with previous 266 
CEN-supported problem-solving findings across knowledge domains (5). Yet, V5/MT+ and RSC 267 
involvement with the CEN appear to be a feature of physics problem solving in particular. Both areas 268 
support visuospatial information processing (34), with V5/MT+ linked to imagining implied motion and 269 
maintaining motion information in working memory (35–37), and RSC supporting spatial cognition and 270 
episodic memory retrieval, especially when imagined scenes are mentally transformed between specific 271 
viewpoints (24). Thus, these regions may aid in the mental imagery of motion, as informed by 272 
remembered physical scenarios, and build internal representations of physical systems, which is 273 
considered an essential step in physics solution generation (38). Shifts in physics-related brain activity 274 
across problem phases indicate reliance on memory-linked associations. We find V5/MT+, CEN, DAN, 275 
and DMN transitions support sequential problem-solving phases. Notably, answer generation elicited 276 
concurrent DMN, lateral fronto-parietal, and V5/MT+ activity. Interestingly, while CEN-supported tasks 277 
often evoke DMN deactivations, this DMN-CEN coherence likely indicates reliance on episodic and 278 
semantic memory retrieval processes (39, 40) during physics cognition, a notion consistent with the 279 
constructivist theory of learning (41). Additionally, the PCC is functionally heterogeneous, connecting 280 
DMN and fronto-parietal networks, and serving as a possible hub across brain systems to direct 281 
attentional focus (42). Further, the FCI is differentiated from other fMRI tasks by its relatively long trials, 282 
requiring sustained cognition to generate answers. The DMN may thus be activated along with the CEN 283 
to allow for mental exploration necessary in solution derivation.  284 
 285 
Problem solving-related brain activity was shown to differ based on how students think, not how correct 286 
they are. We found that students’ problem solving-related brain function cannot be categorized by 287 
simply considering their “incorrect” vs. “correct” answers. Rather, module analysis indicates variance in 288 
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conceptual approach better characterizes brain differences, which in turn impacts success rate. An 289 
existing framework of learning conceptualizes physics cognition as relying on dual “knowledge 290 
structure” and “control structure” processes (22). Under this model, students apply executive functions 291 
to select or inhibit associational patterns that ground how they describe the physical world. Here, 292 
associational patterns, known as knowledge structures, are conceptualized as flexible, contextually-293 
primed collections of linked knowledge elements called “resources” that students activate to scaffold 294 
reasoning. Ideally, students learn to activate stable associations between physical laws, enabling long 295 
deductive chains to be carried out during problem solving. However, when this does not occur, student’s 296 
non-Newtonian processes can vary: strongly associated yet inappropriate resources may stably activate 297 
across contexts, or more basic, axiomatic physical beliefs (e.g., intuitive notions such as closer is stronger 298 
or more effort gives more result; (21)) may form weak, unstable links that do not support ancillary 299 
deductive elaboration. These differences are described along an axis of “compilation” or memory 300 
chunking. Students without pre-compiled knowledge structures require additional cognitive resources to 301 
assemble associations during reasoning, whereas physics experts can access well-developed 302 
associational patterns that do not need to be actively assembled during problem solving. 303 
 304 
We adopt this resources framework to interpret brain function with the goal of relating neuroimaging 305 
findings to educational knowledge and practice. Physics-related CEN and DAN activations were linked to 306 
varied cognitive terms consistent with the idea of a control structure, and DMN involvement during 307 
reasoning may reflect associational mappings within semantic or episodic memory circuits (39, 40). 308 
Thus, dlPFC-RSC FC may support the idea that control processes guide knowledge structure selection. 309 
Under this interpretation, reasoning sub-groups may be thought of as differentiated by knowledge 310 
structure use. Groups A and B applied predominantly Newtonian (i.e., compiled) thinking, but Group C 311 
was less consistent in their approach. Of the non-Newtonian modules activated, Group A consistently 312 
used an arguably concrete impetus model, Group B applied an impetus model while also expressing 313 
confusion about gravitational action, and Group C utilized multiple modules characterized by simple, 314 
vague, or confused ideas that differed across problems. We argue these groups can be described along a 315 
