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ABSTRACT 35 

Aim 36 

Maximum entropy (MaxEnt) models promise a novel approach for understanding community 37 

assembly and species abundance patterns. One of these models, the “Maximum Entropy Theory 38 

of Ecology” (METE) reproduces many observed species abundance patterns, but is based on an 39 

aggregated representation of community structure that does not resolve species identity or 40 

explicitly represent species-specific functional traits. In this paper, METE is compared to “Very 41 

Entropic Growth” (VEG), a MaxEnt model with a less aggregated representation of community 42 

structure that represents species (more correctly, functional types) in terms of their per capita 43 

metabolic rates. We examine the contribution of metabolic traits to the patterns of community 44 

assembly predicted by VEG and, through aggregation, compare the results with METE 45 

predictions in order to gain insight into the biological factors underlying observed patterns of 46 

community assembly. 47 

 48 

Innovation 49 

We formally compare two MaxEnt-based community models, METE and VEG, that differ as to 50 

whether or not they represent species-specific functional traits. We empirically test and compare 51 

the metabolic predictions of both models, thereby elucidating the role of metabolic traits in 52 

patterns of community assembly. 53 

 54 

Main Conclusions 55 

Our analysis reveals that a key determinant of community metabolic patterns is the “density of 56 

species” distribution 𝜌(𝜖), where 𝜌(𝜖)𝑑𝜖 is the intrinsic number of species with metabolic rates 57 

in the range (𝜖, 𝜖 + 𝑑𝜖) that are available to a community prior to filtering by environmental 58 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2019. ; https://doi.org/10.1101/526764doi: bioRxiv preprint 

https://doi.org/10.1101/526764
http://creativecommons.org/licenses/by-nc/4.0/


 
4 

constraints. Our analysis suggests that appropriate choice of 𝜌(𝜖) in VEG may lead to more 59 

realistic predictions than METE, for which 𝜌(𝜖) is not defined, and thus opens up new ways to 60 

understanding the link between functional traits and patterns of community assembly.  61 

 62 

Key words: community assembly, functional traits, macroecology, metabolic requirements, 63 

resource partitioning, species-abundance distribution, statistical aggregation 64 

 65 

1 INTRODUCTION  66 

One of the central aims of ecology is to understand the determinants of community 67 

assembly. Many studies of community assembly involve summaries of community structure such 68 

as the species abundance distribution (SAD), species-area relationship (SAR), and analogous 69 

metabolic-rate distributions. We will refer to these summary distributions collectively as 70 

community structure distributions (CSDs). CSDs, particularly the SAD, have attracted a lot of 71 

attention because their shapes are strikingly similar across different communities, representing a 72 

rare example of “universality” in community ecology (McGill et al. 2007).  73 

The existence of universal features in CSDs is intriguing because these could reflect 74 

universal aspects of the biological processes responsible for structuring communities. However, 75 

CSDs could also be universal for statistical reasons (Tokeshi 1993; Ulrich et al., 2010). Similar 76 

to how the normal distribution is ubiquitous because many measured quantities involve statistical 77 

averaging (the central limit theorem), CSDs could be universal simply because community-78 

specific details disappear in aggregating patterns to the level of species counts, or other forms of 79 

averaging. This would make CSDs considerably less valuable for understanding the biological 80 

determinants of community assembly, such as how community structure depends on the 81 
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functional traits of the organisms in the community (McGill et al., 2006; Díaz et al. 2013). It is 82 

therefore important to disentangle the contributions of biological versus statistical factors to 83 

CSDs. This issue is closely related to the long-running debate on the relative roles of 84 

“mechanism” and “drift” in ecology (McGill and Nekola, 2010; Vellend, 2010), and on 85 

ecosystem stability and the role of disturbance (Newman et al. 2018).  86 

A promising recent approach for disentangling biological from statistical factors in 87 

ecological models is to use the statistical principle of maximum entropy (MaxEnt). MaxEnt 88 

models are “top-down” in that they seek to identify a minimal set of biological assumptions 89 

required to reproduce a given empirical pattern (such as a CSD). Once these assumptions have 90 

been specified, the MaxEnt principle predicts statistical patterns of community structure by 91 

effectively treating all other mechanistic details statistically as unbiased random noise. By 92 

empirically testing predictions based on different assumptions, MaxEnt provides a means to 93 

resolve the partitioning of biological versus statistical factors in driving observed ecological 94 

patterns.  95 

MaxEnt models have had some success at predicting CSDs, but the ecological 96 

interpretation of these successes has not been straightforward. A number of MaxEnt models have 97 

appeared in the ecological literature with a variety of different assumptions and justifications 98 

(e.g. Shipley, Vile and Garnier, 2006; Pueyo, He and Zillio, 2007; Harte, Zillio, Conlisk and 99 

Smith, 2008; Dewar and Porté, 2008; Banavar, Maritan and Volkov, 2010; Bertram and Dewar, 100 

2015). This had led to extensive debates about the prospects and pitfalls of this approach.  101 

