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Abstract 

Background: Social impairments, specifically in mentalizing and emotion recognition, are 

common and debilitating symptoms of posttraumatic stress disorder (PTSD). Despite this, little 

is known about the neural underpinnings of these impairments, as there have been no published 

neuroimaging investigations of social inference in PTSD. 

Methods: Trauma-exposed veterans with and without PTSD (N = 20 each) performed the 

Why/How social inference task during functional magnetic resonance imaging (fMRI). The 

PTSD group had two fMRI sessions, between which they underwent affect labeling training. We 

probed the primary networks of the “social brain”—the default mode network (DMN) and mirror 

neuron system (MNS)—by examining neural activity evoked by mentalizing and action 

identification prompts, which were paired with emotional and non-emotional targets. 

Results: Hyperactivation to emotional stimuli differentiated PTSD patients from controls, 

correlated with symptom severity, and predicted training outcomes. Critically, these effects 

were generally non-significant for non-emotional stimuli. PTSD-related effects were widely 

distributed throughout DMN and MNS. Effects were strongest in regions associated with the 

dorsal attention, ventral attention, and frontoparietal control networks. Unexpectedly, effects 

were non-significant in core affect regions. 

Conclusions: The array of social cognitive processes subserved by DMN and MNS may be 

inordinately selective for emotional stimuli in PTSD. This selectivity may be tightly linked with 

attentional processes, as effects were strongest in attention-related regions. Putatively, we 

propose an attentional account of social inference dysfunction in PTSD, in which affective 

attentional biases drive widespread affect-selectivity throughout the social brain. This account 

aligns with numerous findings of affect-biased attentional processing in PTSD.  
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Introduction 

 PTSD is characterized by intrusive trauma-related cognition (e.g. thoughts, dreams, and 

flashbacks), exaggerated affective responses (e.g. chronic fear, anxiety, and hyperarousal), 

and—conversely—affective blunting (e.g. anhedonia and emotional numbing) (1). Though PTSD 

is most commonly associated with affective dysfunction, social dysfunction is ubiquitous and 

often debilitating in PTSD (2–4). This has led many researchers to emphasize social and 

interpersonal factors in the development of PTSD and related adversity (5–7). A strong body of 

behavioral evidence links PTSD with deficits in emotion recognition (8–13) and mentalizing 

(13–17), a pattern of social cognitive impairment that is distinct from other anxiety disorders 

(18). Here, emotion recognition refers to perceiving and identifying others’ emotions, while 

mentalizing refers to reasoning about others’ mental states (e.g. beliefs, desires, and 

intentions). Emotion recognition can be considered a type of mentalizing, and both are facets of 

social inference and theory of mind (19–21). Taken together, there is converging behavioral 

evidence that social inference impairments are common and debilitating symptoms of PTSD. 

However, little is known about the neural underpinnings of these impairments. 

 In healthy populations, neuroimaging investigations have revealed that social inference 

is primarily subserved by two dissociable large-scale neural networks: the mirror neuron system 

(MNS) and default mode network (DMN) (22–24). MNS is associated with action identification, 

while DMN is associated with mentalizing (25–28). Mirror neurons, first discovered in macaque 

frontoparietal cortex, fire when actions are either performed or observed (29–31). In humans, 

similar sensorimotor “mirroring” responses may have been found in posterior inferior frontal 

gyrus (pIFG), dorsal premotor cortex (dPMC), inferior parietal sulcus (IPS), and lateral 

occipitotemporal cortex (LOTC) (22, 32). Such MNS regions have been shown to encode facial 

expressions (33), body language (34), and other goal-directed motor actions (35–37). During 

social inference, MNS is thought to represent observable sensorimotor actions (e.g. reaching 
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for a cup) that are used by DMN to infer unobservable mental states and traits (e.g. thirsty) (27, 

38, 39). Concordantly, MNS-based sensorimotor encoding appears to precede DMN-based 

mentalizing (40–43). 

DMN regions are consistently recruited by mentalizing (44) and other functions that 

involve abstract mental state reasoning, such as theory of mind (45), emotion recognition (40), 

empathy (46), moral cognition (47), social working memory (48), and introspection (49). Though 

the anatomical distribution of these functions can differ, they often include the core DMN hubs 

of medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and temporoparietal 

junction (TPJ) (24, 50–53). Aside from social and emotional functions, DMN is broadly 

associated with internally-oriented cognition (54). However, much of DMN activity occurs during 

rest, as DMN activation and connectivity are quickly engaged and sustained during the absence 

of goal-directed cognition (55–58). As such, DMN is widely thought to subserve the “default 

mode” of mammalian brain function (23, 58, 59). 

As detailed above, the neural substrates of social inference are fairly well-characterized 

in healthy populations. In contrast, little is known about the neurobiology of social inference 

impairments in PTSD, as there are currently no published neuroimaging studies that directly 

investigate social inference in PTSD. However, PTSD-related alterations in DMN activity have 

been found in other social tasks (60), such as script-driven social-emotional imagery (61–63), 

self-reference (64, 65), self-other reference (66), and face perception (67, 68). Moreover, PTSD-

related differences in DMN connectivity are consistently found in resting-state studies (69–73). 