continuum of knowledge compilation, coherence, and robustness. Groups A and, to a lesser extent, B 316 
demonstrated stable, strongly associated knowledge structures, whereas Group C showed more labile 317 
associational patterns that were limited by problem context. In this manner, less coherent, more 318 
variable knowledge structures were associated with increased primary visual and SN activity, whereas 319 
pre-compiled, stable reasoning strategies more strongly activated lOFC and V5/MT+, areas implicated by 320 
physics thinking in the CEN. These findings suggest that chunked knowledge can reduce working 321 
memory demands, allowing for increased focus on other control structure aspects of problem solving 322 
(22). However, when students continually re-identify associational patterns across problems, they may 323 
rely more heavily on visually guided SN activity to select which problem features deserve their attention 324 
(43). 325 
 326 
A fundamental goal of educational neuroscience is to bridge understanding of brain function with the 327 
insights, findings, and models of education research. Under a resources framework, our results suggest 328 
physics students struggle most when they do not understand how to choose appropriate and coherently 329 
chunked resources from long-term memory, thus relying on increased SN activity during problem 330 
solving. Learning obstacles also occur when students access compiled but non-physical conceptions 331 
during reasoning, allowing for increased CEN brain function linked to control processes. While the latter 332 
still represents a type of incorrect physics thinking, it more closely resembles the kind of cognition 333 
instructors aim to teach (22). As others have pointed out (44), it is a long path between brain imaging 334 
and the potential development of lesson plans, yet these insights may begin to inform aspects of physics 335 
classroom practice: instruction that explicitly attends to how students select, link, and reorganize 336 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/526574doi: bioRxiv preprint 

https://doi.org/10.1101/526574
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

resources may be critical in developing appropriately compiled knowledge to map back onto control 337 
processes (22). Learning physics is complex, yet a disproportionate focus is often placed on whether 338 
students answer questions correctly. Our results suggest the conceptual foundations of wrong answers 339 
are accompanied by functional brain differences during reasoning and can reveal much more about 340 
student’s ability to succeed than simple measures of accuracy. A focus on accuracy alone over-simplifies 341 
the complex processes engaged during physics reasoning. Instructors that leverage (rather than ignore 342 
or attempt to simply overwrite) students’ incorrect conceptions to facilitate conceptual change and 343 
transition existing resources about physical phenomena into stable and accessible knowledge structures 344 
may better serve students in connecting what they believe with what they predict. 345 
 346 
In sum, we find the neural mechanisms underlying conceptual physics problem solving are characterized 347 
by integrated visual motion, central executive, attentional, and default mode brain systems, with 348 
solution generation relying on critical DMN-CEN engagement during reasoning. Furthermore, we 349 
explored whether measures of student success show underlying neurobiological bases, finding that 350 
students’ physics conceptions manifest as brain differences along an axis of relative knowledge 351 
fragmentation and robustness. Critically, accuracy alone did not predict brain function, but students 352 
achieved increased success when they made use of stable, strongly associated knowledge structures. 353 
We acknowledge that our results may be specific to the FCI questions used here, that additional or 354 
varied brain dynamics may be more relevant for different kinds of physics problem solving, and that 355 
sample sizes across Groups A, B, and C, are relatively small and uneven. Despite these concern, we are 356 
confident that our findings serve to deepen understanding into how students learn. Together, our 357 
results demonstrate associational and control processes operate in tandem to support physics problem 358 
solving and offer potential educational insight towards promoting student success. 359 
 360 
METHODS 361 
 362 
Participants. One hundred and seven healthy right-handed undergraduate students (age 18-25 years; 48 363 
women) enrolled in introductory calculus-based physics at Florida International University (FIU) took 364 
part in this study. MRI data were acquired no more than two weeks after the end of the academic 365 
semester. Written informed consent was obtained in accordance with FIU Institutional Review Board 366 
approval. 367 
 368 