Two key issues in these debates may be identified: one conceptual, the other more 102 

technical. The conceptual issue concerns the interpretation of the MaxEnt procedure itself, 103 

including the challenge of connecting MaxEnt to familiar ecological processes such as dispersal, 104 
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disturbance, and interactions between organisms. This issue has been discussed at length 105 

elsewhere (Dewar, 2009; McGill and Nekola, 2010; Shipley, 2010; Supp, Xiao, Ernest and 106 

White, 2012; Harte and Newman, 2014; Supp and Ernest 2014; Bertram and Dewar, 2015; 107 

Newman et al., 2018), and will thus not be our focus here.  108 

Rather, our focus will be on the technical issue, which concerns the level of detail at 109 

which the community is described in the model before MaxEnt is even applied (He, 2010; 110 

Favretti, 2017). Changing the variables used to describe a community (e.g. resolving a 111 

community in greater detail) can dramatically alter the predictions that MaxEnt makes about the 112 

community, and yet there is no apparent a priori reason to prefer one choice of variables over 113 

another. As a result, a variety of choices have appeared in different models, usually with little 114 

justification. A comparison of these disparate approaches is required in order to better guide the 115 

application of MaxEnt models in ecology.  116 

Here we present a comparison of two MaxEnt-based models in ecology which have both 117 

successfully reproduced observed CSDs: METE (Maximum Entropy Theory of Ecology; Harte 118 

et al. 2008; Harte et al. 2009; Harte 2011; Harte and Newman, 2014) and VEG (Very Entropic 119 

Growth; Dewar and Porté, 2008; Bertram and Dewar, 2013; Bertram and Dewar 2015). These 120 

models are well suited for our objective of comparison because METE describes communities at 121 

the same coarse-grained level of detail as the SAD, whereas VEG is more detailed in that it 122 

resolves the abundance of each separate species.  123 

Crucially, this difference in community description allow us to explore the biological 124 

determinants of patterns of community assembly. Specifically, VEG distinguishes species by 125 

their per capita metabolic traits. By contrast, METE only distinguishes separate species by their 126 

abundances, and requires the total number of species present in the community as an input rather 127 
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than as a prediction. METE then predicts a distribution of metabolic rates for the individuals in a 128 

species as a function of its abundance, imparting functional traits statistically by abundance, 129 

rather than by species identity (Section 2.1). It is therefore not possible to investigate how 130 

different species-specific functional traits might modify community structure using METE. Thus, 131 

by comparing METE and VEG, we are able to investigate more transparently what sorts of 132 

functional trait assumptions are necessary for reproducing observed patterns.  133 

2. METE AND VEG: TWO MAXENT MODELS OF COMMUNITY ASSEMBLY 134 

2.1 METE  135 

The central quantity predicted by METE is a joint probability distribution 𝑅𝑀(𝑛, 𝜖) called 136 

the “ecosystem structure function.” By definition, 𝑅𝑀(𝑛, 𝜖)𝑑𝜖 is the joint probability that a 137 

species selected at random from a community has abundance 𝑛, and that an individual selected at 138 

random from a species with abundance 𝑛 has a metabolic requirement between 𝜖 and 𝜖 + 𝑑𝜖 139 

(Harte et al. 2008; Harte, 2011; Appendix A). The ecosystem structure function is closely related 140 

to the SAD: if we add together all of the possible metabolic requirements 𝜖 we obtain the 141 

probability distribution for the abundance of a randomly selected species, 𝑅𝑀(𝑛) =142 

∫ 𝑅𝑀(𝑛, 𝜖)𝑑𝜖; the SAD is then simply 𝑆𝑅𝑀(𝑛) where 𝑆 is the total number of species present in 143 

the community. Thus, 𝑅𝑀(𝑛, 𝜖) is a SAD that has been extended to also incorporate information 144 

about community metabolic structure.  145 

 METE assumes that 𝑅𝑀(𝑛, 𝜖) satisfies two constraints    146 

    ∑  ∫ 𝑛 𝑅𝑀(𝑛, 𝜖)
𝐸

𝜖=1
𝑑𝜖 = 𝑁/𝑆𝑁

𝑛=1    (1) 147 

    ∑  ∫ 𝑛 𝜖 𝑅𝑀(𝑛, 𝜖)
𝐸

𝜖=1
𝑑𝜖 = 𝐸/𝑆𝑁

𝑛=1 .   (2) 148 

In words, these constraints say that the total number of individuals in the community 149 

𝑆 ∑  ∫ 𝑛 𝑅𝑀(𝑛, 𝜖)
𝐸

𝜖=1
𝑑𝜖𝑁

𝑛=1  is equal to 𝑁, and the total community metabolic requirement 150 
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𝑆 ∑  ∫ 𝑛 𝜖 𝑅𝑀(𝑛, 𝜖)
𝐸

𝜖=1
𝑑𝜖𝑁

𝑛=1  is equal to 𝐸. 𝑅𝑀(𝑛, 𝜖) is then obtained by maximizing the Shannon 151 

entropy −∑𝑛 ∫ 𝑅𝑀 ln 𝑅𝑀  𝑑𝜖 subject to constraints (1) and (2), as well the constraint that 152 

