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Abstract 
Technical advances have enabled the identification of high-resolution cell types 

within tissues based on single-cell transcriptomics. However, such analyses are 

restricted in human brain tissue due to the limited number of brain donors. In this 

study, we integrate mouse and human data to predict cell-type proportions in 

human brain tissue, and spatially map the resulting cellular composition. By 

applying feature selection and linear modeling, combinations of human and mouse 

brain single-cell transcriptomics profiles can be integrated to “fill in” missing 

information. These combined “in silico chimeric” datasets are used to model the 

composition of nine cell types in 3,702 human brain samples in six Allen Human 

Brain Atlas (AHBA) donors. Cell types were spatially consistent regardless of the 

scRNA-Seq dataset (91% significantly correlated) or AHBA donor (p-value = 4.43 

×10-20 by t-test) used in the model. Importantly, neuron nuclei location and neuron 

mRNA location were correlated only after accounting for neural connectivity (p-

value = 1.26×10-10), which supports the notion that gene expression is a better 

indicator than nuclei location of cellular localization for cells with large and 

irregularly shaped cell bodies, such as neurons. These results advocate for the 

integration of mouse and human data in models of brain tissue heterogeneity. 

 

Keywords: scRNA-Seq, neural connectivity, deconvolution, Allen Human Brain 

Atlas, RNA-Seq  
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Introduction 
An important goal for neuroscience is to understand how structural, anatomic, and 

cellular heterogeneity relate to brain development, cognitive function, neurological 
disease, and senescence/degeneration [1]. Recently, over 40 cell types with unique 

anatomic characteristics [2] as well as complex spatially distinct anatomic 

connections [3] were identified in the mouse brain. Due to the spatial and functional 

complexity of these brain structures, there is a strong need to combine anatomically 

explicit tissue sampling with functional assessment to “localize molecularly defined 

subtypes in tissues, with simultaneous detection of morphology, activity, or 
connectivity” [4]. Fortunately, a confluence of enhanced gene expression sequencing 

capabilities, deposition of well-curated sample data into publicly available 

repositories, and improved analytical tools can help address these gaps in our 

existing knowledge of cellular and functional heterogeneity in the brain. 

Single-cell sequencing has empowered a new generation of transcriptomics-
based cell classification studies [2, 5, 6]. Single-cell-resolution transcriptomes have 

enabled the classification of cell type and function based on similarities and 

dissimilarities in gene expression, which in turn has identified novel and 
functionally distinct subtypes of neuronal and glial cells [2, 7-9]. These findings 

suggest that brain cells are more functionally diverse than previously assumed. 

Moreover, these cell types can be predicted and identified based on gene expression 

and evaluated with existing knowledge about their role within the brain. To date, 

this approach has not been utilized to estimate the tissue heterogeneity of spatially 

sampled and anatomically distinct human brain tissues, though such analyses have 

been conducted for other human organs and tissues [10-12]. 

The Allen Human Brain Atlas (AHBA) is a database that curates transcriptomics 

data from human brain tissues while also providing additional sample information, 
including spatial and anatomic locations [13]. One major barrier to studying 

anatomically explicit gene expression patterns in human brains is the paucity of 
relevant donor samples [14]. Previous studies have integrated disparate datasets 

with the AHBA to supplement the low numbers of human brain donors and harness 
features unique to each dataset [15]. The AHBA database therefore provide a unique 

opportunity to model cellular heterogeneity spatially across multiple brains and 

anatomic regions. One limitation, however, is that samples can be highly variable 

and biased by the donor’s age, cause of death, and time postmortem. For this reason, 

it is important to leverage additional information, where possible, to complement 

the existing data infrastructure for the purposes of large-scale analyses.  

One potential solution for augmenting information from the AHBA is to 

incorporate data from the brains of other well-studied model organisms. It has 

already been shown that mouse and human interneurons share similar co-
expression motifs [16] and that brain region-specific gene expression is homologous 

between human and mouse [18]. In addition, feature selection can correct for some 

interspecies variance [17].  

In this manuscript, therefore, we address several key challenges that are not 

only important for neurological research but also for medical computational 

modeling, including the integration of mouse and human data sets, prediction of 
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brain cell-type composition from expression data, and accurate mapping of 

anatomical location and spatial heterogeneity. First, we propose methods for 

integrating scRNA-Seq data from mouse and human brain tissues to estimate cell-type 

composition in heterogeneous brain tissue. Second, we validate our methods on 

simulated samples generated from scRNA-Seq data. Third, we estimate the cell-type 

composition in spatially sampled human brains. Finally, we show that neural 

connectivity (e.g., neuron size, axonal projection size) alters the RNA composition in 

brain tissue. Our aims were as follows: 

Aim 1: Create an analysis pipeline that accurately and precisely integrates human 

and mouse data to better predict cell-type composition based on gene 

expression. 

