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Abstract23

The mammalian placenta is both the physical interface between mother and fetus, and the source24

of endocrine signals that target the maternal hypothalamus, priming females for parturition,25

lactation and motherhood. Despite the importance of this connection, the effects of altered26

placental signaling on the maternal brain are unstudied. Here, we show that placental dysfunction27

alters gene expression in the maternal brain, with the potential to affect maternal behavior. Using28

a cross between the house mouse and the Algerian mouse in which hybrid placental development29

is abnormal, we sequenced late gestation placental and maternal medial preoptic area30

transcriptomes and quantified differential expression and placenta-maternal brain co-expression31

between normal and hybrid pregnancies. The expression of Fmn1, Drd3, Caln1 and Ctsr was32

significantly altered in the brains of females exposed to hybrid placentas. Most strikingly,33

expression patterns of placenta-specific gene families and Drd3 in the brains of house mouse34

females carrying hybrid litters matched those of female Algerian mice, the paternal species in the35

cross. Our results indicate that the paternally-derived placental genome can influence the36

expression of maternal-fetal communication genes, including placental hormones, revealing a37

previously unrecognized effect of the offspring's father on the mother’s brain.38
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Introduction39

The placenta is a unique, transient organ shared by two organisms. Placental morphology is40

surprisingly diverse across vertebrates and is subject to rapid evolutionary change and41

convergent evolution (Blackburn 1993, Reznick et al. 2002, Roberts et al. 2016, Armstrong et al.42

2017). In most eutherian mammals, including mice and humans, successful blastocyst43

implantation relies on endometrial invasion by the embryonic trophoblast cells that give rise to44

the mature placenta (Cross et al. 1994). As such, the placenta provides the closest physical and45

molecular link between mother and offspring seen in any animal (Wagner et al. 2014). This46

intimate connection promotes an array of maternal-fetal interactions, including bidirectional47

hormonal regulation and even the exchange of entire cells. These interactions are not spatially48

limited, but extend to both the fetal and the maternal brain (Bridges et al. 1996, Ladyman et al.49

2010, Boddy et al.2015).50

Throughout pregnancy the placenta mediates the regulation of resource allocation,51

immune tolerance, fetal development and, importantly, hormonal priming of the maternal brain.52

A key subset of placenta-secreted molecules reaches the maternal brain, priming maternal53

physiology for parturition and lactation, and promoting the onset of maternal behaviors in late54

gestation. In rodents, these placental molecules mainly target the medial preoptic area (MPoA) in55

the hypothalamus (Bridges et al. 1996, Mann and Bridges 2001, Larsen and Grattan 2012),56

which has been characterized as the central hub of parenting behavior (Kohl and Dulac 2018).57

Receptors for key pregnancy hormones and neurotransmitters, including estrogen, prolactin and58

dopamine, are highly expressed in this area and interact with ligands of both maternal and59

placental origin (Numan and Insel 2003).60
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Two classes of placental genes are of particular importance to the interaction between61

placenta and maternal brain: imprinted genes (IGs) and placenta-specific gene families (PSFs).62

IGs and PSF genes have overlapping expression patterns, especially in the placental endocrine63

compartment (Tunster et al. 2013). IGs are exclusively or predominantly expressed from one64

allele, and are highly enriched in placenta and brain. The silencing or repression of the second65

allele is determined by opposing, heritable epigenetic marks (“imprints”) in maternal and66

paternal germ cells, such that some IGs are maternally imprinted and paternally expressed,67

whereas others are paternally imprinted and maternally expressed (Reik and Walter 2001,68

Ferguson-Smith 2011). During pregnancy, IGs are critical to placental development and function,69

maintaining the balance between maternal supply and embryonic demand, and regulating70

maternal-fetal exchange (Constancia et al. 2005, Lefebvre 2012, Tunster et al. 2013).71

PSFs arose through lineage-specific gene duplication events during placental evolution72

(Rawn and Cross 2008). In rodents, these are the prolactin gene family (placental lactogens73

(Prls)), placental cathepsin proteases and their inhibitors (PECs) and pregnancy specific74

glycoproteins (PSGs) (Zebhauser et al. 2005, Soares et al. 2007, Mason 2008). PSF gene75

products are mainly expressed from the placental endocrine compartment and many are secreted76

into the maternal bloodstream; key functions include placental development, immunoregulation,77

and physiological and neurological priming of the maternal organism (Rawn and Cross 2008).78

Most notably, a subset of PRLs binds prolactin receptors in the maternal MPoA and affects79

maternal endocrine state and behaviour (Larsen and Grattan 2012). IGs are implicated in80

regulating PSF secretion via their effects on the structure and function of the placental endocrine81

compartment (John 2017). However, our current understanding of the role of IGs in PSF82
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signaling is rudimentary, and the relationship between gene expression in placenta and the83

maternal MPoA is uncharted.84

The majority of the placenta, including the endocrine compartment, is derived from85

embryonic tissue. Placental representation of both parental genomes sets the stage for conflict86

(maternal-paternal and parent-offspring), and for coadaptation (mother-offspring), with87

imprinted genes uniquely positioned to mediate both types of interactions (Moore and Haig 1991,88

Wolf and Hager 2006, Keverne and Curly 2008, Haig 2014). However, while evolutionary89

models for imprinted gene expression abound (reviewed in Patten et al. 2014), few have90

considered the interaction between paternally-derived placental signals and signal reception in91

the maternal brain (Haig 1996, Creeth et al. 2018).92

Here, we use a natural hybrid system to explore the effects of placental dysregulation on93

gene expression in the maternal brain. Over- or under-growth that depends on the direction of the94

cross is a signature of disrupted imprinting in mammalian hybrids (Vrana 2007). This pattern is95

documented in several orders (Gray 1972), with the best-studied examples in rodents (multiple96

species in the genera Peromyscus, Mus and Phodopus (Zechner et al. 1996, Vrana et al. 1998,97

Brekke and Good 2014)). Parent-of-origin growth effects in the cross between the house mouse,98

Mus m. domesticus (Dom) and the Algerian mouse, M. spretus (Spret), were first described over99

20 years ago: placentas are undersized when the mother is Dom and the father is Spret, and100

severely oversized in the reciprocal cross (Zechner et al. 1996). Subsequent studies confirmed101

altered expression and methylation of candidate IGs, and disrupted placental organization102

(Hemberger et al. 1999, Zechner et al. 2002, 2004, Shi et al. 2005). Specifically, the placental103

endocrine compartment (or junctional zone) was shown to be reduced and disorganized (Kurz et104

al. 1999). However, the extent of placental misexpression has not been measured on a genome105
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scale, and this system’s potential to uncover the maternal consequences of altered placental106

signaling has not been considered.107

The characteristics of this classic system, together with the availability of high quality108

genomes for both parental species (Keane et al. 2011), make the cross between Dom and Spret an109

excellent model in which to explore the effects of placental disruptions on the maternal brain. By110

comparing MPoA expression between females of the same species that differ only in the type of111

pregnancy/placenta they experience (hybrid vs. conspecific), we specifically isolate the effect of112

placental gene expression differences on the maternal brain (Fig. 1). Characterization of altered113

gene expression at the maternal-fetal interface provides insight into the mechanisms of maternal-114

fetal communication, the contribution of the paternal genome to this interaction, and identifies115

promising candidate genes for future evolutionary and biomedical work.116

117

Results118

To study the relationship between placenta and maternal MPoA on a molecular level we119

produced three crosses resulting in three types of pregnancy: Dom x Dom (Dom pregnancy, n=5),120