𝑅𝑀(𝑛, 𝜖) sums to 1 (since it is a probability distribution). This maximization procedure gives 153 

     𝑅𝑀(𝑛, 𝜖) ∝  𝑒−𝜆1𝑛 −𝜆2𝑛𝜖   (3) 154 

where 𝜆1 and 𝜆2 are constants (Lagrange multipliers) with values chosen such that constraints (1) 155 

and (2) hold (for details, see Harte, 2011). The triplet of values N, E and S are the inputs to 156 

METE (note that we will not consider the area-scaling component of the full METE theory; 157 

Harte, 2011).  158 

 159 

2.2 VEG 160 

VEG is similar to METE in that it uses MaxEnt to infer community properties from a few 161 

constraints. Moreover, the VEG constraints are similar to METE’s (see below). The major 162 

feature that differentiates VEG is that it represents community structure in more detail. In VEG, 163 

species are distinguishable, whereas METE only specifies the proportion of species with each 164 

abundance 𝑛 via the ecosystem structure function (Fig. 1).  165 

 [FIGURE 1] 166 

In contrast to METE (which uses MaxEnt to infer the ecosystem structure function 167 

directly), VEG uses MaxEnt to predict the probability 𝑝(𝒏) that, when we take a snapshot of the 168 

community, we observe the species abundances  𝒏 = (𝑛1, 𝑛2, … ) (i.e. the species labeled 1 has 169 

abundance 𝑛1, and so on). In VEG, species’ abundances may be zero; the number of species 170 

actually present in a snapshot is the number of nonzero elements of 𝒏. VEG therefore predicts 171 

probabilities for the abundance of each species separately; consequently, VEG also predicts the 172 

expected number species that are present in the community. Species in VEG are also assigned 173 
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distinct functional traits: the individuals of species 𝑖 are assumed to have a metabolic 174 

requirement of 𝜖𝑖, where the species labels are chosen such that 𝜖1 ≤ 𝜖2 ≤ 𝜖3 …, and so on. 175 

Similar to METE, VEG assumes total abundance and total metabolic requirement 176 

constraints  177 

∑ ∑ 𝑛𝑖𝑖 𝑝(𝒏)𝒏   =  𝑁   (4) 178 

∑ ∑ 𝑛𝑖𝑖 𝜖𝑖𝑝(𝒏)𝒏   =  𝐸   (5) 179 

Since 𝑝(𝒏) represents the probability of observing the “snapshots” 𝒏, the probabilities can be 180 

interpreted as sample frequencies representing the proportion of time that the community spends 181 

with different abundance compositions 𝒏. Consequently, constraints (4) and (5) have a clear 182 

ecological interpretation in VEG as fixing the time-averaged total abundance and total metabolic 183 

requirement of the community to have the values 𝑁 and 𝐸 respectively; the latter can be 184 

interpreted as an expression of the long-term steady-state ecological balance between resource 185 

use (left-hand side of Eq. (5)) and supply (E, right-hand side of Eq. (5)). In contrast, the METE 186 

constraints (Eqs. (1) and (2)), which are statements about “information”, do not have a similarly 187 

straightforward ecological interpretation.   188 

 Again similarly to METE, 𝑝(𝒏) is obtained by maximizing the Shannon entropy 189 

− ∑ 𝑝(𝒏) ln 𝑝(𝒏)𝒏  subject to constraints (4), (5), and the constraint that 𝑝(𝒏) sums to 1. This 190 

maximization procedure gives 191 

𝑝(𝒏) ∝  𝑒− ∑ (𝜇1+𝜇2𝜖𝑖)𝑛𝑖𝑖   (6) 192 

where 𝜇1 and 𝜇2 are the Lagrange multipliers corresponding to constraints (4) and (5) 193 

respectively. Note that in Eq. (6), 𝑝(𝒏) depends on the spectrum of metabolic requirements 194 

present in the community 𝜖1 ≤ 𝜖2 ≤ ⋯ . Thus the inputs of VEG are N, E and the spectrum of 195 
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values 𝜖𝑖. In contrast to METE, the number of species (S) present in the community is an output 196 

of VEG, rather than an input. 197 

3 COMPARING METE AND VEG 198 

3.1 THE VEG ECOSYSTEM STRUCTURE FUNCTION 199 

In this section we give an intuitive derivation of the ecosystem structure function implied 200 

by VEG, which will be denoted 𝑅𝑉(𝑛, 𝜖) (a more rigorous mathematical derivation is given in 201 

Appendix B). This will allow us to directly compare the predictions of METE and VEG. 202 

When we sample a species at random from a community, all species present have the 203 

same probability of being selected. However, the metabolic requirement 𝜖 of the selected species 204 

is more likely to take some values than others due to two effects: (1) Trait availability. Among 205 

the species currently inhabiting the community’s broader geographic region, some values of 𝜖 206 

are more likely to occur than others due to intrinsic biophysical constraints on the traits 207 

determining 𝜖, and the region’s evolutionary history; (2) Environmental filtering (Shipley et al., 208 