Aim 2: Use integrated data to predict cell-type composition in unknown human 

samples that are spatially distributed (i.e., anatomically explicit) throughout the 

human brain. 

Aim 3: Examine whether cell types correspond with known brain data to the 1) 

anatomical location in the brain; 2) neural connectivity; and 3) nuclear density 

of the cells.  

Previously, to obtain cell-type-specific RNA profiles, researchers physically 

sorted cells before sequencing or computationally sorted samples after sequencing 
using expression deconvolution (Figure 1A-1 [19], A-2 [20]). Deconvolution is the 

process by which homogenous elements are estimated from a heterogeneous 

mixture. This new paradigm (Figure 1A-3) is complementary to the above two 

workflows, and is adopted in this study. Specifically, single cells are sequenced 

individually then stratified computationally after clustering into groups, which are 

then used as input for deconvolution. The general mathematical estimation of 

homogeneous tissue proportions in heterogeneous tissue mixtures has already been 
described in detail [19, 21-29].  

Although deconvolution methods using both cell-type proportions and cell-type 
expression profiles have been studied previously using microarray data [19, 21, 23-
30], there is limited research on the deconvolution method applied to microarray or 

bulk RNA-Seq samples using profiles derived from scRNA-Seq [10, 31]. Furthermore, 

the combination of mouse and human datasets in this process is limited to species-
specific deconvolution of pancreatic tissue to identify biomarkers [10]. The method 

presented in this paper expands these general ideas to the brain, and combines 

human and mouse expression profiles prior to deconvolution. 

To address our first aim, we integrated mouse brain cell expression information 

to complete various sets of human brain cell types. To address our second aim, we 

inferred cell-type composition from “in silico chimeric” mouse-human data sets and 

mapped these characterizations anatomically in human brain samples. To address 

aim 3, cell types were evaluated against their anatomic localization pattern, and 

neuron nuclei density was compared with neuron composition across anatomic 

locations. This workflow required surmounting several challenges, including:  

1. Implementation of a robust deconvolution method and validation (Aim 1); 

2. Integration of mouse and human expression data (Aim 1); 

3. Integration of scRNA-Seq and microarray data for deconvolution in a broad 

set of scenarios (Aim 2); 
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4. Integration of RNA-Seq with the spatial mapping of cell type and neural 

connectivity (Aim 3). 

Importantly, due to the large size and irregular shape of neurons and other 

neural cells, the relationships between RNA, nuclei, and cell shape are critically 

important for modeling cells from brain tissue. We believe that the nuclei density or 

mRNA quantity alone may not be an optimal representation of cellular localization 

in large and irregularly shaped cell types like neurons. The Allen Brain Institute 

provides rich information about brain connectivity from mouse brain tissues by 

labeling axonal projections with rAAV tracers and imaging with two-photon 

tomography. The results are neural projection volumes at both the injection and 

target sites. By integrating mouse brain connectivity data [3], we show that these 

projections may affect cell-type RNA quantities across the brain spatially, resulting 

in changes to cell-type quantification. By incorporating neural connectivity 

information into the deconvolution process, we show our deconvolution results 

replicate neural nuclei location. 

 

Results 
Cell-type proportion estimates are accurate for simulated scRNA-Seq tissue  

The workflow of the experimental process is shown in Figure 1. The cell-type 

proportions (i.e., composition) that resulted from deconvolution of each of the three 

scRNA-Seq datasets were highly correlated with the underlying true proportions of 

single cells (Figure 2). We observed that the true proportions could be reproduced 

from the trained model for any of the original scRNA-Seq datasets (Figure 2A). 

Furthermore, the ordinary least squares (OLS) model always performed better than 

the non-negative matrix factorization regression (NMFR) model based on the 

Pearson’s correlation coefficient (PCC); the OLS model was therefore used for the 

remainder of the study (Figure 2B). In general, the deconvolution parameters and 

the gene variation among the datasets and samples do not affect the accuracy of the 

model. The accuracy decreased the most for a step size of less than ~0.2 

(Supplementary Figure S3); we therefore used 0.3 as the step size and 0.9 as the 

standard deviation constant based on a grid search (Supplementary Figure S3). 

Cell-type proportion estimates of AHBA donors are consistent across scRNA-

Seq datasets 

The cell-type proportions were estimated in each of the AHBA donors using scRNA-

Seq data (i.e., MusNG, HumN, and HumNG; see Supplementary Figure 1 and 

Materials and Methods for details). The resulting estimated cell-type proportions 

(three per AHBA donor) were consistent regardless of the scRNA-Seq dataset, and 

were used to deconvolute data from each donor (Figure 3A). 