Dom x Spret (hybrid pregnancy, n=5) and Spret x Spret (Spret pregnancy, n=5) (in all crosses,121

female is first). For each type of cross we produced 5 biological replicates and extracted the122

maternal MPoA and placentas from each pregnant female in late gestation at embryonic day (e)123

17.5. During late gestation the effect of placental signaling on the maternal MPoA is specifically124

important for the onset of maternal care at parturition (Bridges et al. 1996, Mann and Bridges125

2001, Larsen and Grattan 2012). We sequenced the maternal MPoA transcriptome and the126

placental transcriptomes of 1 male and 1 female per mother (n=9-10/type of pregnancy, hybrid127

pregnancy female placentas n=4), and evaluated differential expression between all pregnancy128
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types (Fig. 1). Because the maternal brain is exposed to the placental signals of both sexes129

simultaneously, male and female placental expression was analyzed jointly. Additionally, we130

assessed co-expression between the two tissues for each type of pregnancy and determined the131

differences in co-expression between pregnancy types (Fig. 1).132

133

Figure 1. Experimental design. Schematic representation of the comparisons performed to test for differential gene134
expression in the medial preoptic area of the maternal brain and the placenta during late gestation.Mus m.135
domesticus is depicted in red and Mus spretus in blue. Hybrid tissue is indicated by a combination of red and blue.136
Solid arrows indicate differential gene expression analysis. Dashed arrows indicate co-expression analysis.137

138

Differential expression in the placenta139

We tested for differential expression in three pairwise comparisons: hybrid vs. Dom, hybrid vs.140

Spret, and Dom vs. Spret placentas. For placental comparisons, only genes with log2 fold change141

(LFC) in expression ≥ 0.5 (1.5 times higher or lower expression), and Benjamini-Hochberg-142

corrected p≤0.05, were considered significantly differentially expressed (DE). We define143

transgressive expression in hybrids as expression that is significantly higher or lower compared144
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to both parental species. Hybrid genes that were DE compared to Dom but not to Spret are145

defined as having Spret-like expression patterns, and vice versa.146

In hybrid placentas 9.73% of all tested genes were expressed higher and 7.79% lower147

compared to Dom placentas (up: 1,781/18,298, including 11 IGs; down: 1,426/18,298, including148

3 IGs) (Fig. 2, Supplemental Fig. S1 and Supplemental Dataset S1). Compared to Spret placentas,149

16.32% of genes were expressed higher and 9.6% lower in hybrids (up: 3,036/18,529, including150

16 IGs; down: 1,801/18,529, including 7 IGs) (Fig. 2, Supplemental Fig. S2, Supplemental151

Dataset S1). Thirty-two percent of all tested genes were DE between Dom and Spret (up:152

4,014/19,079, including 19 IGs; down: 3,278/19,079, including 13 IGs) (Supplemental Fig. S3,153

Supplemental Dataset S1).154

To explain hybrid placental phenotypes that are not intermediate to both parents, genes155

with transgressive expression are of specific interest. We found 275 genes that were expressed at156

higher, and 167 at lower, levels in hybrids compared to both parental species (Fig. 2A).157

Transgressively upregulated genes were significantly enriched for B-cell receptor activation and158

integrin cell surface interaction pathways (Fig. 2S, Supplemental Dataset S1). Interestingly,159

transgressively down-regulated genes were enriched for prolactin and growth hormone receptor160

signaling, ERBB signaling, and cytokine signaling in immune system, among others (Fig. 2A,161

Supplemental Dataset S1). Many Prls are involved in these pathways, along with other genes.162

PSF genes were highly overrepresented among DE genes in hybrids compared to both Dom163

(Fisher’s exact test: p<0.001, odds ratio = 5.65) and Spret (p<0.001, odds ratio = 3.41). Multiple164

members of these gene families were misexpressed in the hybrid placenta, with the majority165

being expressed lower compared to both parental species (14 transgressively lower, 7 DE166

intermediate) (Table 1).167
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Notably, approximately twice as many genes in hybrid placentas were uniquely DE168

relative to Spret (3,271) as opposed to Dom (1,659) (Fig. 2A). Thus, the general expression169

pattern in hybrid placentas was more similar to the maternal species. Dom-like expressed genes170

were enriched for multiple immune related pathways, together with angiogenesis, vascular171

development and hemostasis related terms, among others (Supplemental Dataset S1).172

Genes with a Spret-like expression pattern in hybrid placentas are of particular interest,173

since these have the potential to alter communication with the Dom maternal brain. Of the 1,659174

genes with Spret-like expression (Fig. 2A), 12 were PSF genes and 6 were IGs (Tables 1 and 2).175

Spret-like expressed genes in the hybrid were enriched for WNT signaling and extracellular176

matrix organization pathways, among others (Fig. 2A, Supplemental Dataset S1).177

IGs were significantly overrepresented among hybrid DE genes compared to both Spret178

(Fisher’s exact test: p=0.02, odds ratio=0.59) and Dom (p=0.03, odds ratio=0.55). Three IGs179

(Tnfrsf23, Phlda2 and Klf14) were transgressively upregulated and two, (Ascl2 and Sfmbt2) were180

transgressively down-regulated. Two additional IGs, Tspan32 and Th, were significantly DE181

compared to both parental species but intermediate between the two. Five of these misexpressed182

IGs belong to the same imprinting cluster (IC2) on the distal part of mouse chromosome 7 (dist7),183

and are normally maternally expressed (Table 2, Supplemental Dataset S1).184

185
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186

Table 1. Differential expression of PSF genes in hybrid placenta compared to both parental species

Chr. Hybrid vs. Dom placenta Hybrid vs. Spret
placenta Hybrid vs. both

parental speciesLFC Stat padj LFC Stat padj
Prl3c1 13 -1.60 -7.81 <0.001 -2.31 -8.78 <0.001 Transgressive lower
Prl7d1 13 -0.95 -7.80 <0.001 -0.93 -4.36 <0.001 Transgressive lower
Prl2c5 13 -0.89 -7.04 <0.001 -1.26 -5.75 <0.001 Transgressive lower

Ceacam12 7 -0.87 -4.72 <0.001 -0.88 -3.73 <0.001 Transgressive lower
Ctsm 13 -0.82 -3.19 0.01 -1.22 -4.24 <0.001 Transgressive lower
Prl7a1 13 -0.82 -3.21 0.01 -1.72 -5.57 <0.001 Transgressive lower
Psg25 7 -0.76 -3.45 <0.001 -1.44 -5.54 <0.001 Transgressive lower
Cts3 13 -0.76 -3.01 0.01 -1.55 -5.94 <0.001 Transgressive lower
Prl2c3 13 -0.75 -4.64 <0.001 -1.36 -3.58 <0.001 Transgressive lower
Psg28 7 -0.73 -3.26 0.01 -0.62 -2.38 0.04 Transgressive lower
Prl4a1 13 -0.72 -2.80 0.02 -1.46 -5.20 <0.001 Transgressive lower
Prl7a2 13 -0.71 -2.91 0.01 -1.69 -6.09 <0.001 Transgressive lower
Prl2b1 13 -0.64 -3.64 <0.001 -1.26 -7.05 <0.001 Transgressive lower
Prl2a1 13 -0.59 -3.45 <0.001 -1.41 -5.30 <0.001 Transgressive lower