2006). From the distribution of possible metabolic rates, some values of 𝜖 are more likely to be 209 

actually present in the community due to additional bias imposed by local environmental 210 

constraints (such as Eqs. (4) and (5)).  211 

VEG represents a special case in which there is no trait variation within species: all 212 

individuals in species 𝑖 have the same metabolic requirement 𝜖𝑖 (thus a VEG “species” is more 213 

appropriately interpreted as a functional type rather than a taxonomic unit; Bertram and Dewar, 214 

2013). Thus, the first effect above (trait availability) is represented by the fact that the metabolic 215 

spectrum 𝜖1 ≤ 𝜖2 ≤ ⋯ may be more densely packed at some values of 𝜖 than  at others. To 216 

represent this effect mathematically, we introduce the “density of species” distribution 𝜌(𝜖); 217 

𝜌(𝜖)𝑑𝜖 counts the number of metabolic requirement values (“species”) contained in the interval 218 
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(𝜖, 𝜖 + 𝑑𝜖). For comparison with METE, in which 𝜖 is a continuous variable, we assume that the 219 

metabolic requirement spectrum is sufficiently dense that we can approximate 𝜌(𝜖) as a 220 

continuous function of 𝜖. Intuitively, the shape of 𝜌(𝜖) represents the relative probabilities that a 221 

species selected at random out of all possible species that could be present in the community has 222 

a metabolic requirement within a given interval (Fig. 2). 223 

[FIGURE 2] 224 

Once a species has been sampled out of all possible species and its metabolic requirement 225 

has been found to be 𝜖, the probability that it has abundance 𝑛, denoted 𝑝(𝑛|𝜖), can then be 226 

straightforwardly calculated in VEG from Eq. (6) (from Appendix B, 𝑝(𝑛|𝜖) ∝ 𝑒−(𝜇1+𝜇2𝜖)𝑛). 227 

VEG also explicitly accounts for the second effect above (environmental filtering), through the 228 

Lagrange multipliers 𝜇1 and 𝜇2 that reflect the environmental constraints of Eqs. (4) and (5). 229 

To construct 𝑅𝑉(𝑛, 𝜖), which only refers to species that are actually present, we restrict 230 

our attention to 𝑛 ≥ 1. Thus, the joint probability of sampling a species with abundance 𝑛 from 231 

the community, and an individual from such a species with metabolic requirement 𝜖, is 232 

proportional to 𝜌(𝜖)𝑝(𝑛|𝜖), where 𝑛 ≥1. This gives 233 

𝑅𝑉(𝑛, 𝜖) ∝ 𝜌(𝜖)𝑝(𝑛|𝜖)   (7) 234 

The above argument leading to Eq. (7) for 𝑅𝑉 (and the more rigorous argument given in 235 

Appendix B) is quite general. It can be applied to obtain the ecosystem structure function for any 236 

model in which we know the density of species 𝜌(𝜖) (which need not be restricted to a species-237 

specific trait spectrum as in VEG), and which predicts abundance probabilities conditional on the 238 

trait values 𝑝(𝑛|𝜖) (whether those probabilities are predicted using MaxEnt or by other means).  239 

3.2 SPECIES ABUNDANCE DISTRIBUTIONS 240 
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A large number of ecological models have reproduced realistic SADs, including METE 241 

(Harte et al., 2008) and VEG (Bertram and Dewar, 2015). SAD comparisons consequently only 242 

have weak power to discriminate the predictions of different ecological theories (they are “weak 243 

tests”; McGill 2003, McGill et al. 2007). In particular, the SAD predictions of METE and VEG 244 

will not tell us much about their differences. It is interesting to demonstrate this “weak test” 245 

property of SADs explicitly in terms of the METE and VEG ecosystem structure functions. 246 

As noted in section 2.1, the SAD is obtained by integrating the ecosystem structure 247 

function over 𝜖 (the SAD is proportional to 𝑅(𝑛) = ∫ 𝑅(𝑛, 𝜖)𝑑𝜖). We therefore expect that the 248 

SAD will be to some extent insensitive to the exact manner in which 𝑅(𝑛, 𝜖) depends on 𝜖.  249 

In the case of METE, the predicted SAD is almost entirely independent of the value of 250 

𝐸/𝑆 in the metabolic constraint Eq. (2) for many of the most heavily studied SAD datasets (i.e. 251 

𝑅𝑀(𝑛) is independent of 𝜆2; Harte et al. 2008). This behavior represents the limiting case of 252 

large E, corresponding to resource-rich communities. Thus, in many cases of interest, METE 253 

produces SADs that are insensitive to the value of 𝐸/𝑆 (note, however, that the existence of the 254 

metabolic constraint Eq. (2) is necessary to get a Fisher log-series form for 𝑅𝑀(𝑛) =255 