We expect cell-type correlations among datasets to be positive, which would 

suggest that the cell-type proportions are consistent between input datasets (Figure 

3A). We observed that 91% (21/23) of the correlations were significantly positively 

correlated (Figure 3A) with a low Benjamini-Hochberg false discovery rate (BH-

FDR) (Figure 3B). Neural cell-type correlations were much stronger than glial cell-

type correlations because glial cell types were harder to differentiate 

(Supplementary Figure S4-10). Furthermore, we found that the same cell-type 
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correlations were positively correlated more frequently than mismatched cell-type 

correlations (Supplementary Figure S4-10, Supplementary Table II). The cell-type 

estimates using the MusNG dataset were most similar to the HumN datasets for 

AHBA donors. The HumN versus HumNG correlations were higher than the MusNG 

versus HumNG correlations despite the same feature set in the HumN and MusNG 

datasets (Figure 3, Supplementary Figure S4-10). This finding is caused by the gene 

expression profile similarity between the HumN and HumNG datasets. Within each 

of these comparisons, there were also indications that dissimilar cell types follow 

similar patterns to other cell types between datasets. For example, human 

oligodendrocyte proportions correlate with mouse astrocyte proportions 

(Supplementary Figure S4-10B,D,F). This finding could be attributed to similar glial 

expression profiles or an overlap between the two cell types in anatomical space. 

We observed that the absolute proportions of neural cell types, especially pyramidal 

cells, were much higher than glial or interneuron cell types (Supplementary Figure 

S4-10A,C,E) in cerebrum samples. This finding may be attributed to the higher 

quantity of neural cell mRNA. Alternatively, neural cell mRNA may have a specific 

signature that is easier to detect. 

Cell-type proportion spatial mappings are consistent among AHBA donors 

We demonstrated that scRNA-Seq datasets were not sources of bias by comparing 

the cell-type proportions using different scRNA-Seq datasets. This lack of influence 

of the scRNA-Seq dataset indicates that our feature selection and deconvolution 

method is effective. Therefore, we next show that the donor is not a major 

contributor of variance to the cell-type proportions.  

The estimated cell-type proportions for each donor were mapped to the 

anatomical location from which they were sampled. For each anatomic location, the 

mean cell-type proportion was used to produce an aggregated cell-type proportion 

for each anatomic location. By using scRNA-Seq data to calculate the cell-type 

proportions for each anatomic location, we observe high cell-type consistency 

between donors for each of the anatomic locations: the average pairwise PCC was 

0.87 across all three scRNA-Seq datasets (Figure 4). The PCC among AHBA donors 

was also significantly higher and significantly more positively correlated than 

randomly shuffled data (Figure 4, p-values MusNG: 1.73 ×10-23, HumN: 1.92 ×10-27, 

HumNG: 1.18 ×10-14 by t-test; averaged: 4.43 ×10-20). Furthermore, none of the 

randomized comparisons were significantly correlated to every non-random 

comparison (Figure 4, Supplementary Figure S11-13). We also observed variability 

among brain donors; for example, AHBA donor 9861 had significantly lower 

correlations than other donors (p-value = 1.46 ×10-7 by t-test).  

Cell-type distribution shows region specificity regardless of input data species 

We observed that cell types with known anatomic locations mapped to the expected 

anatomic locations regardless of species. For example, the MusNG S1 cortex 

pyramidal cell type localized to the human cortex and the MusNG CA1 hippocampus 

cell type localized to the human hippocampus region in the AHBA donors (Figure 

5C2-3, Supplementary Figure S14-31C2-3). Endothelial cell types also localized to 

human brainstem regions, where many large blood vessels enter the brain (Figure 

5C6, Supplementary Figure S14-31C6). Ependymal cells localized to human 

ventricular regions of the brain (Figure 5C8, Supplementary Figure S14-31C8). 
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Brain localization information was known for certain cell types in each sample of 

the AHBA metadata files (points in Figure 5B,C). Clusters that emerged from 

principal component analyses (PCA) and K-means clustering were consistent with 

the sample’s brain region information. The average accuracy between the clusters 

and the true brain regions for all combinations of AHBA donors and scRNA-Seq 

datasets was 81 ± 7% (Supplemental Table I). The combined and smoothed example 

is shown in Figure 5B. The sensitivity and specificity of these clusters compared to 

the true brain region were also analyzed relative to the AHBA donor, scRNA-Seq 

dataset, and brain region (Supplementary Table II). We found high average 

sensitivity (0.80±0.16) and high specificity (0.91±0.05) across all scRNA-Seq 

datasets, brain donors, and brain regions (Supplementary Table II). The high 

sensitivity and specificity demonstrate that we can confidently identify the major 

brain region from which each sample is extracted using the cell-type proportions 

identified from our workflow. Supplementary Table II reports the sensitivity and 

specificity values for every combination of scRNA-Seq, AHBA donor, and brain 

region. 