Cts7 13 -3.68 -13.40 <0.001 3.34 7.92 <0.001 Intermediate
Prl3d1 13 -3.39 -21.70 <0.001 2.41 5.89 <0.001 Intermediate
Ceacam5 7 -1.47 -8.01 <0.001 2.25 10.25 <0.001 Intermediate
Ctsr 13 -0.68 -6.29 <0.001 0.83 6.43 <0.001 Intermediate
Psg20 7 1.43 6.58 <0.001 -2.13 -7.59 <0.001 Intermediate
Psg22 7 2.26 11.63 <0.001 -2.17 -9.72 <0.001 Intermediate
Ceacam3 7 2.73 11.03 <0.001 -1.67 -6.30 <0.001 Intermediate

Cts6 13 -0.97 -7.65 <0.001 -0.12 -0.97 0.46 Spret-like expression
Prl2c1 13 -1.49 -7.78 <0.001 0.43 1.39 0.26 Spret-like expression
Psg26 7 -0.92 -3.80 <0.001 0.46 1.97 0.10 Spret-like expression
Psg27 7 -0.90 -4.08 <0.001 -0.36 -1.50 0.22 Spret-like expression
Prl7c1 13 -0.84 -2.54 0.03 0.05 0.11 0.95 Spret-like expression
Psg19 7 -0.79 -3.39 <0.001 -0.08 -0.34 0.82 Spret-like expression
Prl3d2 13 -0.74 -2.54 0.03 -0.48 -1.11 0.39 Spret-like expression

Ceacam11 7 -0.73 -3.91 <0.001 -0.43 -1.88 0.12 Spret-like expression
Psg29 7 -0.67 -2.85 0.02 -0.30 -0.96 0.46 Spret-like expression

Ceacam15 7 1.24 4.17 <0.001 -0.50 -1.79 0.14 Spret-like expression
Prl3b1 13 -1.10 -10.71 <0.001 0.41 3.05 0.01 Spret-like expression
Tpbpa 13 -0.58 -3.64 <0.001 -0.49 -2.38 0.04 Spret-like expression

Chr.=Chromosome, DE=differential expression, LFC=log2 Fold Change of expression, Padj=adjsted p-value according to
Benjamini-Hochberg method, Stat=Wald test (DESeq2).
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187

Figure 2. Placental gene expression. Summary of results of differential gene expression (DE) analysis between Mus188
m. domesticus (Dom), Mus spretus (Spret) and hybrid placentas. (A) Venn diagram indicating the overlap of189
differentially expressed genes between the comparisons hybrid vs. Dom and hybrid vs. Spret; up = genes expressed190
higher in hybrids compared to parental species, down = genes expressed lower in hybrids compared to parental191
species. Genes expressed higher or lower compared to both parental species (transgressive expression) and genes192
with Spret-like expression in the hybrid are marked in the diagram. Results of pathway overrepresentation193
(Reactome, version 58,Mi et al. 2017) are provided in connected text boxes. Volcano plot of DE analysis results of194
(B) hybrid vs. Dom and (C) hybrid vs. Spret placentas. Significantly differentially expressed genes with FDR ≤ 0.05195
and log2 fold change ≥ 0.5 are depicted in red. Imprinted genes are indicated in blue and placenta-specific gene196
family genes in yellow.197

198

199

200

201

202

203
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Table 2. Differential expression of imprinted genes in hybrid placenta compared to both parental species

IC/Chr.
Hybrid vs. Dom

placenta
Hybrid vs. Spret placenta Hybrid vs. both parental

species
expressed
allele

LFC Stat padj LFC Stat padj
Phlda2 dist7-IC2 0.97 5.39 <0.001 1.09 5.44 <0.001 Transgressive higher Maternal
Klf14 prox6 0.67 5.01 <0.001 1.06 6.29 <0.001 Transgressive higher Maternal
Tnfrsf23 dist7-IC2 0.59 3.57 <0.001 1.97 9.02 <0.001 Transgressive higher Maternal

Tspan32 dist7-IC2 -0.66 -3.11 0.01 2.01 6.43 <0.001 Intermediate Maternal
Th dist7-IC2 0.69 2.48 0.04 -2.28 -7.76 <0.001 Intermediate Maternal

Ascl2 dist7-IC2 -0.96 -3.85 <0.001 -1.28 -4.90 <0.001 Transgressive lower Maternal
Sfmbt2 2 -0.56 -4.69 <0.001 -0.67 -6.30 <0.001 Transgressive lower Paternal

Magel2 cent7 0.61 3.81 <0.001 0.48 2.25 0.06 Spret-like expression Paternal
Dcn 10 0.63 2.45 0.04 -0.06 -0.16 0.92 Spret-like expression Maternal
Nap1l5 prox6 0.82 2.63 0.03 0.31 0.91 0.49 Spret-like expression Paternal
Grb10 prox11 0.83 8.65 <0.001 -0.06 -0.47 0.74 Spret-like expression Maternal
Nnat dist2 0.84 3.29 <0.001 -0.07 -0.27 0.86 Spret-like expression Paternal
Igf2 dist7-IC1 0.84 2.89 0.01 0.02 0.08 0.96 Spret-like expression Paternal

IC=imprinting cluster (https://www.mousebook.org (03.22.18)), Chr.=Chromosome, DE=differential expression, LFC=log2 Fold Change of
expression, Padj=adjsted p-value according to Benjamini-Hochberg method, Stat=Wald test (DESeq2), expressed allele according to
https://www.mousebook.org (03.22.18).
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Overlap of placental DE genes with genes involved in preeclampsia204

Among the misexpressed genes in the hybrid placenta we noticed several that are also205

misexpressed in the human pregnancy pathology preeclampsia. Although mice do not develop206

preeclampsia, preeclampsia-like phenotypes can occur and several rodent models have been207

developed to study key symptoms such as hypertension, proteinura, and altered inflammatory208

response (Podjarny et al. 2004, Dokras et al. 2006). To test if DE genes in the hybrid overlap209

with genes related to preeclampsia we extracted genes associated with preeclampsia from the210

database for preeclampsia (http://ptbdb.cs.brown.edu/dbpec/, (Uzun et al. 2016)) and obtained211

the mouse orthologs for these from biomart (R-package biomaRt, (Durinck et al. 2005)). Of the212

490 mouse orthologs we obtained, 26 were transgressively misexpressed in the hybrid placenta.213

Preeclampsia related genes were significantly overrepresented among transgressively214

misexpressed genes (Fisher’s exact test: p=0.003, odds ratio=1.91). An altered inflammatory215

response at the fetal-maternal interface is involved in preeclampsia in humans (Harmon et al.216

2016); in the hybrid placenta, both up- and down-regulated transgressively expressed genes were217

enriched for immune-related and cytokine signaling pathways (Supplemental Dataset S1).218

219

Differential expression in the MPoA220

To explore maternal gene expression in response to placental genotype we compared late221

gestation MPoA of Dom females during Dom pregnancies (MPoA-dom), Dom females during222

hybrid pregnancies (MPoA-hy) and Spret females during Spret pregnancies (MPoA-spret).223