We are unaware of any reports of PTSD-related effects in regions explicitly defined as MNS. 

However, MNS appears to overlap substantially with the dorsal and ventral attention networks 

(74, 75, 32, 58), which are strongly implicated in PTSD-related attentional biases (76–86). 

Here, we perform the first neuroimaging investigation of social inference in PTSD. We 

probed activity in DMN and MNS regions due to their importance in social cognition and PTSD. 
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To this end, we used functional magnetic resonance imaging (fMRI) to record brain activity 

during the Why/How social inference task (87) in trauma-exposed veterans with and without 

PTSD. The Why/How task contains mentalizing (Why) and action identification (How) prompts 

(Figure 1), which robustly dissociate DMN and MNS activity (Figure 2) (26, 28, 29, 41, 42, 89). 

We explored whether DMN and MNS responses differentiate PTSD patients from controls, 

correlate with symptom severity, and predict training outcomes. 

 
Figure 1. Summary of the standardized Why/How social inference task (Study 3 of Spunt & Adolphs, 
2014). (A) Diagram of the task’s 2x2 design across Prompt and Stimulus. Each stimulus was shown 
twice: once with a mentalizing prompt (Why), and once with an action identification prompt (How). There 
were two types of stimuli: emotional facial expressions (Emotions), and intentional hand actions 
(Actions). (B) Sequence of events in a task block. Each block began with a prompt followed by seven 
target stimuli paired with that prompt. Participants were instructed to make true/false responses as 
quickly and accurately as possible during the presentation of target stimuli. Target stimuli were presented 
for 1700 ms or until a response was made. A reminder prompt was shown for 300 ms between target 
stimuli, and each block was preceded by a fixation baseline period.  

NOTICE: 

STIMULI REDACTED 

IN COMPLIANCE WITH 

BIORXIV POLICY 

 

FOR EXAMPLE STIMULI SEE:  

Spunt & Adolphs (2014), Figure 1 

https://www.ncbi.nlm.nih.gov/pmc/arti

cles/PMC4111963/figure/F1/ 

https://doi.org/10.1016/j.neuroimage.2

014.05.023 
 

OR CONTACT AUTHOR: 

kevmtan@ucla.edu 
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Materials and Methods 

Participants and Procedure 

 Forty trauma-exposed military veterans were recruited from the Los Angeles area. All 

participants were exposed to combat trauma, mostly in Iraq and Afghanistan. Twenty 

participants met DSM-5 criteria for PTSD or other trauma-related disorder, while the control 

group (N = 20) had no current or lifetime psychiatric diagnoses. Diagnostic status was 

determined by the Clinician-Administered PTSD Scale (CAPS; 90), which was administered by 

certified research staff. Participants were 18-45 years old, English-speaking, right-handed, and 

were excluded for serious medical conditions, moderate-to-severe substance abuse, recent 

changes to medication/psychotherapy, chronic childhood abuse/neglect, and standard fMRI 

contraindications (e.g. metallic implants, claustrophobia, pregnancy). Participants provided 

informed consent, and the study was approved by the University of California, Los Angeles 

(UCLA) institutional review board. 

 All participants performed baseline pre-treatment assessments involving a clinical 

interview, questionnaires, and an fMRI scan. Only the PTSD group continued with three weeks of 

twice-weekly affect labeling training, followed by post-training assessments similar to the pre-

training assessments. Affect labeling training involved repeated practice with several computer-

based tasks that were designed to strengthen inhibitory capacity (90–93). This training regimen 

was investigated as proof-of-concept for a novel, brief computerized intervention for PTSD; full 

methods and data for affect labeling training will be presented in a separate manuscript (94). 

In the baseline session, data from 18 PTSD and 17 control participants were used, while 

the rest were unusable due to lack of task data (N = 3), a previous brain tumor (N = 1), and non-

compliance with fMRI instructions (N = 1). Due to participant dropout, only 13 PTSD participants 

completed the post-training session, and only data from 11 PTSD participants were used, while 

the rest were unusable due to lack of task data (N = 1), a previous brain tumor (N = 1), and 
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suspected cannabis intoxication (N = 1). 

 
Why/How Social Inference Task 

 Participants completed the “fast” version of the standardized Why/How social inference 

task (95), which corresponds to Study 3 in (87). The task features a 2x2 design across 

Prompt[Why, How] and Stimulus[Emotions, Actions] (Figure 1A). Stimuli were photographs of emotional 

facial expressions (Emotions) or intentional hand actions (Actions). Each stimulus was shown 

twice, once with each prompt type. Why prompts involve mentalizing (e.g. “Is the person 

competing?), while How prompts involve action identification (e.g. “Is the person throwing a 

ball?”). Thus, there were four conditions: WhyEmotions, WhyActions, HowEmotions, and 

HowActions. The task was organized into 16 blocks, four blocks per condition. Blocks began 

with a text prompt followed by seven target stimuli paired with that prompt (Figure 1B). 