The multivariate analysis of variance (MANOVA) p-values for the sensitivity and 

specificity grouped by scRNA-Seq dataset, AHBA donor, and brain region were 

0.3083, 0.2601, and 0.0019, respectively (Supplementary Table II, Figure 5B). These 

results showed that only brain region significantly affects the ability to identify the 

anatomical region from the cell-type composition. For example, it was more likely 

for brainstem samples to have cell-type compositions similar to the cerebellum or 

cerebrum than for cerebrum or cerebellum samples to have non-region-specific cell-

type composition (Figure 5B, Supplementary Figure S14-31B, Supplementary Table 

II). More importantly, results were consistent for different scRNA-Seq input data or 

AHBA donor deconvolution. This finding further validates our feature selection and 

deconvolution techniques when mouse scRNA-Seq data is used to fill in human 

brain expression data for cell-type location analysis. 

Neuron nuclei and neuron mRNA localization are inconsistent when 

projection volume is not adjusted 

The location of cells in a tissue is often considered to be as straightforward as the 

location of their nuclei. Using hematoxylin and eosin (H&E) staining, it is relatively 

straightforward to determine the locations of cell nuclei. In fact, nuclei stains are 
used to determine cellular location in applications like image segmentation [32, 33]. 
Consequently, cellular mRNA is considered in practice to follow similar spatial 

patterns to that of cellular nuclei. However, in cell types that may cover large 

distances, e.g., neurons, it may not be optimal to use nuclei location or mRNA 

location alone. We suggest that a measure of cellular extension, such as neural cell 

connectivity, should be used to better control for the mRNA contents of the cell with 

respect to the nuclei. 

We found that the neuron/non-neuron ratios derived from mRNA deconvolution 
did not match those derived from counts of neuron nuclei [34]. The correlation 

between the nuclei-based ratios and our mRNA-based ratios across the cerebrum, 

brainstem, and cerebellum were not significant (Figure 6A; PCC = 0.1282, p-value = 

0.3556). However, we noticed that the mRNA-based neuron/non-neuron ratios (p-

value < 1.00×10-16 by ANOVA) and connectivity volume (p-value = 4.23×10-15 by 
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ANOVA) varied significantly by brain region. When we divide the mRNA-based 

neuron/non-neuron ratios in each region by the mean projection volume for that 

region, the PCC significantly improves (Figure 6B; PCC = 0.7429, p-value = 1.26×10-

10). We conclude that for neuron cell types, which have axons that travel long 

distances, the nuclei are not the optimal indicator for cell location. Instead, mRNA 

content information can better trace the cell location in brain tissue. 

Principal cell types visualized across the entire AHBA 

To visualize the structural patterns among estimated cell types, we applied singular 

value decomposition (SVD) to estimated cell-type data from the AHBA to reduce 

each mapped cell type to three principal types, which then could be displayed in an 

�� color vector. The 3D output for each of the six brains was overlaid by anatomic 

location. This visualization showed that there were unique patterns associated with 

cerebrum, brainstem, and cerebellum brain regions (Figure 7A-I). For example, the 

cerebrum displays a cell-type pattern that is distinct from that of both the brainstem 

and cerebellum. In contrast, although the brainstem and cerebellum exhibited 

differences from one another, the cell types within these two regions were similar 

(Figure 7A-I). These patterns were consistent across brains and among the input 

scRNA-Seq datasets that were used to deconvolute the samples (Figure 7A-I).  

We also evaluated the principal cell types in each major brain region visually 

(Figure 7J-L, Supplementary Table III). The brainstem was generally comprised of 

CA1 pyramidal and glial cell types. The cerebellum was comprised of interneurons 

and various glial cell types (Figure 7J-L, Supplementary Table III). Though detailed 

information on specific cell-type locations are not common, it is worth noting that 

some patterns are consistent with known locations; for example, ependymal cells 

localized to the spinal cord and ventricular regions. 

 

Discussion 
We demonstrated that brain cell-type density changes throughout the brain. We also 

showed that spatial information is consistent between species. Our methods 

successfully showed that cortex and hippocampal pyramidal cells in mouse also 

localized to cortex and hippocampus, respectively, in human samples. Furthermore, 

we showed that the neural cell-type proportions were generally much higher than 

the glial cell-type proportions. This finding may be due to a higher amount of total 

RNA in the cell or a greater diversity of RNAs. Alternatively, however, it is possible 

that neuron mRNAs were more specific to neurons, allowing the deconvolution 

algorithm to attribute a higher percentage of the tissue mRNA density to neurons. 