FCI Task. The Force Concept Inventory, a widely used (45) and reliable (46) test of conceptual 369 
understanding in Newtonian Physics (26), that includes a series of questions about physical scenarios 370 
was adapted for the MRI environment. FCI questions do not require mathematical calculation; rather 371 
they force students to choose between a correct answer and multiple common sense alternatives. The 372 
task included three phases: participants viewed a figure and descriptive text presenting a physical 373 
scenario (Phase I), a physics question was presented (Phase II), and participants viewed four possible 374 
answers and were instructed to choose the correct answer and mentally justify why their solution made 375 
the most sense (Phase III). Participants provided a self-paced button press to advance between phases 376 
and provide their final answer; a fixation cross was shown after answer selection before presentation of 377 
the next scenario. Question blocks were of maximum duration 45s and were followed by a fixation cross 378 
of minimum duration 10s. Control questions presented everyday physical scenarios and queried 379 
students on general reading comprehension instead of physics content. Control questions also included 380 
three phases (Control I, Control II, and Control III) to match the presentation of FCI questions. Post-scan 381 
debriefing included a paper-based questionnaire in which students rated the degree to which they had 382 
used “knowledge and reasoning” or had relied on a “gut feeling” to solve each FCI question. 383 
 384 
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fMRI Acquisition and Pre-Processing. Functional images were acquired with an interleaved gradient-385 
echo, echo planar imaging sequence (TR/TE = 2000/30ms, flip angle = 75°, FOV = 220x220mm, matrix 386 
size = 64x64, voxel dimensions = 3.4×3.4×3.4mm, 42 axial oblique slices). A T1-weighted series was 387 
acquired using a 3D fast spoiled gradient recall brain volume (FSPGR BRAVO) sequence with 186 388 
contiguous sagittal slices (TI = 650ms, bandwidth = 25.0kHz, flip angle = 12°, FOV = 256x256mm, and 389 
slice thickness = 1.0mm). Pre-processing was performed using FSL (www.fmrib.ox.ac.uk/fsl) and AFNI 390 
(http://afni.nimh.nih.gov/afni) software libraries. Anatomical and functional images were skull stripped, 391 
the first five frames of each functional run were discarded, rigid-body motion correction was performed, 392 
functional images were high-pass filtered (110s), and a 12-degree-of-freedom affine transformation was 393 
applied to co-register the series with each structural volume. Non-linear resampling was applied to 394 
transform all images into MNI152 space and functional volumes were spatially smoothed using a 5mm 395 
Gaussian kernel. All motion-corrected non-registered 4D data underwent visual inspection and TRs 396 
associated with visually-identified motion artifacts were flagged for exclusion and their corresponding 397 
framewise displacement (FD) values were recorded. The minimum of the distribution of these artifact-398 
linked FDs was used as a common scrubbing threshold across subjects during analyses. TRs with 399 
excessive motion (including one frame before and two frames after) were censored out during the GLM 400 
analysis if they met or exceeded a threshold of 0.35mm FD (47). Runs containing excessive motion 401 
(≥33% of within-block motion) were discarded from the analysis, resulting in the omission of three runs 402 
from two individuals. Six motion parameters (translations and rotations) were included as nuisance 403 
regressors in all analyses. 404 
 405 
General Linear Model Analyses. Stimulus timing files were created for each participant based on 406 
question phase onset/offset times. FCI and control questions were modeled as blocks from question 407 
onset to the onset of a concluding fixation cross triggered by answer selection. The contrast FCI > 408 
Control was modeled across full question duration; three additional GLM analyses were performed for 409 
the individual phases. Timing files were convolved with a hemodynamic response function and the first 410 
temporal derivatives of each convolved regressor were included to account for any offsets in peak BOLD 411 
response. General linear modeling for within- and between-subject analyses was performed in FSL using 412 
FEAT. Group-level activation maps for all contrasts were thresholded with a cluster defining threshold 413 
(CDT) of P < 0.001 and a cluster extent threshold (CET) of P < 0.05 (FWE corr). 414 
 415 
Task-Based Functional Connectivity Analysis. We tested for PPI associated with the FCI task across 416 
three seeds centered on peaks from the overall FCI > Control map located in the left V5/MT+, left dlPFC, 417 
and RSC. ROIs were transformed into native space and time series were extracted from unsmoothed 418 
data and included as regressors in separate within-subject PPI analyses performed on spatially 419 