Participants were instructed to judge whether a prompt was true or false for a target stimulus 

as quickly and accurately as possible. The task was implemented in PsychophysicsToolbox 3 

(96) running on MATLAB 2007a (97). The task was shown in the fMRI scanner via virtual reality 

goggles at 800x600 resolution, and responses were made through a button box held with the 

right hand. 

 
fMRI Acquisition and Preprocessing 

fMRI data were acquired at the UCLA Staglin Center for Cognitive Neuroscience using a 

Siemens TimTrio 3-Tesla MRI scanner. Functional data were collected through T2*-weighted 

echo-planar image volumes (slice thickness = 3 mm, gap = 1 mm, 36 slices, TR = 2000 ms, TE = 

25 ms, flip angle = 90°, matrix = 64x64, FOV = 200 mm). Two structural scans were acquired: a 

matched-bandwidth T2-weighted anatomical scan (MBW; slice thickness = 4 mm, no gap, 34 

slices, TR = 5000 ms, TE = 34 ms, flip angle = 90°, matrix = 128×128, FOV = 196 mm), and a T1-

weighted, magnetization-prepared, rapid-acquisition, gradient-echo scan (MPRAGE; slice 
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thickness = 1 mm, gap = .5 mm, 160 slices, TR = 1900 ms, TE = 3.43 ms, flip angle = 9°, matrix = 

256 x 256, FOV = 256 mm). 

fMRI data were preprocessed via SPM12 (98) and the DARTEL pipeline (99). For each 

subject and session, functional images were realigned and resliced to the mean functional 

image to correct for head motion. Then, the MBW was coregistered to the mean functional 

image, then the MPRAGE was coregistered to the MBW. Afterwards, the MPRAGE was 

segmented and bias-corrected. The resulting MPRAGE images and segmentation parameters 

were used to create a sample-specific image template, which was subsequently affine-

registered into Montreal Neurological Institute (MNI) space (100). Deformation fields generated 

in the previous step were used to normalize all images into MNI space, with functional images 

undergoing integrated spatial smoothing (8 mm, Gaussian kernel, full-width at half-maximum). 

 
Single-Subject fMRI Analysis 

To estimate neural responses to the Why/How task within each participant and session, 

task timings were specified in SPM12’s general linear model and convolved with the canonical 

double-gamma hemodynamic response function. Realignment parameters were used as 

nuisance regressors to dampen the impact of remaining motion artifacts. Data were high-pass 

filtered at 1/128 Hz to correct for signal drift. Parameter estimates from Why-How contrasts for 

both stimulus types (WhyEmotions-HowEmotions and WhyActions-HowActions) were used for 

all subsequent group-level fMRI analyses. 

 
Group-Level Analyses 

Unless otherwise noted, group-level statistical analyses were performed via Matlab 

2016b Statistics and Machine Learning Toolbox (101), with linear mixed-effects models 

(LMEMs) used for hypothesis testing. LMEMs were specified with the maximal random (within-

subject) effects structure justified by each analysis, as this has been shown to be ideal for 
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hypothesis testing (102, 103).  Post-hoc simple effects tests were performed for LMEMs with 

significant interaction effects. To obtain canonical “main effects,” effects coding was used in 

multi-factor models with at least one categorical factor, otherwise dummy coding was used 

(104). 

 
Behavioral Analyses 

In the Why/How task, pre-training group differences in response time and accuracy were 

analyzed via standard and logistic LMEMs, respectively. Both LMEMs featured a full-factorial 

design between Group[PTSD, Control], Prompt[Why, How], and Stimulus[Emotions, Actions]. The intercept, 

Prompt, Stimulus, and Prompt x Stimulus were nested within Subject.  

 
Region of Interest (ROI) fMRI Analyses 

To interrogate brain regions that subserve social inference, masks of a priori ROIs 

(Figure 2) were functionally defined by the Why-How contrast in an independent dataset 

featuring healthy participants (N = 50; studies 1 and 3 in (87)). A one-sample two-tailed t-test 

was used to reveal brain regions that are differentially modulated by the Why and How 

conditions. The whole-network DMN (Why > How) and MNS (How > Why) masks (Figure 2A) 

were defined with a threshold of p < 0.001. A more stringent threshold of p < 1x10-6 was used to 

define ROIs within DMN and MNS (Figure 2B) that are thought to be key nodes of each network 

(75, 105). 

The masks obtained above were used to extract ROI parameter estimates (mean value 

of all voxels in a mask) from the single-subject/session Why-How contrasts in the present 

study. Multiple comparisons across ROIs were accounted for by controlling the false discovery 

rate (FDR) < 0.05 (106), and p-values were adjusted accordingly (pFDR) through the procedure in 

(107). Pre-training group differences in neural response were analyzed in a LMEM with Group, 

Stimulus, and their interaction as effects; the intercept and Stimulus were nested within Subject. 
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In PTSD patients, the relationship between symptom severity (CAPS) and neural response was 

examined in a LMEM with CAPS and CAPS x Session x Stimulus effects; the intercept, Session, 

Stimulus, and Session x Stimulus were nested within Subject. The relationship between training 

outcome (Post-Pre CAPS score difference; CAPSdiff) and neural response was analyzed in a 

LMEM with CAPSdiff and CAPSdiff x Stimulus as effects; the intercept and Stimulus were 

nested within Subject. 

