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Dispersal is a central process in biology with implications at multiple scales of organization1,2,3,4. 17 

Organisms vary in their dispersal abilities, and these differences can have important biological 18 

consequences, such as impacting the likelihood of hybridization events5. However, the factors 19 

shaping the frequency of hybridization are still poorly understood, and therefore how dispersal 20 

ability affects the opportunities for hybridization is still unknown. Here, using the ecological 21 

replicate system of dove wing and body lice (Insecta: Phthiraptera)6, we show that species with 22 

higher dispersal abilities exhibited increased genomic signatures of introgression. Specifically, 23 

we found a higher proportion of introgressed genomic reads and more reticulated phylogenetic 24 

networks in wing lice, the louse group with higher dispersal abilities. Our results illustrate how 25 

differences in dispersal ability can drive differences in the extent of introgression through 26 

hybridization. The results from this study represent an important step for understanding the 27 

factors driving hybridization. We expect our approach will stimulate future studies on the 28 

ecological factors shaping hybridization to further understand this important process. 29 
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Dispersal is the permanent movement of organisms away from their place of origin. It is a 31 

fundamental process in biology with significant implications at multiple scales of 32 

organization1,2,3,4, including the reproduction of individuals, the composition of populations and 33 

communities, and the geographical distribution of species1,7. 34 

Organisms differ in their dispersal abilities, and these differences have an impact on their 35 

biology, such as on the distributional range of a species or gene flow between populations5. For 36 

example, organisms with lower dispersal abilities tend to have smaller distributional ranges and 37 

populations that are genetically more structured5,8,9. 38 

Dispersal ability might also affect the opportunities for hybridization between species 39 

because the rates at which individuals encounter different species are likely to be higher in 40 

organisms with higher dispersal capabilities. Indeed, recent evidence supports this prediction by 41 

demonstrating that range expansion is associated with the extent of introgression10,11. Similarly, 42 

dispersal differences explain more than 30% of the variation in the width of hybrid zones across 43 

animals12. However, overall the factors influencing hybridization events are poorly known13, 44 

and, in particular, the influence of dispersal ability on the rate of hybridization remains 45 

understudied. 46 

Comparisons of the effect of dispersal on hybridization should ideally hold constant most 47 

factors other than dispersal. The ecological replicate system of wing and body lice (Insecta: 48 

Phthiraptera) of pigeons and doves (Aves: Columbidae) has proven to be an ideal system for 49 

comparing the impact of dispersal differences on other aspects of biology, such as population 50 

structure and codivergence6,8,14,15,16. Both of these two lineages of feather lice occur across the 51 

diversity of pigeons and doves and have the same basic life history and diet, but they 52 

significantly differ in their dispersal ability17,18,19. Both wing and body lice disperse vertically 53 
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between parents and offspring in the nest. However, wing lice can also attach to and hitchhike on 54 

hippoboscid flies to disperse “phoretically” between host individuals or host species17,18,19. 55 

Indeed, this additional dispersal mechanism profoundly influences their degree of 56 

population structure and cophylogenetic history8,14,16,20. In addition, wing lice have a higher rate 57 

of host-switching6,14,15 (i.e., successful colonization of new host species) and of straggling21 
58 

(i.e., dispersal to new host species without reproduction on that new host). 59 

To compare differences in the extent of introgression between wing and body lice, we 60 

used whole-genome data from 71 louse individuals belonging to five taxa of wing lice 61 

(Columbicola) and seven taxa of body lice (Physconelloides) occurring across the same host 62 

species. We predicted that wing lice, which have higher dispersal abilities and thus higher odds 63 

of encountering individuals of a different louse species on the same host, should show more 64 

extensive evidence of introgression (Fig. 1).  65 

 We used two different approaches to quantify the differences in introgression between 66 

louse genera. First, in individual louse genomes, we quantified the genomic contributions from 67 

different closely related louse species of the same genus22. Second, we quantified introgression at 68 

the species level, accounting for incomplete lineage sorting (ILS) by inferring phylogenetic 69 

networks using a maximum pseudo-likelihood framework23,24,25. 70 

Both approaches revealed highly concordant results; higher levels of introgression among 71 

species of wing lice compared to body lice. In particular, using a read-mapping based method, 72 

the genomic signature of introgression was significantly higher in wing louse species than in 73 

body louse species (GLM with the mean values of the simulations; F = 21.0705, df = 69, P = 74 

2.367 x 10-5; Fig. 2, Supplementary Table S1, Figs. S1-S12). 75 
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Secondly, in a phylogenetic network framework, the optimal networks of wing lice were 76 

more reticulated than those of body lice even though the number of taxa included in the networks 77 

was lower (seven reticulations in Columbicola vs. four in Physconelloides, Fig. 3). Accordingly, 78 

the number of reticulations given the number of potential combinations was significantly higher 79 

(χ2= 3.8132; df=1; P= 0.03). Also, the specific lineages involved in the reticulations were 80 

generally congruent with signatures of introgression from the read-mapping based approach (Fig. 81 

S1-S12). 82 

Taken together, evidence from wing and body louse genomes suggests that differences in 83 

dispersal ability drive differences in the extent of introgression in this system of ecological 84 

replicate parasites. This work is among the first studies of introgression in a host-symbiont 85 

system26. Notably, recent studies have found that straggling and host switching are relatively 86 

common processes in host-symbiont systems27,28,29,30. Our study suggests that in a 87 

straggling/host-switching scenario, hybridization can provide further variation with important 88 

eco-evolutionary consequences31. Overall, the results from this study represent a significant step 89 

towards understanding the factors driving hybridization, because most previous studies focus on 90 

the presence/absence of hybridization and the evolutionary consequences of hybridization 91 

events13,32. Further research is needed to understand the factors shaping the frequency of 92 

hybridization and how these factors influence eco-evolutionary dynamics.  93 
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Methods 95 