Neural and placental tissues were collected from the same females. Gene expression in MPoA-hy224

vs. MPoA-dom is expected to be highly similar, with any DE attributable to carrying a hybrid225

litter, while the other comparisons should result in a large number of DE genes attributable to226
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interspecific differences. For the intraspecific comparison we report significantly DE genes with227

log2 fold change (LFC) ≥ 0.2, since differences are expected to be subtle. For all other228

comparisons we report significantly DE genes with LFC ≥ 0.5.229

Four genes were DE between MPoA-hy and MPoA-dom: Cathepsin-R (Ctsr) was230

expressed higher in MPoA-hy compared to MPoA-dom, and Dopamine receptor 3 (Drd3),231

Calneuron 1 (Caln1) and Formin 1 (Fmn1) were expressed lower (up: 1/18,779; down: 3/18,779)232

(Fig. 3, Table 3, Supplemental Fig. S4 and Supplemental Dataset S2). In MPoA-hy compared to233

MPoA-spret 10.61% of all tested genes were expressed higher and 10.32% lower (up:234

1,608/15,154; down: 1,565/15,154) (Fig. 3, Supplemental Fig. S5, Supplemental Dataset S2). In235

the interspecific comparison of conspecific pregnancies, 11.32% of all tested gene were236

expressed higher and 10.76% lower in MPoA-dom compared to MPoA-spret (up: 1,757/15,515;237

down: 1,670/15,515) (Fig. 3, Supplemental Fig. S6, Supplemental Dataset S2).238

Hybrid placentas express both Spret and Dom alleles and 1,659 genes had Spret-like239

expression. Therefore, the MPoA in Dom females carrying hybrid litters might exhibit240

expression patterns more similar to Spret female MPoA for some maternal-fetal communication241

genes. We extracted a list of 959 genes that were DE in MPoA-dom vs. MPoA-spret but not in242

MPoA-hy vs. MPoA-spret. This list includes Drd3, which was expressed lower in MPoA-hy243

compared to MPoA-dom (Fig. 3, Supplemental Dataset S2). Thus, Drd3 could be defined as244

having Spret-like expression in MPoA-hy. Fmn1 and Ctsr were expressed lower and higher,245

respectively, in MPoA-hy compared to both MPoA-dom and MPoA-spret, and were not DE246

between Dom and SpretMPoA during regular pregnancies (Fig. 3, Supplemental Dataset S2).247

248
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249

Figure 3. Maternal medial preoptic area (MPoA) gene expression. Summary of results of differential gene250
expression (DE) analysis between Mus m. domesticus MPoA during normal pregnancy (MPoA-dom),Mus m.251
domesticusMPoA during hybrid pregnancy (MPoA-hy) andMus spretusMPoA during normal pregnacy (MPoA-252
spret). (A) Venn diagram indicating the overlap of differentially expressed genes between the comparisons MPoA-253
hy vs. MPoA-dom, MPoA-hy vs. MPoA-spret and MPoA-dom vs. MPoA-spret. Genes with Spret-like expression in254
MPoA-hy are marked in the diagram. (B) Volcano plot of DE analysis results of MPoA-hy vs. MPoA-dom.255
Significantly differentially expressed genes with FDR ≤ 0.05 and log2 fold change ≥ 0.2 are depicted in red,256
placenta-specific gene family genes in yellow.257

258

Table 3. Differential expression in MpoA-hy compared to
MPoA-dom.

Chr. LFC Stat padj
Fmn1 2 -0.74 -6.73 <0.001
Drd3 16 -0.47 -4.89 <0.001
Caln1 5 -0.36 -4.52 0.02
Ctsr 13 0.21 4.86 <0.001

Chr.=Chromosome, LFC=log2 Fold Change of expression, Padj=adjsted p-
value according to Benjamini-Hochberg method, Stat=Wald test (DESeq2).

259

Co-expression between the placenta and MPoA260

The MPoA is an important target of placenta-secreted molecules and we found the placenta-261

specific gene, Ctsr, to be expressed in the maternal MPoA during hybrid pregnancies. Therefore,262

co-expression between placenta and MPoA is of particular interest. We determined the level of263
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placenta-MPoA co-expression for the three pregnancy types (hybrid, Dom, Spret), and assessed264

differences between them.265

10,839 genes were co-expressed between placenta and MPoA in all 3 comparisons. 172266

genes were only co-expressed in Dom and 494 only in Spret pregnancies (Fig. 4, Supplemental267

Dataset S3). 176 genes were uniquely co-expressed in hybrid pregnancies. This gene set is of268

specific interest since these genes are indicators of MPoA response to abnormal placental269

expression. Uniquely co-expressed genes in hybrid pregnancies included 45 genes that were DE270

between hybrid and Dom placentas and 16 that were DE compared to both parental species’271

placentas. Ctsr, which was significantly upregulated in MPoA-hy compared to MPoA-dom, was272

uniquely co-expressed in hybrid pregnancies (Fig. 4, Supplemental Dataset S3).273

228 genes were co-expressed in Spret and hybrid pregnancies but not in Dom pregnancies.274

Thus, these genes exhibit Spret-like co-expression in the MPoA of Dom females carrying a275

hybrid litter. There was pathway overrepresentation overlap between this gene set and genes with276

transgressive misexpression in hybrid placenta (Fig. 2A), including prolactin and growth277

hormone receptor signaling, and ERBB signaling (Fig. 4, Supplemental Dataset S3). Moreover,278

PSFs were significantly overrepresented among these co-expressed genes (Fisher’s exact test:279

p<0.001, odds ratio=12.57). Although expression levels were far lower in the MPoA (range=10-280

589, mean=100 normalized counts) than in the placenta (range=20-1,127,603, mean=97,988281

normalized counts), these results are striking. To explore this relationship further, we tested for282

correlated expression of PSF genes between placenta and MPoA. We found very strong, positive283

correlations for hybrid (R2adj=0.95, p<0.001) and Spret (R2adj=0.9, p<0.001) and a significant284

but, surprisingly, weaker positive correlation for Dom (R2adj=0.38, p=0.01) (Fig. 4B, Table 3).285

Additionally, we found that MPoA-hy express significantly more PSF genes (sum of PSF read286
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counts divided by litter size) than MPoA-dom but not than MPoA-spret (One-way ANOVA:287

F2,12=5.44, p=0.02, Tukey HSD: MPoA-hy vs. MPoA-dom: p=0.016, MPoA-hy vs. MPoA-spret:288

p=0.18, MPoA-dom vs. MPoA-spret: p=0.36) (Fig. 4B).289

290

291

Figure 4. Co-expression between maternal medial preoptic area (MPoA) and placenta during late gestation.292
Summary of results of co-expression analysis for Mus m. domesticus during normal pregnancy (Dom-pregnancy),293
Mus m. domesticus during hybrid pregnancy (hybrid pregnancy) andMus spretus during normal pregnancy (Spret294
pregnancy). (A) Venn diagram indicating the overlap of co-expressed genes between the three pregnancy types.295
Genes that are only co-expressed in hybrid pregnancy are marked in the diagram. A secondary Venn diagram for296
this gene set shows its overlap with differentially expressed genes in hybrid vs. Dom placentas. Transgressively297
expressed genes contained in this overlap are marked. Genes that are co-expressed in Spret and hybrid pregnancies298
but not in Dom pregnancies (Spret-like co-expression) are marked in the primary Venn diagram. Results of pathway299
overrepresentation (Reactome, version 58, Mi et al. 2017) for this gene set are provided in the connected text box.300
(B) Scatterplot showing the correlation between placenta specific gene family (PSF) gene expression in placenta and301
MPoA for the three pregnancy types. Red = Dom pregnancy (R2adj=0.38, p=0.01), Blue = Spret pregnancy (R2adj=0.9,302
p<0.001), Yellow = hybrid pregnancy (R2adj=0.95, p<0.001). Inset boxplot shows total PSF gene expression in303
MPoA (sum of normalized PSF counts/litter size), asterix indicates significant difference between MPoA-hy and304
MPoA-dom.305