Figure 2. A priori ROI masks defined by the Why-How contrast in an independent dataset (Spunt & 
Adolphs, 2014). The Why-How contrast dissociates DMN and MNS regions that are selective for 
mentalizing and action identification, respectively. All ROI masks are bilateral. (A) Whole-network DMN 
and MNS masks. (B) Within-network ROIs that are thought to be key nodes of either the DMN and MNS. 
Some of these ROIs are also considered to be nodes of the attentional networks. Abbreviations: ROI = 
region of interest; DMN = default mode network; MNS = mirror-neuron system; mPFC = medial prefrontal 
cortex; vmPFC = ventromedial prefrontal cortex; PCC = posterior cingulate cortex; TPJ = temporoparietal 
junction; pIFG = posterior inferior frontal gyrus; dPMC = dorsal premotor cortex; IPS = intraparietal sulcus; 
LOTC = lateral occipitotemporal cortex; FPCN = frontoparietal control network; VAN = ventral attention 
network; DAN = dorsal attention network 
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Whole-brain fMRI Analyses 

Whole-brain group fMRI analyses were performed to complement the primary ROI 

analyses. Whole-brain group differences (pre-training) were examined using Aaron Schultz’s MR 

Tools (108). We specified a general linear model with Group, Stimulus, and their interaction as 

effects, with the intercept and Stimulus nested within Subject. Residuals from this model were 

used in AFNI’s 3dFWHMx and 3dClustSim (109) to estimate a cluster extent (k) that controls 

familywise error rate (FWER) < 0.05. Post-hoc simple effects tests were conducted in clusters 

with a significant interaction effect (p < 0.005, k > 120 voxels). 

 
Results 

Behavioral Results 

 The PTSD group featured greater symptom severity (CAPS score) than controls, and 

symptom severity was marginally reduced after affect labeling training. Full clinical results will 

be presented in a separate manuscript (94). 

Unexpectedly, Why/How task performance (pre-training) did not differ significantly 

across PTSD and controls. For both response time and accuracy, the main effect of Group and 

all Group-related interaction effects were not significant (Supplemental Table S1). 

 

Pre-training Neural Responses across the PTSD and Control Groups 

 Overall, the Why-How contrast produced activations in DMN ROIs (Figure 3A) and 

deactivations in MNS ROIs (Figure 3B), aligning with previous studies (87). Unexpectedly, the 

main effect of Group was not significant in any ROI. Instead, the Group x Stimulus interaction 

was significant in 4/5 DMN ROIs and 4/5 MNS ROIs. Within these ROIs, post-hoc tests revealed 

that only emotional expressions, not intentional actions, elicited significant Group differences. 

Specifically, Emotions evoked greater activation in the PTSD group relative to controls (Table 1). 
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Table 1. Pre-training Why-How neural responses across Group and Stimulus 
 

DMN ROIs MNS ROIs 

Effect ROI b SE t pFDR ROI b SE t pFDR 

GroupPTSD-Control DMN 0.079 0.052 1.505 0.238 MNS 0.118 0.062 1.897 0.155 

StimulusEmotions-Actions -0.034 0.072 -0.476 0.716 -0.035 0.074 -0.464 0.716 

Group x Stimulus 0.194 0.072 2.715 0.014 0.198 0.074 2.656 0.014 

Group (Emotions)† 0.546 0.191 2.861 0.011 0.633 0.207 3.054 0.009 

Group (Actions)† -0.232 0.162 -1.426 0.387 -0.159 0.181 -0.878 0.387 

GroupPTSD-Control mPFC 0.079 0.098 0.808 0.422 pIFG 0.099 0.076 1.297 0.249 

StimulusEmotions-Actions -0.010 0.069 -0.138 0.891 -0.090 0.093 -0.970 0.671 

Group x Stimulus 0.213 0.069 3.073 0.010 0.200 0.093 2.162 0.043 

Group (Emotions)† 0.583 0.227 2.571 0.017 0.599 0.251 2.383 0.023 

Group (Actions)† -0.268 0.251 -1.065 0.387 -0.203 0.228 -0.888 0.387 

GroupPTSD-Control vmPFC 0.088 0.063 1.400 0.238 dPMC 0.071 0.083 0.862 0.422 

StimulusEmotions-Actions -0.042 0.078 -0.541 0.716 -0.126 0.074 -1.716 0.602 

Group x Stimulus 0.149 0.078 1.899 0.069 0.207 0.074 2.817 0.014 

Group (Emotions)† Interaction NS 0.557 0.210 2.654 0.016 

Group (Actions)† Interaction NS -0.272 0.233 -1.168 0.387 

GroupPTSD-Control PCC 0.122 0.087 1.407 0.238 IPS 0.135 0.070 1.919 0.155 

StimulusEmotions-Actions -0.062 0.087 -0.719 0.716 -0.107 0.091 -1.183 0.602 

Group x Stimulus 0.279 0.087 3.221 0.010 0.249 0.091 2.750 0.014 

Group (Emotions)† 0.801 0.249 3.211 0.008 0.769 0.233 3.296 0.008 

Group (Actions)† -0.314 0.240 -1.308 0.387 -0.228 0.226 -1.010 0.387 

GroupPTSD-Control TPJ 0.136 0.059 2.302 0.148 LOTC 0.146 0.066 2.223 0.148 

StimulusEmotions-Actions -0.118 0.090 -1.301 0.602 0.130 0.083 1.554 0.602 

Group x Stimulus 0.315 0.090 3.488 0.009 0.134 0.083 1.613 0.111 

Group (Emotions)† 0.902 0.213 4.238 0.001 Interaction NS 

Group (Actions)† -0.359 0.219 -1.638 0.387 Interaction NS 

† post-hoc simple effects test; pFDR = p-value adjusted for false discovery rate < 0.05; NS = not significant 
(pFDR > 0.05) 