Data 96 

We studied whole genome data from 71 louse individuals belonging to five and seven taxa 97 

of Columbicola and Physconelloides, respectively (Supplementary Table S2). Data were 98 

available from previous studies16,33,34 and represent all described New World ground-dove wing 99 

and body louse species, most host species in this group, and sampling across multiple 100 

biogeographic areas within species16 (Supplementary Table S2). Illumina genome sequence data 101 

pre-processing included several steps16. First, we discarded duplicate read pairs using the 102 

fastqSplitDups script (https://github.com/McIntyre-103 

Lab/mcscriptand https://github.com/McIntyre-Lab/mclib). We then eliminated the Illumina 104 

sequencing adapters with Fastx_clipper v0.014 from the FASTX-Toolkit 105 

(http://hannonlab.cshl.edu/fastx_toolkit). Also, we removed the first 5 nt from the 5’ ends of 106 

reads using Fastx_trimmer v0.014 and trimmed bases from the 3’ ends of reads until reaching a 107 

base with a phred score ≥28 using Fastq_quality_trimmer v0.014. Finally, we removed any reads 108 

less than 75 nt and analyzed the cleaned libraries with Fastqc v0.11.5 to check for additional 109 

errors. We assembled nuclear loci in aTRAM following previous studies16,33,34,35. In particular, 110 

we mapped modest coverage (25-60X), multiplexed genomic data to reference loci from a 111 

closely related taxon. For our reference set of nuclear loci for wing lice, we used 1,039 exons 112 

of Columbicola drowni generated in a previous study33 (raw data: SRR3161922). This data set 113 

was assembled de novo35 using orthologous protein-coding genes from the human body louse 114 

genome (Pediculus humanus humanus36) as a set of target sequences. We mapped our newly 115 

generated Columbicola reads and the reads obtained from GenBank to the C. drowni references 116 

using Bowtie237. For body lice, we obtained nuclear data using the same pipeline and software 117 
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parameters, except that we used 1,095 loci from P. emersoni as the reference for mapping. To 118 

generate the input ultrametric gene trees for Phylonet v3.6.823,24,25, we first aligned each nuclear 119 

locus in MAFFT38(--auto) and removed columns with only ambiguous sequences (“N”). Then, 120 

we estimated gene trees in RAxML v8.1.339 with a GTR + Γ substitution model for each gene 121 

alignment. Finally, we made trees ultrametric using the nnls method in the force.ultrametric 122 

function within the “phytools” R package40.  123 

Quantifying introgression 124 

We used two different approaches to quantify differences in the extent of introgression between 125 

the two louse genera. First, we used sppIDer22 to quantify the genomic contributions of different 126 

louse species in an individual louse genome. We built our reference for each genus using all the 127 

nuclear loci from a single individual per species. For the reference, we selected those individuals 128 

for which we assembled the highest number of loci. Finally, we estimated the extent of 129 

introgression as the sum of the mean coverages of reads mapped from all the species excluding 130 

the focal louse species, divided by the mean coverage of the focal louse species. Second, we 131 

quantified introgression at the species level, while accounting for ILS, using a maximum pseudo-132 

likelihood framework with PhyloNet 3.6.123,24,25. We trimmed the unrooted gene trees to the 133 

same individuals used as reference taxa in sppIDer, and performed ten independent analyses with 134 

a differing maximum number of reticulation nodes (i.e., from zero to ten). We conducted ten 135 

runs per analysis. We then selected the optimal network for each genus based on AIC values. 136 

Analyses 137 

We compared the sppIDer results using generalized linear models (GLMs). We used a Gaussian 138 

distribution of errors and an identity link function. We performed one GLM for each simulation 139 
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iteration using the glm function of the “stats” R package41. The extent of introgression for each 140 

louse genus was the dependent variable, the genus identity was the independent variable, and we 141 

accounted for the introgression differences between louse species including louse identity as a 142 

fixed factor. We confirmed assumptions underlying GLMs by testing the normality of regression 143 

residuals for normality against a Q-Q plot. We also considered the possibility that some of the 144 

reads mapping to other species were technical contaminations, i.e., due to index-145 

swapping42,43,44,45. To account for possible contaminants, we wrote a simulation in R that 146 

randomly subtracted 9% from the mean coverage value of a particular sample (i.e., we subtracted 147 

a random proportion of the mean coverage value for each species until reaching 9 %). We ran 148 

100 iterations of the simulation and ran a GLM for each iteration (Table S1). Finally, we used 149 

the χ2 test to compare the number of species in pairwise comparisons of each genus with the 150 

number of reticulations found in each optimal phylogenetic network. 151 

 152 
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Figure 1. Diagram depicting the ecological replicate system and the hypothesis of this 282 

study. Wing lice (Columbicola) have higher dispersal abilities than body lice (Physconelloides), 283 

and thus higher odds of encountering individuals of a different louse species on the same host. 284 

Thus, wing lice are predicted to show higher levels of introgression compared to body lice.  285 

 286 

 287 
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Figure 2. Boxplot showing the differences in levels of introgression between wing (green) and 289 

body (orange) lice. Level of introgression represents the sum of the mean coverage of 290 

reads mapped from all the species excluding the focal louse species, divided by the mean 291 

coverage of the focal louse species (see Methods). Black dots represent individual samples 292 

(horizontally jittered).  293 

 294 

 295 
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Figure 3. Optimal phylogenetic networks of feather lice genera. Orange branches depict 297 

reticulations. From left to right, Columbicola (seven reticulations) and Physconelloides (four 298 

reticulations) networks (See Methods).  299 

300  
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