∫ 𝑅𝑀(𝑛, 𝜖)𝑑𝜖 ∝
𝑒−𝜆1𝑛

𝑛
).  256 

VEG allows us investigate the “weak test” property in greater depth because we can 257 

independently change the form of 𝜌(𝜖) and check if this appreciably changes the VEG SAD. 258 

Suppose for illustrative purposes that the metabolic requirement spectrum has a power law form 259 

(Dewar and Porté, 2008) 260 

𝜌(𝜖) ∝ 𝜖𝛼   (8) 261 
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where 𝛼 is a free parameter. Our motivation for Eq. (8) is to have a simple one-parameter 262 

function in which we can control the relative density of species at low versus high 𝜖 (𝛼 = 0 263 

corresponds to a uniformly spaced spectrum; Fig. 2). Using Eq. (8), it can be shown that  264 

𝑅𝑉(𝑛) = ∫ 𝑅𝑉(𝑛, 𝜖)𝑑𝜖 ∝
𝑒−𝜇1𝑛

𝑛𝛼+1    (9) 265 

for all but the lowest abundance species (see Appendix C). Thus, although the exact quantitative 266 

shape of 𝑅𝑉(𝑛) does depend on 𝛼 (both explicitly in Eq. (9) and implicitly via the fact that 𝜇1and 267 

𝜇2 depend on 𝛼), 𝑅𝑉(𝑛) will qualitatively have the familiar “hollow curve” shape (McGill et al. 268 

2007) regardless of the particular choice of 𝛼. In particular, 𝛼 = 0 gives the Fisher log-series 269 

(similar to METE). Thus, since 𝜌(𝜖) represents the spectrum of functional traits, we can 270 

conclude that the shape of the VEG SAD is only marginally sensitive to the metabolic trait 271 

values of the species present.  272 

However, recall that VEG predicts the total number of species/functional types 𝑆 in the 273 

community (Sec. 2.2). This predicted 𝑆 is more sensitive to the assumed metabolic trait values 274 

than the SAD shape, and could differ from the observed value of S for given observed values of 275 

𝑁 and 𝐸. By contrast, METE uses the empirically observed value of 𝑆 to construct the METE 276 

SAD. 277 

3.3 METABOLIC-RANK DISTRIBUTIONS 278 

 In this section we compare the metabolic dependence of the two structure functions 279 

𝑅𝑉(𝑛, 𝜖) and 𝑅𝑀(𝑛, 𝜖). We do this in two ways: via the marginal distribution for individual 280 

metabolic rates 𝑅(𝜖) = ∑ 𝑅(𝑛, 𝜖)𝑛 , and via the individual-level energy distribution (IED) 281 

defined by Ψ(𝜖) =
𝑆

𝑁
∑ 𝑛𝑅(𝑛, 𝜖)𝑛  (Harte 2011; Newman et al., 2014). 𝑅(𝜖) is the probability 282 

that a species sampled at random from the community has metabolic rate 𝜖, while Ψ(𝜖) is the 283 

probability that an individual sampled at random from the community has metabolic requirement 284 
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𝜖. In contrast to the SAD (Section 3.1), 𝑅(𝜖) and Ψ(𝜖) are both sensitive to the shape of 𝜌(𝜖) in 285 

VEG. We can thus ask, what shape does 𝜌(𝜖) need to be to match metabolic data, and how does 286 

this 𝜌(𝜖) compare to the predictions of METE?  287 

 Following Harte et al. (2017), we calculate and plot Ψ(𝜖) cumulatively such that log 288 

metabolic rate appears on the vertical axis, and the horizontal axis is the proportion of the 289 

population with metabolic rate greater than or equal to a given 𝜖 (i.e. the rank of the 290 

corresponding individual). We assumed a power law spectral density as in Eq. (8), taking 𝛼 as a 291 

free parameter to be fitted, and then minimized the least-squares difference between measured 292 

log metabolic rates and the predictions of VEG. We repeated this procedure for the three datasets 293 

considered in Harte et al. (2017): Barro Colorado Island trees (Hubbell et al. 2005), Hawaiian 294 

island arthropods (Gruner, 2007), and Rocky Mountain subalpine meadow plants (Newman et al. 295 

2014).  296 

In all three datasets we found values of 𝛼 that give superior Ψ(𝜖) fits to METE (bottom 297 

three panels of Fig. 3; note the logarithmic horizontal axis). This is no great victory given that we 298 

have introduced a free parameter 𝛼 that is not available to METE, but it confirms that the power 299 

law form for 𝜌(𝜖) gives plausible metabolic predictions. METE and VEG both track the middle 300 

and higher ranks closely, but at lower ranks the VEG metabolic rates are too low whereas the 301 

METE predictions are too high. The corresponding marginal metabolic distributions 𝑅𝑀(𝜖) and 302 