These considerations and their impact on spatial deconvolution could be partially 

accounted for by integrating nuclei density and neural connectivity data. 
A previous study [34] focused on the cell-type composition of human brain tissue 

in specific anatomic brain regions by DAPI and NeuN protein staining in sections of 

human brain to count the number of nuclei in each section. The counts of all nuclei 

(DAPI+) and neuron nuclei (NeuN+) were used to extrapolate the proportions of 

neurons in a specific anatomic region. One striking finding from our study, however, 

is that regional neuron to non-neuron nuclei ratios did not accurately reflect cell-

type specific mRNA composition when brain connectivity was not taken into 
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account. This discrepancy indicates that nuclei counts are not necessarily adequate 

for evaluating the amount of neuron mRNA; for example, there may be more 

neurons in the cerebellum, but those neurons produce less mRNA than other brain 

regions. In addition, neural connectivity was greater in the cerebrum than in the 

cerebellum, despite greater numbers of cell nuclei in the cerebellum. These 

structural differences can be difficult to characterize at the single-cell level because 

the dissociation of cells in neural tissue severs these neural connections. For these 

reasons, therefore, we believe that more complex models should be developed to 

study cell-type information spatially in the brain. These models should take into 

account cell shape; changes in cell-type expression profiles by location; quantity of 

RNA in a given cell; and input from other data types, such as histological images. In 

addition to being integrative, these deconvolution models could also be more 

sophisticated by using machine learning  approaches and feature reduction instead 

of feature selection. 

Computational deconvolution to differentiate cell types is an important topic of 

transcriptomic data analysis, which can facilitate the elucidation of cell-type specific 

transcriptomic profiles in future studies [10, 19, 21, 23-31]. These approaches are 

generally limited to a single platform and usually for a single species, however, even 

though RNA-Seq/microarray data integration has already been applied in 
comparison studies [35, 36], tool development [37], and cancer research [38]. Due to 

the limitations of prior techniques, the vast accumulation of gene expression 

microarray and RNA-Seq data usually contains a tissue mixture with multiple cell 

types. With the single-cell RNA-Seq paradigm shift, it will be an important 

application of single-cell gene expression to deconvolute and “purify” this old 

microarray data to obtain cleaner representations of gene expression profiles for 

each cell type. In this study, we demonstrated that cell-type proportions could be 

derived with high accuracy through an integrated deconvolution method. We also 

achieved high consistency among scRNA-Seq datasets when they were used to 

deconvolute AHBA microarray data. We advocate for the improvement of this 

general methodology using integrative transfer-learning approaches to further 

evaluate both new and old datasets and to address problems associated with limited 

numbers of human brain donors.  

The scarcity of human brain samples is a challenge in human neurological 

research. In most brain research, animal models are used as substitutes for human 

subjects. It is therefore important to integrate gene expression information from 

other species with human data. In fact, mouse brain expression can be used directly 
to study autism in the developing human brain [39]. Another study has shown that 

regional gene expression in mouse and human brain are concordant [18]. It has been 

shown that major neural cell types can be mapped between mouse and human if 
features are selected properly [17]. In this study, we found that we could achieve 

consistent cell-type deconvolution results in human brain samples by combining 

mouse and human data to deconvolute human tissue. We believe that this direct 

translation of mouse data to complement human data on homologous genes is a 

promising direction for transcriptomic and brain research. The additional data 

scope and sample availability from cross-species workflows is expected to facilitate 
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the study of the structural, anatomic, and cellular heterogeneity that drives 

neurological development, cognition, disease, and degeneration. 

 

Conclusion 
In this study, we estimated and visualized spatial cell-type changes across the entire 

AHBA by deconvoluting each of the 3,702 AHBA microarray samples with gene 

expression profiles of each cell type from both mouse and human scRNA-Seq. Highly 

consistent cell-type location patterns were achieved across all AHBA donors, which 

confirmed known cell types and location information. Furthermore, we found that 

the most conspicuous changes in cell types occurred within major anatomic regions, 

including the cerebrum, brainstem, and cerebellum. We also discovered unique 

spatial cell-type relationships, such as mouse hippocampal pyramidal cells localizing 

to human hippocampus. We also showed that both nuclei location and mRNA 

location should be considered when localizing neural cells, due to their large 

irregular shape. Furthermore, we advocate for the expansion of these proposed 

techniques to include more diverse data types and the integration of these 

techniques with more sophisticated transfer-learning approaches to generate more 

accurate models of tissue heterogeneity. 

 

Materials and methods 
Data 

Ten datasets were used in our analysis. These datasets fall into three categories: 1) 

one mouse and two human scRNA-Seq datasets containing annotated cell types, 

which are used for expression deconvolution and cell-type specific signature 

generation; 2) six human microarray datasets from the Allen Brain Institute (AHBA 

datasets), which are used to generate human brain spatial maps; and 3) one mouse 

dataset of brain connectivity from the Allen Brain Institute, which is used to study 

the relationship between connectivity, cellular nuclei location, and cellular mRNA 

location in this work. 

The mouse scRNA-Seq dataset [2] contains 3,005 cells, including both neural and 

glial cell types from the mouse hippocampus and cortex (denoted as MusNG, i.e., 

Mouse Neural-Glial). The two human scRNA-Seq datasets consist of different cell 

types. One dataset contains 3,086 cells (neural cell types only) from the cortex 
(denoted as HumN, i.e., Human Neural) [6]. The second dataset contains 285 cells 

(both neural and glial cell types) from the temporal lobe [5] (denoted as HumNG, i.e., 

Human Neural-Glial). Because MusNG is the most complete dataset in terms of the 

number of regions sampled and the diversity of cell types included, the MusNG 

dataset has been used to fill in missing cell-type expression data in the human 

datasets (Supplemental Figure S1). 