smoothed 4D data sets. Design matrices for the within-subject PPI analyses contained regressors for the 420 
ROI time series, the condition difference vector modeling the differences between FCI and Control 421 
timing files, a vector representing the sum of the FCI and Control conditions, and the interaction 422 
between the task difference vector and ROI time series. The interaction term was calculated by zero-423 
centering the task explanatory variable, and the mean of the ROI time series was set to zero. All task and 424 
interaction regressors, but not the ROI time series, were convolved with a Gamma-modeled 425 
hemodynamic response. PPI analyses were carried out separately for each ROI and resultant beta maps 426 
were averaged within-subject and carried into three separate group-level analyses. ROI-to-voxel task-427 
based functional connectivity analyses were thresholded at a significance of P < 0.001 CDT, P < 0.05 CET 428 
(FWE corr). 429 
 430 
Brain-Behavior Correlates. Separate within-subject parametric modulation analyses were performed for 431 
accuracy, difficulty, and self-reported problem-solving strategy. Design matrices were identical to GLM 432 
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analyses but included a single parametric modulator with the same FCI question timing but with a 433 
regressor height modeled by differences in the behavioral measures. Accuracy was modeled with 434 
regressor heights of 1, 0, or -1 corresponding to correct, no response, or incorrect answer provided. 435 
Difficulty was measured as a normative miss rate per FCI question, as measured externally (30). 436 
Problem-solving strategy was measured on a Likert scale by a post-scan questionnaire. If any parametric 437 
modulator had zero variance within a run (i.e., the student reported using an identical strategy for all 438 
questions) then the run was discarded to avoid rank deficiency in the design matrix. Resulting beta maps 439 
were then averaged across within-subject runs. Brain-behavior correlations were tested via two 440 
separate analyses: we extracted within-subject parametric modulator beta values within five 441 
hypothesis-driven ROIs and conducted one sample, two-sided t-tests on the beta distributions for 442 
significant variations from baseline (Fig. S3). Group-level analyses were also performed with whole-brain 443 
beta maps resulting from the parametric modulation GLMs to determine if significant network-level 444 
activity was present during problem solving associated with the behavioral measures. 445 
 446 
Student Response Profiles. Given evidence indicating student responses to the FCI provide insight into 447 
how students think about physics problems (31), we performed a module analysis of the observed FCI 448 
answer distributions to identify student response profiles. The data were treated as a bipartite matrix of 449 
Students x Responses. This bipartite matrix was computed and then projected into a weighted adjacency 450 
matrix of students, 𝐴 = 𝑀𝑀$, where 𝑀 is the bipartite matrix. Each element in 𝐴 represents the count 451 
of how many times one student agreed with any other student (values from 0 to 9, for 9 questions). 452 
Next, we performed nonparametric sparsification on 𝐴 (48) to identify the backbone of the graph. 453 
Backboning identifies important links within a network and reduces the number of spurious links. A 454 
significance value was computed for each edge weight and the edge weights were thresholded at P < 455 
0.01. We performed community detection (InfoMap R; (32)) on the backbone network to identify sub-456 
groups of students who provided similar responses to the FCI prompts. We assessed the scaled within-457 
group overlap of incorrect FCI responses across a set of nine previously measured physics modules 458 
consisting of jointly selected incorrect FCI response items ((31); Table S6). Each group’s relative 459 
conceptual module representation was scaled by group size to allow for comparisons across groups of 460 
different sizes. Alignment with conceptual modules indicates students draw on specific non-Newtonian 461 
physics conceptions. Finally, we tested for network differences across student groups. An omnibus test 462 
was conducted for the FCI > Control contrast as well as for the three whole-brain PPI maps. Significant F-463 
test results were further interrogated with post hoc t-tests across groups. Maps were thresholded at P < 464 
0.001 CDT, P < 0.05 CET (FWE corr). 465 
 466 
Data Availability. A GitHub repository was created at 467 
https://github.com/NBCLab/PhysicsLearning/tree/master/FCI to archive the data, code, and models for 468 
this study, including the e-Prime stimulus files, data analysis processing scripts, behavioral data, 469 
statistical brain images, and module analysis files. 470 
 471 
 472 
 473 
 474 
 475 
  476 
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