𝑅𝑉(𝜖) (upper panels in Fig. 3) confirm that METE assigns higher probabilities to the highest 303 

values of  𝜖 (𝑅𝑀(𝜖) has a longer tail).  304 

 305 

[FIGURE 3] 306 

 307 
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4 DISCUSSION  308 

A key insight of the above analysis is that the ecosystem structure 𝑅(𝑛, 𝜖) is sensitive to 309 

the shape of the density of species distribution represented mathematically by 𝜌(𝜖). In the case 310 

of VEG, Eq. (7) implies 𝑅𝑉(𝜖) ∝ 𝜌(𝜖) ∑ 𝑝(𝑛|𝜖)𝑛≥1 = 𝜌(𝜖)[1 − 𝑝(0|𝜖)]. This expression clearly 311 

shows the two effects introduced at the start of Sec. 3.1: 𝑅(𝜖) is the density of species 𝜌(𝜖) 312 

multiplied by the probability 1 − 𝑝(0|𝜖) that a species with metabolic rate 𝜖 is actually present 313 

in the community.  314 

Whereas VEG requires us to specify the form of 𝜌(𝜖), METE infers 𝑅𝑀(𝑛, 𝜖) using only 315 

MaxEnt and the constraint equations (1) and (2). In this sense METE is a null model for the 316 

contribution of functional traits to community patterns, treating functional traits as “random 317 

noise” within the community constraints imposed by 𝑆, 𝑁, and 𝐸. However, METE only infers 318 

the trait distribution as would be observed in already-assembled communities. METE refers only 319 

to species that are already present in the community, and does not give an expression for 𝑝(0|𝜖); 320 

it is therefore not possible to compute the density of species 𝜌(𝜖) implicitly inferred by METE. 321 

Nonetheless, observed ecological communities generally have a large proportion of individuals 322 

with low metabolic requirement. This implies 𝑝(0|𝜖) ≈ 0 and thus 𝑅(𝜖) ≈ 𝜌(𝜖) for low 𝜖 (see 323 

the convergence of 𝑅(𝜖) and 𝜌(𝜖) in VEG in the upper panels of Fig. 3), giving us a glimpse of 324 

the 𝜌(𝜖) predictions of METE.  325 

VEG explicitly separates the trait values that are possible from the trait values that are 326 

actually observed post-assembly. Since 𝜌(𝜖) is an input, VEG represents an explicit model for 327 

the contribution of functional traits to CSDs. This begs the question of what then determines 328 

𝜌(𝜖) as the appropriate choice in VEG. There are at least two answers:  329 
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(i) On short timescales, 𝜌(𝜖) may simply express the mix of potential species that are 330 

available to the community at any given time, as in biodiversity manipulation 331 

experiments where a given restricted set of species is thrown together and left to self-332 

organize. This short-term 𝜌(𝜖) could be highly contingent on the community’s recent 333 

history, and could have a strong effect on metabolic patterns following disturbance.  334 

(ii) On longer timescales, 𝜌(𝜖) may express the totality of conceivable species that might 335 

be available to the community. In this case 𝜌(𝜖) would depend on how we define 336 

species in the first place. With reference to Eq. (7), the choice 𝛼 = 0 corresponds to 337 

defining “species” by their metabolic requirement, i.e. discretize 𝜖–space into equal 338 

intervals of width ∆𝜖 and define species 𝑖 to be the set of individuals whose metabolic 339 

requirement 𝑒 lies between (𝑖 − 1)∆𝑒 and 𝑖∆𝑒. Alternatively, “species” could be 340 

defined via biomass (in which case the value of 𝛼 in Eq. (8) may reflect metabolic 341 

scaling as in Dewar & Porté 2008); or via other individual traits (t) on which 342 

metabolic requirement depends, 𝜖(𝑡). 343 

In either case, VEG opens up ways to understanding the link between functional traits and CSDs 344 

that are simply not available to METE.  345 

 One of METE’s great strengths is that it only requires three parameters 𝑆, 𝑁 and 𝐸 for all 346 

of its predictions. How might the above insights be used to improve the predictions of METE 347 

without damaging this exceptional parsimony? The answer may lie in the inclusion of a prior 348 

distribution for 𝜖 representing a contribution from the density of species 𝜌(𝜖), which plays a role 349 

in ecology analogous to the “density of states” in physics describing the distribution in energy-350 

space of available quantum-mechanical particle states. The upper panels of Fig. 3 suggest that 351 
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this trait distribution should give less weight to the higher values of 𝜖, and also to the lower 352 

values of 𝜖 in the Barro Colorado and Hawaiian communities.  353 
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FIGURES 433 

 434 

Figure 1. Three levels of detail commonly used for describing ecological communities. At the 435 

greatest level of detail (bottom), the distinct identities of individuals and their spatial locations 436 

are known. At the intermediate levels of detail found in many well-mixed models such as Lotka-437 

Volterra models (middle), the abundance of each distinct species is known. At the lowest level of 438 

detail and highest level of statistical aggregation (top), species identities are lost, and the SAD 439 

provides the only description of species diversity. 440 

 441 

 442 

 443 

444 
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Figure 2. The function 𝜌(𝜖) counts the local density of metabolic rates in the assumed spectrum 445 

of possible rates 𝜖1 ≤ 𝜖2 ≤ ⋯ in VEG. It represents the relatively probability that a randomly 446 

selected VEG “species” has metabolic rate 𝜖 when sampled from all possible “species”.  447 