The six microarray datasets that we used consisted of 3,702 total microarrays 

across every major brain region, and represent the entire set of expression data 

from the AHBA. Each microarray sample (tissue of mixed cell types) is taken for 

analysis from a specific location in one of the six donor brains. The 3D spatial 

coordinates of each microarray sample is also known. This information can 

therefore be used to map each microarray sample in 3D space. The datasets also 
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include the brain region from which each sample is taken. A detailed description of 

how the data is generated and normalized can be found on the Allen Brain Institute 

website (http://human.brain-map.org/) 

The brain connectivity dataset is generated from multiple mouse line brain 

tissue and contains all major anatomic regions (http://connectivity.brain-map.org). 

The sum of the projection volumes of both the injection and target sites are used as 

the measure of connectivity. 

Data preprocessing and feature selection 

All mouse scRNA-Seq and AHBA microarray genes/probes are filtered prior to the 

analysis. Because the human scRNA-Seq data are missing several main cell types 

that are present in the mouse datasets, the mouse cell types are added to the human 

datasets to complete the human dataset. These appended mouse cell types are then 

subjected to downstream data filtering to prevent biases from being introduced. 

Rigorous data filtering is an important part of our analysis; scRNA-Seq data is sparse 

due to the nature of the lab preparation required to generate the reads as well as the 

cross-species/cross-platform nature of the data. The complete filtering takes four 

steps: 1) selection of mouse scRNA-Seq genes using the noise model [2]; 2) feature 

selection on mouse scRNA-Seq genes using minimum redundancy maximum 

relevance (mRMR) to remove highly correlated genes; 3) matching for homologs 

between mouse scRNA-Seq and human microarray probes; and 4) selection of 

concordant human and mouse gene homologs from the paired scRNA-Seq and 

microarray datasets. The details of each step are discussed in the preprocessing and 

feature selection section of the supplementary material (Supplementary Material, 

Section 1). 

Cell-type proportion estimates on simulated scRNA-Seq tissue 

Ordinary Least Squares regression (OLS) and non-NMFR are two of the major 
deconvolution methods applied to gene expression data [22, 27, 40]. These two 

methods are tested in this paper for data integration and feature selection. To 

evaluate whether these methods are accurate in estimating the cell-type 

proportions, we apply both OLS and NMFR on simulated tissue samples generated 

from the scRNA-Seq datasets. These simulated tissue samples consist of aggregated 

single cells, which when combined represent a “simulated tissue” with known cell-

type proportions (i.e., the counts of each type of cell in the aggregate). The accuracy 

of cell-type quantification is measured between the true cell-type proportions and 

the estimated proportions generated using OLS and NMFR. Based on the evaluation 

results, OLS is used to estimate the proportion of major cell types in the AHBA 

datasets. A detailed description of both regression methods can be found in the 

supplemental material (Supplementary Material, Section 2). For a gene expression 

data matrix � �  ����, where each column constitutes one of � cell-type expression 

profiles with � gene features (rows), the proportions of each cell type as a vector 

(���
) can be estimated for a human brain sample ��, where 	 (1 � 	 � 6) represents 

the index of the sample in the total number of samples ( � 6) in the AHBA dataset. 

Cell-type proportion estimates across AHBA donors and scRNA-Seq datasets 

Due to the complexity of cell types in brain tissues, it is necessary to employ 

multiple datasets (MusNG, HumN, and HumNG) to create the expression profiles 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2019. ; https://doi.org/10.1101/527499doi: bioRxiv preprint 

https://doi.org/10.1101/527499
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

used to deconvolute the human brain samples (��). The consistency of these data 

types can be evaluated to ensure the method can be properly applied to human 

brain data. HumN contains only two major neural cell types, whereas HumNG 

contains one major neural cell type and four major glial types. MusNG is the most 

complete in terms of the major cell types (three neural and six glial/vascular types). 

Therefore, for any missing cell type in human scRNA-Seq data, it can be filled in 

using MusNG data such that the expression vector in MusNG corresponding to the 

missing vector in the human dataset is appended to the human dataset. Feature 

selection of concordant genes between species and sample-wise z-score 

normalization are conducted to make the vectors comparable. When comparing 

against HumNG, both MusNG and HumN aggregate S1 pyramidal and interneurons 

into a single neural cell type. For all datasets, CA1 pyramidal cells from MusNG is 

added because HumN and HumNG contain no CA1 pyramidal cells. A detailed 

account of how cell types are exchanged between datasets is provided in 

Supplementary Figure 1. 