306

Pairwise evolutionary rates of selected PSF genes307

PSF genes were previously shown to exhibit accelerated evolutionary rates, potentially driven by308

maternal-fetal conflict (Chuong et al. 2010). We selected the top 10 co-expressed PSF genes with309

the highest expression in MPoA and extracted pairwise evolutionary rates (dN/dS) from Biomart310
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(R-package biomaRt, (Durinck et al. 2005)) to test for evidence of positive selection. We also311

included the PSF gene Ctsr, which was significantly differentially expressed between MPoA-hy312

and MPoA-dom.313

dN/dS, the per site ratio of nucleotide substitutions that change amino acid identity to314

those that do not, is an indicator of selective pressure, with dN/dS = 1 indicating neutral315

evolution, dN/dS < 1 purifying selection, and dN/dS > 1 diversifying positive selection316

(Goldman and Yang 1994). Of the 11 genes, three (Prl8a6, Tpbpb and Ctsr) had pairwise dN/dS317

>1 between Dom and Spret (Fig. 5, Supplemental Table S1). To infer which lineage experienced318

selection, we analyzed these three genes using the application CodeML (implemented in PAML319

4; (Yang and Rannala 1997, Yang 2007)), and including sequences from additional Mus320

subspecies and species (Mus m. musculus (Musc), Mus m. castaneus (Cast), Mus caroli (Car)321

and Mus pahari (Pah)). CodeML fits alternative models to the data; the best-fit model is chosen322

based on likelihood ratio tests (LTRs). The two main models tested were M0, one evolutionary323

rate for the whole tree, and MC, selected branches (foreground) evolve at a different rate than the324

rest of the tree (background).325

For all three genes, we found evidence for positive selection on Dom (Prl8a6) or Spret326

branches (Ctsr), or both (Tpbpb) (Fig. 5, Supplemental Table S1). Specifically, there was327

evidence for positive selection on Prl8a6 in the Mus musculus subspecies clade (LRT(M0-328

MC)=7.50, p=0.01, foreground dN/dS(MC)=3.78, background dN/dS(MC)=0.25). Evolutionary rates329

for Ctsr were elevated on branches leading to Pah, Spret and Musc relative to the rest of the tree330

(LRT(M0-MC)=6.93, p=0.01, foreground dN/dS(MC)>10, background dN/dS(MC)=0.26). Results for331

Tpbpb suggest high evolutionary rates across the whole tree (LRT(M0-MC)=3.56, p=0.1,332

dN/dS(M0)=1.43) (Fig. 5, Supplemental Table S1).333
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334

335

336

Figure 5. Evolutionary rates of placenta-specific gene family (PSF) genes expressed in the maternal medial preoptic337
area (MPoA). (A) Pairwise evolutionary rate between Mus m. domesticus (Dom) and Mus spretus (Spret) for Ctsr338
and the 10 co-expressed PSF genes with the highest expression in MPoA. Evolutionary rate (dN/dS) > 1 is marked339
in red throughout the figure and is indicative of positive selection. (B) PAML4 CodeML analysis results for the340
three genes with pairwise dN/dS>1. Species are Mus m. castaneus (Cast), Mus m. musculus (Musc), Mus m.341
domesticus (Dom), Mus spretus (Spret), Mus caroli (Car), Mus pahari (Pah). dN/dS values are indicated for groups342
of branches depending on which CodeML model provided the best fit for the data (M0: one evolutionary rate for the343
whole tree, MC: selected branches evolve at a different rate than the rest of the tree). dN/dS values depicted in black344
for Prl8a6 and Ctsr indicate background evolutionary rates.345

346

347

Discussion348

Molecular communication between the placenta and the maternal brain is crucial for the349

expression of maternal behavior in rodents (Bridges et al. 1996, Larsen and Grattan 2012).350

Disruption of this interaction in humans is detrimental to both mother and offspring (Redline351

2008). In this study, we used a hybrid mouse model to characterize the extent to which placental352

disruption influences gene expression in the maternal brain. Several maternally expressed353

imprinted genes were transgressively misexpressed in the hybrid placenta. In Mus m. domesticus354

females carrying hybrid litters we found altered placenta-specific gene family expression in the355

placenta, and in the maternal MPoA. Surprisingly, the expression of these genes was highly356

correlated between the two tissues, and was Mus spretus-like in the MPoA. This suggests that357
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paternally inherited alleles in the placenta exert substantial influence on expression in the358

maternal brain. Collectively, our results reveal reciprocal effects of mothers on offspring and359

offspring on mothers, mediated in both cases by the placenta. We discuss these findings in light360

of maternal-fetal coevolution and parental conflict, and identify potential implications for361

placental pathologies.362

363

Maternal effects on placental expression364

Global patterns of expression in the placenta were strongly associated with maternal genotype. In365

hybrids, half as many genes were DE relative to normal Dom placentas as opposed to Spret366

placentas. Notably, the >1,600 genes with Dom-like expression in hybrid placenta were highly367

enriched for terms associated with immunity and regulation of blood flow, both of which are368

essential to placental mediation between mother and embryo (Cross et al. 1994). Because369

maternal vasculature is incorporated into the placenta, whole placenta transcriptomes necessarily370

include some transcripts of maternal origin. However, maternal blood flow within the placenta is371

under the direct control of placental cell lineages; trophoblast giant cells invade and replace372

maternal vascular endothelium, limiting maternally-derived tissue to blood (Rai and Cross 2014).373

Therefore, while contamination from maternal transcripts may contribute to this pattern it is374

unlikely to bias the expression of such a large number of genes. The regulatory effects of375

maternal hormones, and of maternally inherited genes in the placenta, are non-mutually376

exclusive alternative explanations. For example, because paternal X chromosome inactivation is377

maintained in mouse placenta (Tagaki and Sasaki 1975), maternally inherited X-linked genes are378

strong candidates for modulating autosomal expression in both sexes. While disentangling379

maternal effects (sensuWolf and Wade 2009) from the effects of maternally inherited genes is a380
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challenge for future studies, we note that the match between maternal genotype and placental381

expression of genes that modulate maternal immune tolerance and angiogenesis is consistent382

with the expectation of molecular coadaptation between mother and offspring (Wolf and Brodie383

1998, Keverne and Curly 2008), and the well-established effect of maternal environment on384

placental function (Cottrell and Seckl 2009, Monk et al. 2012).385

386

Altered PSF and IG expression in the placenta387

Maternal adaptation to pregnancy relies to a great extent on placental signaling (Bridges et al.388

1996). Thus, altered expression of genes encoding or influencing placental signaling molecules389

can ultimately affect maternal physiological and behavioral response to pregnancy.390