 448 

 449 

 450 
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Figure 3.  Comparison of METE and VEG rank-metabolism relationships in multiple 451 

communities: Barro Colorado Island trees (BCI; 𝛼 = −0.52, 𝜌(1) = 104), Hawaiian island 452 

arthropods (Hawaii; 𝛼 = −0.12, 𝜌(1) = 102), and Rocky Mountain subalpine meadow plants 453 

(RMBL; 𝛼 = −0.63, 𝜌(1) = 102) communities. Each upper/lower panel pair shows the 𝑅(𝜖) 454 

and rank-𝜖 curves for the same METE and VEG ecosystem structure functions. 455 

 456 

 457 

  458 
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APPENDIX A: NOTE ON THE DEFINITION OF THE ECOSYSTEM STRUCTURE 459 

FUNCTION  460 

Our definition of the ecosystem structure function differs slightly from that given in Harte et al. 461 

(2008), which reads “[The ecosystem structure function] is the probability that if a species is 462 

picked at random [...], then it has abundance n and if an individual is picked at random from that 463 

species, then its metabolic requirement is in the range 𝜖, 𝜖 + 𝑑𝜖” (our italics). The Harte et al. 464 

(2008) definition suggests that METE keeps track of species identity. In fact, 𝑅𝑀(𝑛, 𝜖) depends 465 

only on 𝑛 and 𝜖, and not species identity. Thus, 𝑅𝑀(𝜖|𝑛) = 𝑅𝑀(𝑛, 𝜖)/ ∑ 𝑅𝑀(𝑛, 𝜖)𝑛  is the 466 

probability of picking an individual with metabolic requirement 𝜖 conditional on it coming from 467 

a species with abundance 𝑛. There is no way within METE to distinguish between different 468 

species with the same abundance 𝑛, and therefore there is no reason to specify which species the 469 

individual is selected from in the definition of the ecosystem structure function (Favretti, 2017).  470 

  471 
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APPENDIX B: DERIVING THE ECOSYSTEM STRUCTURE FUNCTION FROM 472 

DISTINGUISHABLE SPECIES 473 

In section 2.1, the METE structure function 𝑅𝑀 was inferred directly from community-level 474 

constraints. Here we derive an analogous VEG structure function 𝑅𝑉(𝑛, 𝜖).  475 

We start by defining the probability distribution 𝑃(𝑛, 𝜖, 𝑖, 𝒏) as follows: 𝑃(𝑛, 𝜖, 𝑖, 𝒏)𝑑𝜖 is 476 

the joint probability that the community has species abundances 𝒏, that a species picked at 477 

random from the community has species label 𝑖, that this chosen species has abundance 𝑛𝑖 = 𝑛, 478 

and that an individual from this chosen species has metabolic requirement in the interval (𝜖, 𝜖 +479 

𝑑𝜖). 𝑅𝑉(𝑛, 𝜖) is then obtained by marginalizing with respect to 𝑖 and 𝒏, i.e. 𝑅𝑉(𝑛, 𝜖) =480 

∑ ∑ 𝑃(𝑛, 𝜖, 𝑖, 𝒏)𝒏𝑖  where 𝑛 ≥ 1. 481 

To marginalize 𝑃, we first write it as a product of conditional distributions 482 

𝑃(𝑛, 𝜖, 𝑖, 𝒏) = 𝑃(𝜖|𝑛, 𝑖, 𝒏)𝑃(𝑛|𝑖, 𝒏)𝑃(𝑖|𝒏)𝑃(𝒏). (B1) 483 

Here 𝑃(𝒏) = 𝑝(𝒏) is the probability that the community has abundance vector 𝒏, 𝑃(𝑖|𝒏) =484 

(1 − 𝛿𝑛𝑖

0 )/𝑆(𝒏) is the probability that a species picked from a community with abundances 𝒏 485 

has species label 𝑖 (i.e. 0 if species 𝑖 is absent, 1/𝑆(𝒏) if present),  𝑃(𝑛|𝑖, 𝒏) = 𝛿𝑛𝑖

𝑛   is the 486 

probabilty that species 𝑖 has abundance 𝑛 given the species abundances are 𝒏, and 𝑃(𝜖|𝑛, 𝑖, 𝒏)𝑑𝜖 487 

is the probability that an individual picked from species 𝑖 has metabolic requirement in the 488 

interval (𝜖, 𝜖 + 𝑑𝜖) given species 𝑖 has abundance 𝑛 and the community abundances are 𝒏. We 489 

thus obtain 490 

𝑅𝑉(𝑛, 𝜖) = ∑ ∑ 𝑃(𝜖|𝑛, 𝑖, 𝒏)𝛿𝑛𝑖

𝑛 (1 − 𝛿𝑛𝑖

0 )𝑝(𝒏)/𝑆(𝒏)