We employ the following methods to show that cell-type spatial maps in AHBA 

brains are consistent using deconvoluted signatures from any of the three scRNA-

Seq datasets. For each dataset (MusNG, HumN, or HumNG), cell-type proportions 

are calculated across all six brains (� �	
 ��
). Let � �	
 ��
  �  ����  �. �.  ��

�	
��

�

 ���
 for scRNA-Seq dataset (s) and AHBA donor (d) and �� the anatomic locations 

for each Tl in donor d. The computed cell proportions are subsequently used to 

calculate correlations between each pair of deconvolution input datasets. For each 

pair of comparisons, the mean correlation for each cell type from the six brains is 

used, resulting in 27 total correlations from three comparisons for nine cell types. 

We calculate the Benjamini-Hochberg false discovery rate (BH-FDR) for each of the 

27 cell-type correlations. We also perform a Student’s t-test to compare the 

difference in PCC in the same cell types versus mismatched cell types.  

It is also important to check the consistency between AHBA donors to ensure 

that our deconvolution results are valid. The ��	
��
 are averaged across the three 

scRNA-Seq datasets (s), resulting in six averaged sets of proportions for each of the 

six AHBA donors. The brain regions for each sample are then used to create an 

average cell-type proportion for that region. The PCC is calculated between each of 

the AHBA donors using these regional proportions. A seventh random donor is 

created by i) randomly selecting a donor and ii) randomly reordering that donor’s 

sample regions. This donor is used to calculate a PCC between the random donor 

and the non-randomized donors. This randomization and correlation process is 

repeated 100 times and averaged to generate random PCC values as a negative 

control. 

Cell-type association with specific brain regions 

To show the cell-type localization across all brains and across species/datasets, all 

scRNA-Seq datasets are used to deconvolute all AHBA brains using OLS. The results 

yield the sagittal view of the distribution of each cell type individually. The data 

from each scRNA-Seq dataset and AHBA donor combination are included and also 

combined into a comprehensive model. Each of the six brains are manually 

registered to each other so that the brain regions are consistent. Because some 
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regions and cell types may have low representation in some samples, the 

deconvolution results (proportions) are smoothed by taking the maximum of the 

five closest samples in 3D Euclidean space. These new proportions are then 

returned to proportions such that each sample’s proportions sum to one, thus 

improving the coverage of difficult-to-detect cell types. The color represents the 

smoothed proportion of each cell type and is mapped to each sample’s respective 

voxel location in 3D space. To show overarching patterns, the principal cell types for 

that brain are plotted using a PCA plot. Each point (sample) in the PCA is colored 

based on the anatomic locations from which that sample was extracted in the donor 

brain. The PCs are calculated across the cell-type proportion matrix (� �	
 ��
) for 

each scRNA-Seq dataset (�) and brain donor (�) using SVD, producing a matrix 

containing the PC values for each sample that could be plotted in 2D space. K-means 

clustering (k = 3, corresponding to the three major brain regions―cerebrum, 

brainstem, cerebellum―under study is applied to cluster the samples into three 

groups. The consistency between each of the three clusters and the three anatomic 

regions is measured using sensitivity and specificity values. A MANOVA model is fit 

using the sensitivity and specificity as dependent variables and the scRNA-Seq 

dataset, AHBA donor, and region sampled as the independent variables to study the 

effects of each type of sample on the ability to accurately map back to the tissue of 

origin. Any significant results for scRNA-Seq dataset, AHBA donor, or brain region 

correspond to a difference in mapping accuracy due to that variable (i.e., bias).  

Neuron nuclei and mRNA localization discrepancy and adjustment for neural 

projection volume  

The inconsistency between neuron nuclei location and neuron mRNA localization is 

evaluated against neural projection information. We calculate the PCC between the 

deconvolution results and the nuclei count results, and then compare the PCCs while 

controlling for neural projection information. To explore the possibility that the long 

and irregular neuron volume could account for these discrepancies, we download 

the mouse brain connectivity data from the Allen Brain Institute to compute the 

neural projection volume. First, the injection and target site volumes for each 

experiment as well as the mouse anatomic brain region hierarchy are downloaded. 

A breath-first-search is employed to extract all regions under the cerebrum, 

brainstem, and cerebellum branches in the mouse brain region hierarchy. This 

information is used to stratify the signals to the specified regions. Next, the 

metadata from each of the AHBA donor brains is used to extract cerebrum, 

brainstem, and cerebellum samples, stratifying the sample proportions to each 

region. The ratio of neuron to non-neuron signature is calculated for each sample 

and used in subsequent analysis so that the cell-type signature proportions are 

comparable to the nuclei proportions. Next, all 18 combinations (three input scRNA-

Seq datasets and six brain donors) are matched to each of the nuclei datasets by 

brain region such that for each nuclei neuron/non-neuron estimate, there are 18 

cell-type signature proportion-derived neuron/non-neuron estimates. Finally, the 

cell-type expression profile proportion ratios are divided by the axonal projection 

volumes (mouse connectivity) to recreate a positive correlation between nuclei and 

cell-type expression profile proportions. 