Misexpression in the hybrid placenta was substantial. However, the most striking pattern we391

found was the reduced expression of a large number of PSFs. In mice, most of these genes are392

expressed from the placental endocrine compartment and many are found in maternal plasma393

during pregnancy (Rawn and Cross 2008). In this hybrid mouse model, the endocrine394

compartment is markedly reduced when the mother is Dom (Zechner et al. 1996, Kurz et al.395

1999). Thus, reduced abundance of PSF producing cell types likely contributes to overall396

reduction in PSF expression.397

IGs are thought to modulate PSF expression, primarily through effects on placental398

endocrine cell abundance, with maternally expressed genes (MEGs) repressing and paternally399

expressed genes (PEGs) promoting cell proliferation (John 2013, 2017). Two such MEGs,400

Phlda2 and Ascl2, were transgressively misexpressed in hybrid placentas. Misexpression of401

either of these genes in lab mouse models results in an undersized endocrine compartment,402

altered glycogen energy stores and reduced PSF gene expression (Tunster et al. 2010, 2016a,b).403
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Indeed, Phlda2 and Ascl2 seem to be critical co-regulators of placental endocrine compartment404

development (John 2017). Two other MEGs, Dcn and Grb10, were overexpressed when405

compared to Dom placentas. While neither is specifically implicated in placental endocrine406

function, both are key modulators of placental growth, and Dcn overexpression represses cellular407

proliferation (Yamaguchi and Ruoslahti 1988, Kresse and Schönherr 2001, Garfield et al. 2011).408

Collectively, our results are consistent with the proposed role of IGs in placental signaling (Haig409

1996, Tunster et al. 2013, John 2013,2017), and identify MEG misexpression as a candidate410

mechanism for the undersized endocrine compartment and consequent global reduction in PSF411

expression in hybrid placenta.412

413

The effects of hybrid placental dysfunction on the maternal brain414

Altered signaling in hybrid placentas has the potential to affect the maternal brain. We found415

subtle but significant differences in the expression of four genes in the MPoA of Dom females416

exposed to hybrid relative to conspecific placentas. Both Fmn1 (Formin1) and Caln1417

(Calneuron1) were underexpressed. In the brain, Fmn1 is involved in the formation of adherens418

junctions and in linear actin cable polymerization (Kobielak et al. 2004). The formation of419

adherens junctions is important in the maintenance of the blood brain barrier (BBB), a highly420

specialized structure that regulates the influx of molecules into the brain (Stamatovic et al. 2008).421

During pregnancy, the permeability of the BBB is increased by placenta-derived factors to which422

the maternal brain must respond in order to maintain this barrier (Cipolla 2007, Schreurs et al.423

2012). Reduced expression of Fmn1 therefore suggests alterations in BBB adaptation during424

hybrid pregnancies. Caln1 encodes a neuron-specific protein with sequence similarities to425

calcium-binding calmodulins. While the function of Caln1 is uncharacterized, homology to426
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calmodulin suggests a role in neuronal calcium signaling (Wu et al. 2001). Decreased expression427

of a calcium-binding protein could indicate alterations in neuronal activity in the MPoA exposed428

to hybrid placentas.429

Drd3 (Dopamine receptor D3) was also underexpressed compared to Dom mothers, but430

not to Spret mothers, in the hybrid pregnancy MPoA. DRD3, a D2-like receptor with a generally431

inhibitory role, is implicated in treatment-resistant major depression (Lattanzi et al. 2002) and432

Drd3 knock-out mice exhibit a suite of anxiety- and depressive-like behaviors (Moraga-Amaro et433

al. 2014). Given that the action of dopamine in the MPoA is critical for the expression of434

maternal behavior in rats (Numan and Stolzenberg 2009), and hypothalamic dopamine is altered435

in a mouse model for post-partum depression (Avraham et al. 2017), reduced Drd3 expression in436

the MPoA might cause deficits in maternal behavior. However, M. spretus mothers are more437

responsive to pups than M. m. domesticus mothers (Cassaing et al. 2010) and Drd3 expression in438

the hybrid pregnancy was statistically indistinguishable from the normal Spret pregnancy.439

Whether placental expression of paternally inherited alleles promotes maternal behaviors is an440

intriguing question for future study.441

Ctsr (Cathepsin R), a placenta-specific cathepsin, was the only gene that was442

overexpressed in the MPoA exposed to hybrid placentas. Unlike other PSF genes, expression of443

Ctsr in the maternal brain was unique to the hybrid pregnancy. Interestingly, loss of the IG Peg3444

leads to de-repression of several PSF members, including Ctsr, in the fetal and adult brain (Kim445

et al. 2013). While Peg3 was not misexpressed in the hybrid placenta, the transgressively446

overexpressed MEG, Phlda2, was recently shown to perturb maternal behaviour and neural gene447

expression when misexpressed in mouse placenta (Creeth et al. 2018). Specifically,448

overexpression of placental Phlda2 reduced postpartum nurturing behaviour, while449
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underexpression increased maternal behavior (Creeth et al. 2018). Since Phlda2 and Ascl2 jointly450

regulate development of the endocrine compartment (John 2017), it is likely that transgressive451

misexpression of both genes in hybrid placenta impacts the maternal brain via effects on452

placental hormone expression.453

454

Paternal effects on the maternal brain455

The hybrid placenta expresses both maternally derived (Dom) and paternally derived (Spret)456

alleles. Thus, females pregnant with hybrids are exposed to gene products from a foreign457

paternal genome. In Dom females exposed to hybrid placentas we found a substantial subset of458

genes, including PSF genes and Drd3, with expression patterns that differed from Dom mothers459

with conspecific litters, but closely matched those of Spret mothers.460

A surprisingly large number of genes were co-expressed between placenta and MPoA in461

hybrid and Spret pregnancies but not in Dom pregnancies. In particular, placental and MPoA462

PSF gene expression was highly correlated in hybrid pregnancies and in Spret pregnancies, while463

Dom pregnancies showed a weaker correlation. Likewise, total MPoA PSF gene expression was464

Spret-like in hybrid pregnancies. The positive correlation between placental and MPoA465

expression, and the striking similarity to Spret, preclude maternal compensation for hybrid466

placental PSF misexpression as an explanation for these patterns. Instead, these results provide467

two novel insights into placenta-maternal brain interactions. (1) Expression levels of PSFs in the468

maternal brain are driven by placental expression levels of the same genes. (2) PSF and Drd3469

expression in the maternal MPoA is strongly influenced by paternally inherited alleles in the470

placenta. Thus, natural differences between the parental species used in this study uncover a471

significant and previously unrecognized effect of the paternal genome on the maternal brain.472
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473

A signature of conflict in PSF evolution and expression in the maternal brain474

Pregnancy requires substantial investment from the mother, which is offset by costs to her475

capacity to invest in future offspring (Trivers 1972). However, when offspring are sired by476

multiple males, selection favors fathers who extract maximal maternal resources for their own477

offspring (Trivers 1972). Haig and colleagues proposed that these asymmetries in the478

reproductive interests of males and females, and the coefficients of relatedness between mothers479

and offspring (always 0.5) vs. fathers and offspring (0.5 or 0), should promote parental480

antagonism, played out at the molecular level between maternally and paternally expressed IGs481

in the placenta (Moore and Haig 1991, Haig and Graham 1991, Haig 2000). Because placental482

endocrine signals promote maternal investment in current offspring, placental hormones are also483

proposed players in both parental and mother-offspring conflicts (Trivers 1985, Haig 1996).484