𝒏𝑖

 492 

= ∑ ∑ 𝑃(𝜖|𝑛, 𝑖, 𝒏)𝛿𝑛𝑖

𝑛 𝑝(𝒏)/𝑆(𝒏)

𝒏𝑖

          (B2) 493 

where we have used the fact that 𝛿𝑛𝑖

𝑛 (1 − 𝛿𝑛𝑖

0 ) = 𝛿𝑛𝑖

𝑛  for 𝑛 ≥  1.  491 
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In the case of VEG, all individuals in species 𝑖 have the same metabolic requirement 𝜖𝑖, 494 

and so 𝑃(𝜖|𝑛, 𝑖, 𝒏) = 𝛿(𝜖 − 𝜖𝑖) where 𝛿 is the Dirac delta function (i.e. the probability that a 495 

randomly selected individual from species 𝑖 has metabolic requirement 𝜖 is 1 in the immediate 496 

vicinity of 𝜖𝑖, and is 0 otherwise). Thus, from (B2) we have 497 

𝑅𝑉(𝑛, 𝜖) = ∑ 𝛿(𝜖 −  𝜖𝑖) ∑
𝛿𝑛𝑖

𝑛 𝑝(𝒏)

𝑆(𝒏)
𝒏𝑖

            (B3) 503 

An ecologically important special case of (B3) occurs when the variation in the number of 498 

species present from one snapshot to the next is small relative to the expected number of species, 499 

such that 𝑆(𝒏) is approximately constant with value given by 𝑆 = ∑ 𝑆(𝒏)𝒏 𝑝(𝒏). This occurs, 500 

for example, if most of the species present have large expected abundances. Eq. (B3) then 501 

simplifies to 502 

𝑅𝑉(𝑛, 𝜖) =
1

𝑆
∑ 𝛿(𝜖 −  𝜖𝑖)

{𝑖|𝑛𝑖 ≥ 0}

𝑃(𝑛𝑖 = 𝑛)            (B4) 504 

where 𝑃(𝑛𝑖 = 𝑛) = ∑ 𝛿𝑛𝑖

𝑛 𝑝(𝒏)𝒏  is the probability that species 𝑖 has abundance 𝑛.  505 

In VEG, we have from Eq. (6) (Bertram and Dewar, 2015) 506 

𝑃(𝑛𝑖 = 𝑛) = (1 − 𝑒−(𝜇1+𝜇2𝜖𝑖))𝑒−(𝜇1+𝜇2𝜖𝑖)𝑛. 507 

To make it explicit that this probability depends on the metabolic requirement of species 𝑖, we 508 

use the notation 𝑝(𝑛|𝜖𝑖) ≡ 𝑃(𝑛𝑖 = 𝑛) (that is, 𝑃(𝑛𝑖 = 𝑛) in VEG is the probability that a species 509 

has abundance 𝑛 given that its metabolic requirement is 𝜖𝑖). 510 

Since the ecosystem structure function is a probability density in the continuous variable 511 

𝜖, we can introduce a spectral density 𝜌(𝜖)𝑑𝜖 that counts the number of metabolic requirement 512 

levels 𝜖𝑖 in each interval (𝜖, 𝜖 + 𝑑𝜖). From Eq. (B4), 𝑅𝑉(𝑛, 𝜖) can then be written in the form 513 

𝑅𝑉(𝑛, 𝜖) =
𝜌(𝜖)𝑝(𝑛|𝜖)

𝑆 
 514 
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APPENDIX C: THE VEG SPECIES ABUNDANCE DISTRIBUTION 515 

Assuming a power–law density of states 𝜌(𝜖) ∝ 𝜖𝛼, we have from Eq. (7)  516 

𝑅(𝑛) = ∫ 𝑅(𝑛, 𝜀)𝑑𝜀
∞

0

∝ ∫ 𝜀𝛼(1 − 𝑒−(𝜇1+𝜇2𝜖))𝑒−(𝜇1+𝜇2𝜖)𝑛𝑑𝜀
∞

0

 517 

By making the substitution 𝑥 = 𝜇2𝜀𝑛, the integral is found to be: 518 

∫ 𝜀𝛼(1 − 𝑒−(𝜇1+𝜇2𝜖))𝑒−(𝜇1+𝜇2𝜖)𝑛𝑑𝜀
∞

0

= Γ(𝛼 + 1)
𝑒−𝜇1𝑛

(𝜇2𝑛)𝛼+1
[1 − 𝑒−𝜇1 (

1

1 + 1/𝑛
)

𝛼+1

] 519 

where 520 

Γ(𝛼 + 1) = ∫ 𝑥𝛼𝑒−𝑥𝑑𝑥
∞

0

 521 

is the gamma function. 522 

For large 𝑛 we have 1/(1 + 1/𝑛) ≈ 1 so that: 523 

𝑅(𝑛) ∝
𝑒−𝜇1𝑛

(𝜇2𝑛)𝛼+1
 524 

 525 

 526 
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