 

Mirroring the ROI results, the whole-brain analysis (Figure 3C) did not find the main 

effects of Group and Stimulus to be significant (p < 0.005, clusterwise FWER < 0.05). Instead, 

Group x Stimulus was significant in 3 clusters (peak coordinates listed): left dorsolateral 

prefrontal cortex (dlPFC; x = -33, y = 28, z = 40, F1,33 = 18.96, k = 503), bilateral dorsal 

somatomotor cortices (dSMC; x = -6, y = -28, z = 60, F1,33 = 16.73, k = 811), and left 

temporoparietal junction (TPJ; x = -51, y = -51, z = 39, F1,33 = 16.40, k = 476). In all three clusters, 

post-hoc tests revealed that only emotional expressions, not intentional actions, elicited 
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significant Group differences. Specifically, emotional expressions evoked greater activation in 

PTSD relative to controls in left dlPFC (Emotions: t33 = 3.60, p < 0.001; Actions: t33 = -1.89, p = 

0.07), dSMC (Emotions: t33 = 3.35, p = 0.002; Actions: t33 = -1.94, p = 0.06), and left TPJ 

(Emotions: t33 = 4.04, p < 0.001; Actions: t33 = -1.98, p = 0.06). 

 
Figure 3. Pre-training Why-How neural responses featured a Group x Stimulus interaction. (A, B) Mean 
parameter estimates across Group and Stimulus in all (A) DMN and (B) MNS ROIs. Error bars represent 
standard error of the mean. U-shaped brackets indicate the significance of Group simple effects. (C) 
Whole-brain analysis of the Group x Stimulus interaction (p < 0.005, clusterwise FWER < 0.05). 
Abbreviations: dlPFC = dorsolateral prefrontal cortex; dSMC = dorsal somatomotor cortices; FWER = 
familywise error rate; *pFDR < 0.05; **pFDR < 0.01; ***pFDR < 0.001; NS pFDR > 0.05.  

Relationship between Symptom Severity and Neural Responses (PTSD only) 

Figure 4 and Table 2 show the relationship between symptom severity and Why-How 

neural responses in PTSD patients. The main effect of CAPS score was not significant in any 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/527176doi: bioRxiv preprint 

https://doi.org/10.1101/527176


PTSD AND THE SOCIAL BRAIN 

14/39 
 

ROI. Instead, the CAPS x Session x Stimulus interaction was significant in 4/5 DMN ROIs and 

4/5 MNS ROI. Post-hoc CAPS simple effects tests revealed that the pattern of interaction was 

consistent across these ROIs. For emotional stimuli, the CAPS correlation was positive during 

pre-training (significant in PCC and IPS), and negative during post-training (significant in pIFG). 

For action stimuli, the CAPS correlation was negative during pre-training (not significant in any 

ROI), and positive during post-training (significant in DMN, MNS, and IPS).  

 
Figure 4. Relationship between symptom severity (CAPS) and Why-How neural responses in PTSD 

patients. Only ROIs with a significant CAPS x Session x Stimulus interaction are shown. The top panels 

show scatterplots of parameter estimates and CAPS scores in the (A) DMN and (B) MNS whole-network 

masks, with regression lines for CAPS simple effects. Thick lines represent significant regression 

coefficients, while thin lines represent non-significant regression coefficients. The bottom panels show 

CAPS simple effects regression coefficients for ROIs within (C) DMN and (D) MNS. Error bars represent 

standard error of regression coefficients. Abbreviations: CAPS = Clinician-Administered PTSD Scale 
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Table 2. Relationship between symptom severity (CAPS) and Why-How neural activation in PTSD patients 