Consistent with a history of antagonistic coevolution, PSFs in general are the fastest evolving485

genes in the rodent placenta (Chuong et al. 2010). We report a similar signature of selection on486

three PSF genes that are co-expressed in the hybrid placenta and the maternal MPoA.487

Trivers (1985) described placental hormones as the molecular equivalent of begging calls.488

Here we show for the first time that the expression of Prls and other PSFs is highly correlated489

between placenta and maternal brain. While the function of PSFs in the brain is undefined,490

placental genotype-dependent differences between Dom females in the strength of the correlation491

and the number of co-expressed genes indicate that the relationship is driven by the placenta not492

the mother. Moreover, the Spret-like co-expression patterns of PSF genes in mothers of litters493

sired by Spret males implicate the paternally inherited genome as the driver of these placental494

begging calls, which are echoed in the maternal brain. Given that these patterns of expression are495
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consistent with parental conflict, it is noteworthy that the opportunity for sperm competition496

(inferred from testis-body mass ratios) is higher in M. spretus than in M. m. domesticus (Gomez497

Montoto et al. 2011).498

499

Preeclampsia related gene expression in hybrid pregnancies500

Preeclampsia is a serious pregnancy complication and the lead cause of maternal and fetal501

morbidity and mortality (Burton and Jauniaux 2004, Redman and Sargent 2009). We found502

significant overlap between transgressively misexpressed genes in hybrid placentas and503

preeclampsia related genes and pathways. Haig (1993) interpreted preeclampsia as a504

consequence of conflicts between maternal and paternal genomes, played out in the placenta and505

potentially involving IGs. While the genetic basis of preeclampsia is complex (Uzun et al. 2016),506

involvement of IGs is supported in both humans and mouse models. For example, human507

chromosome 10 regions containing imprinting clusters are associated with preeclampsia508

(Oudejans et al. 2004), and loss of the MEG Cdkn1c causes preeclampsia-like symptoms in mice509

(Kanayama et al. 2002). Interestingly, Cdkn1c is in the same imprinting cluster as Th, Phlda2510

and Ascl2 (dist7, IC2), all of which were misexpressed in hybrid placentas. It is possible that511

misexpression in this imprinting cluster is a general contributor to preeclampsia-like placental512

phenotypes. Because preeclampsia can significantly alter permeability of the BBB (Cipolla513

2007), it is also notable that Fmn1, a gene implicated in BBB maintenance, was underexpressed514

in brains of mothers exposed to hybrid placentas.515

516

Conclusions517
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Evolutionary theoreticians have modeled mammalian pregnancy as both intimate cooperation518

and antagonistic struggle between two genetically distinct organisms (Trivers 1974, Haig 1993,519

Wolf and Hager 2006). Whether driven by conflict or coadaptation, it is clear that the placenta is520

the mediator of these complex interactions between mother and offspring. Here we concentrated521

on placental effects on the maternal brain during the final stages of pregnancy, when it is a522

critical source of signal molecules that prime female physiology and behavior for motherhood.523

We found both hybrid placental misexpression with the potential to disrupt maternal-fetal524

communication, and altered expression in the brains of mothers exposed to hybrid placentas.525

Expression in the hybrid placenta seems to be dominated by the maternally derived genome526

and/or driven by maternal effects. Maternal-placental communication genes co-expressed in527

maternal brain and placenta show elevated evolutionary rates, consistent with antagonistic528

coevolutionary processes. The expression of a proportion of transcripts of these genes from a529

foreign paternal genome in the placenta has the potential to affect the maternal brain and alter530

maternal behavior. In addition to the effects of placental disruption on the maternal brain, natural531

differences between the parental species in this hybrid system reveal a previously described532

influence of the paternal placental genome on the maternal brain. These paternal effects on the533

maternal brain could play a major role in the expression of maternal behavior and the quality of534

maternal care, and open novel avenues of research in both evolutionary and biomedical fields.535

536

Methods537

Animals and tissue collection538

Mice used in this study were maintained on a 12:12 light:dark cycle with lights on at 9:00 AM,539

and were provided with 5001 Rodent Diet (LabDiet, Brentwood, MO, U.S.A.) and water ad lib.540
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All animal procedures were approved by the Oklahoma State University IACUC under protocol541

#141-AS. Mus m. domesticus (Dom) was represented by the wild-derived inbred strain WSB/EiJ542

(Jackson Laboratory) and Mus spretus (Spret) was represented by the wild-derived inbred strain543

SFM/Pas (Montpellier Wild Mice Genetic Repository). We conducted three crosses (female544

shown first): Dom X Dom (n=5), Dom X Spret (n=5), Spret X Spret (n=5). Prior to pairing,545

females were placed in a cage with soiled conspecific male bedding for ~48 hrs to induce546

receptivity to mating (Whitten 1956). Mice were paired between 5:00 and 6:00 PM, left547

undisturbed for two nights, and split on the morning of the second day. The second night was548

counted as embryonic day 0 (e0). Females were weighed after two weeks to confirm pregnancy549

but were otherwise left undisturbed. Pregnant females (n=5/type of pregnancy) were euthanized550

by cervical dislocation between 10:00 and 11:00 AM on embryonic day 17-18 (e17.5) and the551

maternal brain was extracted. Embryos were separated from placentas, and the maternally-552

derived decidual layer was removed as previously described (Qu et al. 2014). All tissues were553

transferred immediately to RNAlater (Thermo Fisher, USA), kept at 4°C overnight to allow554

RNAlater perfusion, and stored at -20°C until microdissection and RNA extraction.555

556

Brain microdissection and RNA extraction557

The maternal MPoA was localized using the Mouse Brain atlas (Figs. 26-33, (Paxinos and558

Franklin 2013)), and microdissected by sectioning the RNAlater perfused brain at 100μm on a559

Leica CM 1950 cryostat, followed by dissection under a dissecting microscope in chilled PBS560

droplets for improved visibility of brain microstructure. DNA was extracted from embryonic561

tissue using the DNeasy Blood & Tissue Kit (Qiagen, USA) followed by PCR for the Y-linked562

gene, Zfy1, to determine sex. Placentas from one male and one female per litter were used for563
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RNA extraction (n=5 males/cross, n=4 females/hybrid cross, n=5 females/conspecific cross).564

RNA was extracted from all tissues immediately after microdissection using the RNeasy Plus565

Universal Mini Kit (Qiagen) for MPoA, and the AllPrep RNA/DNA Mini Kit (Qiagen) for566

placenta. RNA was stored at -80°C until sequencing.567

568

RNAseq pipeline569

Sequencing (RNAseq): RNA integrity (RIN) was determined by the sequencing facility570

(Novogene, Sacramento, CA) using the RNA Nano 6000 Assay Kit with the Agilent Bioanalyzer571

2100 system (Agilent Technologies, Santa Clara, CA, USA). RIN values ranged from 8.2-10 for572

all samples. Library preparation was performed by the sequencing facility, using the NEB Next573

Ultra RNA library prep kit for Illumina. RNAseq was performed on the Illumina HiSeq 4000574

platform, producing >30 million, 150bp paired-end reads per sample.575

Mapping: QC of raw sequencing reads and trimming were performed in Trim Galore! 0.4.5576