Visualization of principal cell types across the entire AHBA 
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To show high-level spatial distributions of principal cell types, all six brains across 

all cell types are combined into single 3D representations for each of the three 

scRNA-Seq datasets. SVD was performed on the cell-type proportion matrix, and the 

three largest components were used as the principal cell types across all samples in 

each brain to display the results as a three-digit color vector. This analysis is 

performed for each of the six AHBA brains using each of the three scRNA-Seq 

datasets individually. The principal cell types are displayed in 3D using color to 

represent the top three principal cell types. The three scRNA-Seq datasets are 

displayed separately such that all six AHBA brains are manually overlaid for each 

scRNA-Seq dataset. This registration produces consistent anatomic locations across 

the six overlaid brains. Displays are generated with MATLAB function scatter3 (The 

Mathworks, Inc.; Natick, MA, USA) to view sagittal, coronal, and axial images. 
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Figure legends 
Figure 1 The classic characterization of cell types from RNA-Seq data.  

A-1. and A-2. were used before the advent of scRNA-Seq. A-3. is the current state of 

the art, and was chosen as the basis for characterization in this study. B. The 

workflow of this study from raw scRNA-Seq datasets (light blue) to processed data 

and downstream analyses. 

 

Figure 2 A comparison of cell-type estimate accuracy using the data from each 

of the three scRNA-Seq datasets. 

A. Representative examples of the cell-type proportions using each scRNA-Seq 

dataset on donor 10021. MusNG: A MusNG simulated sample deconvoluted using 

the cell types from MusNG. HumN: A HumN simulated sample deconvoluted using 

the cell types from HumN. HumNG: A HumNG simulated sample deconvoluted using 

the cell types from HumNG. B. Pearson’s correlation coefficients (PCC) between the 

true proportions of cell types from simulated tissue samples and predicted 

proportions. The experiments were repeated 100 times for each scRNA-Seq dataset, 

regression method, and Allen Human Brain Atlas (AHBA) donor. ***indicates p-

value < 0.001. 

 

Figure 3 Pearson’s correlation coefficients (PCC) and Benjamini-Hochberg 

false discovery rates (BH-FDR) for each cell-type prediction between each pair 

of the three input datasets.  

A. PCC values for each cell-type correlation across all samples deconvoluted with 

different scRNA-Seq datasets. B. Negative log10 BH-FDR values for the PCC 

correlations in A. The scale is the exponent of the BH-FDR. *indicates correlations p 

< 0.05, **p < 0.01, *** p < 0.001. φ indicates the two cell types that were combined 

for the MusNG+HumNG and HumN+HumNG comparison such that the first two 

rows in the right two columns in A and B are the same value. See Supplemental 

Figure 1 for more information. Stripes indicate that there were not enough data to 

generate a correlation. 

 

Figure 4 Allen Human Brain Atlas (AHBA) donor-to-donor consistency across 

MusNG, HumN and HumNG using the average Pearson’s correlation coefficient 

(PCC) of anatomic location and the p-value calculated from the average PCC. 

 

Figure 5 Spatial distribution of cell-type proportions in Allen Human Brain 

Atlas (AHBA) donors using all scRNA-Seq datasets to deconvolute the RNA 

expression profile.  

A. Reference map with developmental structures and major brain regions labeled. B. 

Principal component analysis (PCA) plot of the cell-type proportion matrix such that 

the nine cell types are reduced to two principal cell types for each of the samples in 

the brain. The colors indicate the three regions (cerebrum, brainstem, and 

cerebellum). C. The proportion of each cell type plotted from a sagittal view (see 

individual scale bars for proportions). 
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Figure 6 Comparison of nuclei/non-nuclei ratios derived from nuclei counts 

and mRNA quantification with respect to neural connectivity.  

A. The Pearson’s correlation coefficient (PCC) of the neuron/non-neuron ratios 

between the nuclei-based estimate and mRNA-based estimate. The 18 points along 

each tier of the y axis are the 3 RNA-Seq datasets by 6 Allen Human Brain Atlas 

(AHBA) donors. The three levels of nuclei ratios on the y axis are from the nuclei 

counts for each region. B. The data are the same as in A except that the mRNA 

neuron/non-neuron ratios were divided by the projection volume, which adjusts for 

the differences in neuron length among different regions. 

 

Figure 7 The 3D spatial mapping of major cell types from Allen Human Brain 

Atlas (AHBA) donors.  

Six samples are stacked together. The colors represent the first three principal cell 

types derived from principal component analysis (PCA) on the cell-type proportion 

matrix. A, B, C. MusNG deconvolution; D, E, F. HumN deconvolution; and G, H, I. 

HumNG deconvolution. 
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