  
DMN ROIs MNS ROIs 

Effect ROI b SE t pFDR ROI b SE t pFDR 

CAPS DMN 0.000 0.004 -0.099 0.986 MNS 0.001 0.005 0.181 0.986 

CAPS x Session x Stimulus -0.011 0.002 -5.683 <0.001 -0.007 0.003 -2.823 0.010 

CAPS (Pre, Emotions)† 0.020 0.013 1.559 0.185 0.036 0.016 2.250 0.083 

CAPS (Post, Emotions) † -0.008 0.010 -0.837 0.554 -0.012 0.010 -1.147 0.530 

CAPS (Pre, Actions) † -0.037 0.015 -2.451 0.106 -0.037 0.018 -2.126 0.106 

CAPS (Post, Actions) † 0.063 0.017 3.702 0.045 0.063 0.021 2.986 0.046 

CAPS mPFC -0.001 0.009 -0.161 0.986 pIFG -0.017 0.006 -2.715 0.089 

CAPS x Session x Stimulus -0.011 0.003 -3.529 0.002 -0.005 0.002 -2.108 0.050 

CAPS (Pre, Emotions) † 0.009 0.020 0.435 0.670 0.023 0.020 1.185 0.289 

CAPS (Post, Emotions) † -0.008 0.017 -0.477 0.640 -0.008 0.014 -0.569 0.640 

CAPS (Pre, Actions) † -0.042 0.022 -1.877 0.111 -0.037 0.006 -5.882 0.003 

CAPS (Post, Actions) † 0.022 0.016 1.375 0.206 0.044 0.029 1.511 0.193 

CAPS vmPFC 0.003 0.006 0.548 0.986 dPMC -0.007 0.007 -1.074 0.719 

CAPS x Session x Stimulus -0.004 0.003 -1.495 0.157 -0.004 0.003 -1.431 0.158 

CAPS (Pre, Emotions)† Interaction NS Interaction NS 

CAPS (Post, Emotions)† Interaction NS Interaction NS 

CAPS (Pre, Actions)† Interaction NS Interaction NS 

CAPS (Post, Actions)† Interaction NS Interaction NS 

CAPS PCC 0.013 0.006 2.225 0.152 IPS 0.010 0.005 1.796 0.261 

CAPS x Session x Stimulus -0.011 0.003 -3.093 0.006 -0.008 0.003 -3.041 0.006 

CAPS (Pre, Emotions)† 0.049 0.012 3.977 0.009 0.021 0.007 2.847 0.047 

CAPS (Post, Emotions)† -0.015 0.015 -1.002 0.530 -0.030 0.010 -2.899 0.084 

CAPS (Pre, Actions)† -0.075 0.034 -2.248 0.106 -0.026 0.025 -1.051 0.324 

CAPS (Post, Actions)† 0.042 0.027 1.573 0.193 0.056 0.017 3.277 0.045 

CAPS TPJ 0.000 0.005 -0.018 0.986 LOTC -0.003 0.005 -0.488 0.986 

CAPS x Session x Stimulus -0.010 0.002 -4.075 0.001 -0.009 0.002 -4.520 <0.001 

CAPS (Pre, Emotions)† 0.035 0.017 2.091 0.085 0.033 0.015 2.219 0.083 

CAPS (Post, Emotions)† -0.025 0.014 -1.714 0.282 -0.026 0.013 -2.014 0.244 

CAPS (Pre, Actions)† -0.027 0.010 -2.761 0.098 -0.035 0.018 -1.913 0.111 

CAPS (Post, Actions)† 0.059 0.028 2.131 0.105 0.049 0.020 2.492 0.075 
 

† post-hoc simple effects test  
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Predicting Training Outcomes from Pre-Training Neural Responses (PTSD only) 

 Figure 5 and Table 3 show the relationship between training outcomes and pre-training 

Why-How neural responses for PTSD participants who completed affect labeling training. The 

main effect of Post-Pre CAPS score difference (CAPSdiff) was not significant in any ROI. 

Instead, CAPSdiff x Stimulus was significant in 3/5 DMN ROIs and 5/5 MNS ROIs. Post-hoc 

CAPSdiff simple effects tests revealed that the pattern of interaction was consistent across 

these ROIs. The CAPSdiff correlation was negative for emotional stimuli (significant in DMN, 

PCC, TPJ, MNS, IPS, and LOTC) and flat for action stimuli (not significant in any ROI). In sum, 

larger neural responses to emotional stimuli predicted larger decreases in symptom severity 

after affect labeling training. 

 
Figure 5. Prediction of training outcomes from pre-training Why-How neural responses in PTSD patients 
who completed affect labeling training. (A) DMN and (B) MNS ROIs with significant predictive effects are 
shown. Scatterplots compare pre-training parameter estimates and Post-Pre CAPS differences, with 
regression lines plotted for main (overall) and simple (stimulus-specific) effects. Bolded lines represent 
significant regression coefficients, while thin lines represent non-significant regression coefficients. 
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Table 3. Prediction of training outcomes (CAPSdiff) from pre-training Why-How neural responses in PTSD 
patients who completed affect labeling therapy. 
   