(Brabraham Bioinformatics, http://www.bioinformatics.babraham.ac.uk/projects/trim_galore),577

using a phred score cutoff of 30 and minimum sequence length of 100 after trimming. In order to578

map hybrid placenta reads we generated a pseudo-hybrid genome using the genome preparation579

tool of the program SNPsplit (Brabraham Bioinformatics, (Krueger and Andrews 2016)). Briefly,580

SNPs from both Dom (WSB/EiJ) and Spret (SPRET/EiJ) relative to the mouse genome581

(GRCm38.89) available from the Ensembl FTP server (ftp://ftp.ensembl.org) were introduced582

into the mouse genome (GRCm38.89). SNPs between Dom and Spret were then N-masked to583

allow mapping of both Dom- and Spret-derived reads. To improve comparability, all placenta584

samples (Dom, Spret and hybrid) were mapped to the pseudo-hybrid genome. MPoA samples585

were mapped to their corresponding genomes (WSB/EiJ_v1 for DomMPoA, SPRET/EiJ_v1 for586
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SpretMPoA, (Keane et al. 2011)). Mapping was done using HISAT2 2.1 (Kim et al. 2015). After587

mapping we filtered the resulting alignment files using SAMtools 0.1.19 (Li et al. 2009),588

retaining only high quality (HISAT2 MAPQ score 40), uniquely mapped, paired reads for589

analysis.590

Post-processing of alignments: Before filtering, average alignment rate for MPoA samples was591

87% for SpretMPoA samples and 88% for DomMPoA samples. For placenta samples the592

alignment rate was slightly lower for Spret samples (88%) compared to Dom (91%) and hybrid593

(91%). We therefore randomly downsampled all alignment files to ~40 million reads using594

SAMtools 0.1.19 (Li et al. 2009) to account for a possible mapping bias and to improve595

comparability.596

Quantification: Transcript quantification and annotation was done using StringTie 1.3.3 (Pertea597

et al. 2015). Gene annotation information was retrieved from the Ensembl FTP server598

(ftp://ftp.ensembl.org) for Spret (SPRET/EiJ_v1.86) and Dom (WSB/EiJ_v1.86). Mouse genome599

annotation was used for samples mapped to the pseudo-hybrid genome (GRCm38.89). We used600

the python script (preDE.py) included in the StringTie package to prepare gene-level count601

matrices for analysis of differential gene expression.602

Differential expression (DE) analysis: Differential expression was tested with DESeq2 1.16.1603

(Love et al. 2014). Pseudogenes were removed from the count matrices based on “biotype”604

annotation information extracted from Biomart (R-package biomaRt, (Durinck et al. 2005)). Low605

counts were removed by the independent filtering process implemented in DESeq2 (Bourgon et606

al. 2010). The adjusted p-value (Benjamini-Hochberg method) cutoff for DE was set at 0.05. Due607

to variation in litter size, especially in females carrying hybrid litters (range=3-6), and its608

potential effect of on MPoA expression, we corrected for litter size in all MPoA sample609
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comparisons. To analyze DE between Spret and DomMPoA, which were mapped to their610

respective genomes, we extracted homologous gene names from the mouse genome database611

using Ensembl Biomart (R-package biomaRt, (Durinck et al. 2005)) and merged the dataset612

based on the genes that had a clear mouse homolog in both. Normalized read count tables613

produced by DESeq2 were used in subsequent co-expression analyses.614

Co-expression: To determine co-expression between placenta and MPoA we set a cutoff of 10615

normalized counts for at least 4 out of 5 observations each tissue type (MPoA, male placenta and616

female placenta). Based on this cutoff we report genes expressed in both placenta and MPoA for617

each type of pregnancy. We then determined differences in co-expression between the three618

pregnancy types.619

Gene ontology (GO) term and pathway overrepresentation analysis: We performed GO term and620

pathway overrepresentation analyses on relevant lists of genes from DE and co-expression621

analyses using the PANTHER gene list analysis tool with Fisher’s exact test and FDR correction622

(Mi et al. 2017). We tested for overrepresentation based on the GO annotation database623

(Biological Processes) (released 07-Jan-2017, (Ashburner et al. 2000, The Gene Ontology624

Consortium 2017)) and the Reactome pathway database (version 58,(Fabregat et al. 2017)).625

626

Evolutionary rates for selected genes627

We extracted the pairwise evolutionary rate (dN/dS = nonsynonymous to synonymous628

substitution rate ratio) between Dom and Spret from Biomart (R-package biomaRt, (Durinck et al.629

2005)). dN/dS is an index of selective pressure on coding sequence, with dN/dS = 1 indicating630

neutral evolution, dN/dS < 1 purifying selection, and dN/dS > 1 diversifying positive selection631

(Goldman and Yang 1994). Further analysis of genes with dN/dS > 1 (Prl8a6, Ctsr, Tpbpb) was632
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performed with CodeML implemented in PAML 4.8 (Yang and Rannala 1997, Yang 2007),633

including sequences from related Mus subspecies and species (Mus m. musculus (Musc), Mus m.634

castaneus (Cast), Mus caroli (Car) and Mus pahari (Pah)). Coding sequences for all three genes635

for Musc, Cast and Car were available from Ensembl. For Pah, coding sequences for Prl8a6 and636

Ctsr were downloaded from NCBI Genbank. For Tpbpb, we ran blastn on NCBI with the Dom637

Tpbpb coding sequence against the nr/nt database and found two matches for Pah, of which one638

showed higher similarity to Dom Tpbpa and the other to Dom Tpbpb. The latter was included in639

the CodeML analysis (Supplemental Table S5). CodeML calculates evolutionary rates by640

applying different models to an alignment and a phylogeny. To prepare the alignments,641

sequences were visualized with Geneious 9.1.8 (Biomatters, http://www.geneious.com/) and642

trimmed to coding sequence. Translation alignments were performed using the MUSCLE643

alignment algorithm, implemented in Geneious. The phylogeny was built based on recent644

phylogenomic analyses of house mice and related species (White et al. 2009, Sarver et al. 2017).645

For the CodeML codon frequency setting we used the setting with the best fit for each analysis646

according to the preliminary likelihood ratio analysis.647

To calculate individual evolutionary rates for each branch in the tree we used CodeML’s648

“free-ratio” model. This served as an initial indication as to which branches might show higher649

evolutionary rates. After this, two models were computed: Model M0 “one ratio” in which all650

branches were constrained to evolve at the same rate and MC “two-ratio” in which selected651

branches are allowed to evolve at a different rate than the rest of the tree. Branches with652

potentially higher evolutionary rate based on the “free-ratio” model result were marked as653

foreground branches and were allowed to evolve differently from the background. To test if MC654

provides a better fit for the data than M0 we performed Likelihood Ratio Tests. When MC655
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provided the better fit, and dN/dS calculated for the foreground branches was > 1 and dN/dS656

calculated for the background branches was < 1, we inferred positive selection on the foreground657

branches. When M0 provided the better fit and dN/dS for the whole tree was > 1, we inferred658

positive selection for the whole tree (Yang 1998).659

660

Data Access661

RNA-seq data from this study have been submitted to the NCBI Gene Expression Omnibus662

(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number XXXX.663
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