DMN ROIs MNS ROIs 

Effect ROI b SE t pFDR ROI b SE t pFDR 

CAPSdiff DMN -0.024 0.018 -1.307 0.380 MNS -0.040 0.022 -1.842 0.270 

CAPSdiff x Stimulus -0.030 0.009 -3.309 0.005 -0.043 0.010 -4.272 0.001 

CAPSdiff (Emotions)† -0.054 0.022 -2.449 0.049 -0.082 0.030 -2.753 0.036 

CAPSdiff (Actions)† 0.003 0.019 0.153 0.987 0.003 0.022 0.118 0.987 

CAPSdiff mPFC -0.015 0.035 -0.426 0.727 pIFG -0.030 0.033 -0.932 0.454 

CAPSdiff x Stimulus -0.023 0.014 -1.654 0.127 -0.034 0.009 -3.778 0.002 

CAPSdiff (Emotions)† Interaction NS -0.064 0.037 -1.732 0.117 

CAPSdiff (Actions)† Interaction NS 0.003 0.033 0.104 0.987 

CAPSdiff vmPFC -0.005 0.015 -0.354 0.727 dPMC -0.039 0.033 -1.170 0.380 

CAPSdiff x Stimulus -0.010 0.011 -0.942 0.358 -0.039 0.014 -2.734 0.016 

CAPSdiff (Emotions)† Interaction NS -0.077 0.039 -1.971 0.092 

CAPSdiff (Actions)† Interaction NS -0.001 0.038 -0.017 0.987 

CAPSdiff PCC -0.040 0.016 -2.519 0.209 IPS -0.036 0.018 -1.990 0.270 

CAPSdiff x Stimulus -0.051 0.013 -3.954 0.002 -0.056 0.013 -4.453 0.001 

CAPSdiff (Emotions)† -0.085 0.024 -3.503 0.013 -0.089 0.024 -3.644 0.013 

CAPSdiff (Actions)† 0.005 0.024 0.206 0.987 0.017 0.026 0.643 0.987 

CAPSdiff TPJ -0.017 0.015 -1.146 0.380 LOTC -0.031 0.023 -1.341 0.380 

CAPSdiff x Stimulus -0.050 0.010 -5.273 <0.001 -0.057 0.010 -5.908 <0.001 

CAPSdiff (Emotions)† -0.078 0.021 -3.704 0.013 -0.086 0.024 -3.536 0.013 

CAPSdiff (Actions)† 0.041 0.018 2.289 0.383 0.023 0.029 0.798 0.987 

  
† post-hoc simple effects test; CAPSdiff = Post-Pre CAPS score difference 

 

Discussion 

We conducted the first neuroimaging investigation of social inference in PTSD to help 

uncover the etiology of PTSD-related social cognitive impairments. To this end, we examined 

neural activation evoked by the Why/How social inference task (87), which dissociates the two 

primary networks of the “social brain”: the default mode network (DMN) and mirror neuron 

system (MNS) (25, 51). We found that DMN and MNS responses differentiated PTSD patients 

from controls, correlated with symptom severity, and predicted training outcomes. 

Unexpectedly, these effects were driven almost exclusively by hyperactivation to emotional 

stimuli. Our neuroimaging results were not corroborated by differences in Why/How task 
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performance, despite numerous reports of impaired social inference performance in PTSD (18). 

This discrepancy may be attributable to the ease of the task. Taken together, these results 

suggest that the social brain may be inordinately selective for affective stimuli in PTSD, even in 

the absence of measurable behavioral impairments. 

 
Affect-Related Disruption of Social Inference Processing in PTSD 

To reveal PTSD-related disruptions in social inference processing, Why-How neural 

responses were analyzed for PTSD-control differences, symptom severity correlations, and 

prediction of training outcomes. In all three analyses, emotional facial expressions (Emotions) 

elicited much stronger PTSD-related effects than intentional hand actions (Actions). In the pre-

training session, the PTSD group showed greater activation for Emotions, while controls 

showed greater activation for Actions. Critically, group differences were only significant for 

Emotions (Figure 3, Table 1). Similarly, pre-training symptom severity was positively correlated 

with Emotions-evoked activation and negatively correlated with Actions-evoked activation; these 

correlations were only significant for Emotions (Figure 4, Table 2). Lastly, better training 

outcomes were predicted by greater Emotions-evoked activation in the pre-training session 

(Figure 5, Table 3). These results were generally consistent throughout DMN and MNS, 

suggesting that both mentalizing and action identification processes are broadly selective for 

affective stimuli in PTSD. Taken together, affect-selective hyperactivation may be a defining 

characteristic of social inference processing in PTSD. This aligns with numerous reports of 

affect-selective hyperactivation in PTSD (68, 81–83, 86, 110). 

Given the overarching role of affect in our results, it would be reasonable to expect the 

strongest effects in ventromedial prefrontal cortex (vmPFC; Figure 2B), the hub of affective 

processing in the social brain (21, 111–113). Through a wide array of paradigms, vmPFC has 

been shown to compute the affective valence and value of social and non-social stimuli (114–
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119). During social inference, vmPFC can represent the emotions of others (40, 120–122). 

Unexpectedly, vmPFC did not show any significant PTSD-related effects in the current study, 

though the directionality of effects were consistent with other ROIs. Moreover, whole-brain 

analyses did not reveal significant PTSD-related effects in core affective regions such as 

amygdala (123), orbitofrontal cortex (124), and insula (125). Instead, all other ROIs featured 

significant PTSD-related effects, even though they are less implicated in affective processing 

(126). Thus, core affective processes may not play a key role in disrupting social inference 

processing in PTSD. 

Alternatively, the affect-selective hyperactivation we observed may not reflect altered 

affect per se, but rather selective processing of affective information by the wide array of social 

cognitive processes subserved by DMN and MNS. Indeed, PTSD-related effects were stronger in 

the whole-network DMN and MNS masks, indicating that social inference processing was 

disrupted on a network-wide basis. Moreover, the within-network ROIs featured similar patterns 

of results as the whole-network masks, though effects were often weaker or not significant. 

Nevertheless, the consistency of these effects is remarkable given the functional heterogeneity 

between and within DMN and MNS (122, 127). 

 
An Attentional Account of Social Inference Dysfunction in PTSD 

Outside of core affective processes, what neurocognitive mechanisms could instigate 

such broad affect-selectivity throughout the social brain? Putatively, attention may be one such 

mechanism, as attentional processes are frequently reported to be inordinately biased towards 

emotional stimuli in PTSD (82, 77, 128–136). Concordantly, PTSD-related attentional biases 

have been linked with affect-evoked hyperactivation throughout DMN (80, 81). Moreover, DMN 

activation has been shown to correspond with attention level during social tasks (48, 88, 137–

139). Similarly, MNS activation appears to be modulated by both top-down and bottom-up 
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attention (41, 88, 140–144). 

An attentional account is further supported by the anatomical overlap between the 

attention networks and regions with significant PTSD-related effects in the present study. With 

the exception of medial prefrontal cortex, ROIs with significant effects appear to overlap with 

either the dorsal attention (DAN), ventral attention (VAN), or frontoparietal control (FPCN) 

networks. DAN is involved in top-down attention, and includes intraparietal sulcus (IPS), dorsal 

premotor cortex (dPMC), and lateral occipitotemporal cortex (LOTC) (58, 145, 146). VAN, 

involved in bottom-up attention and attentional reorientation, includes temporoparietal junction 

(TPJ) and posterior inferior frontal gyrus (pIFG) (74, 146). FPCN includes parts of posterior 

cingulate cortex (PCC), and is thought to facilitate attentional control by mediating activity 

between DMN, DAN, and other networks (147–150). Moreover, whole-brain analyses revealed 

PTSD-related effects in one region outside our a priori ROIs: the dorsolateral prefrontal cortex, a 

central node of DAN and FPCN (145, 151). Accordingly, other studies have observed affect-

evoked hyperactivation in DAN, VAN, and FPCN in PTSD (76, 80–83, 85). Taken together, 

affective attentional biases in PTSD may drive widespread affect-selective hyperactivation 

throughout DMN and MNS during social inference.  

 
Affect Labeling Training 

The PTSD group underwent affect labeling training, which involves labeling the 

emotional content of stimuli (90). Affect labeling is an emotional inhibitory regulation strategy 

that has been found to downregulate amygdala responses via right ventrolateral prefrontal 

cortex (vlPFC) in healthy subjects (90, 91, 152, 153). Though we did not find PTSD-related 

effects in amygdala or vlPFC, affect labeling training was found to reduce symptom severity 

(94). Affect labeling may inhibit the affective components of social inference processing, as 

reactivity to emotional stimuli became negatively correlated with symptom severity after 
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training—a reversal of the positive correlation found prior to training (Figure 4). This post-

training negative correlation reached significance only in pIFG, perhaps signifying the 

importance of mirroring and bottom-up attentional processes during socioaffective inhibitory 

regulation (32, 146). Moreover, better training outcomes were predicted by higher Emotions-

evoked activation in the pre-training session (Figure 5), suggesting that engagement with 

emotional stimuli enhances the efficacy of affect labeling training—an interpretation consistent 

with other studies on exposure-based PTSD interventions (154–157). In sum, affect labeling 

training may be better suited for patients with greater affect-selective hyperactivation during 

social inference. 

 
Limitations and Future Directions 

The interpretation of these results should be tempered by the relatively small sample 

size of this study, especially in the post-training analyses. Additionally, generalizability may be 

limited by our selective recruitment of American veterans exposed to combat trauma. Future 

studies should use larger and more diverse samples. A potential confound in this study are the 

non-affective stimulus differences between Emotions (faces) and Actions (hands); our key 

finding of Emotions-selective hyperactivation may not be exclusively driven by affect. Future 

studies should better match emotional and non-emotional stimuli. Another caveat is the 

putative nature of the functional-anatomic overlap between our findings and the attention 

networks. This overlap was inferred using reverse inference from existing literature—a form of 

reasoning that can be tenuous (158, 159). This functional-anatomic overlap could be more 

definitively investigated by including functional localizers for DAN, VAN, and FPCN in addition to 

DMN and MNS. More broadly, techniques such as multivariate analyses, connectivity analyses, 

and other neuroimaging modalities would be useful in further characterizing PTSD-related 

neural dynamics during social inference. 
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Conclusion 

In the first neuroimaging investigation of social inference in PTSD, the social brain was 

found to be broadly selective towards emotional stimuli in PTSD. Affect-selective 

hyperactivation throughout DMN, MNS, and beyond differentiated PTSD patients from controls, 

correlated with symptom severity, and predicted training outcomes. Despite this, PTSD-related 

effects were not significant in core affective regions. Instead, our data putatively highlight the 

role of attentional processes in disrupting social inference processing in PTSD. These results 

indicate that further study of social inference processing in PTSD is strongly warranted, 

specifically in disentangling the roles of affect and attention. 
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