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ABSTRACT: Phase separation in mixed lipid systems has been extensively studied both 

experimentally and theoretically because of its biological importance.  A detailed 

description of such complex systems undoubtedly requires novel mathematical 

frameworks that are capable to decompose and categorize the evolution of thousands if 

not millions of lipids involved in the phenomenon. The interpretation and analysis of 

Molecular Dynamics (MD) simulations representing temporal and spatial changes in such 

systems is still a challenging task. Here, we present a new unsupervised machine 

learning approach based on Nonnegative Matrix Factorization, called NMFk, that 

successfully extracts physically meaningful features from neighborhood profiles derived 

from coarse-grained MD simulations of ternary lipid mixture. Our results demonstrate that 

leveraging NMFk can (a) determine the role of different lipid molecules in phase 

separation, (b) characterize the formation of nano-domains of lipids, (c) determine the 

timescales of interest and (d) extract physically meaningful features that uniquely 

describe the phase separation with broad implications.
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INTRODUCTION

Cell membranes contain mixtures of different lipid types, dynamically arranged, that 

play a key role in various mechanisms responsible for cell survival 1. In the past, 

membranes were thought to be homogenous systems, however, new data suggests that 

under different stimulus, the lipids can segregate 2-3 into detergent-resistant domains 

commonly called “rafts”. These domains are highly dynamic, varying in size and 

composition 4-5. Importantly, this lateral partitioning is responsible for activation and 

functioning of membrane-embedded proteins 6-7. 

While it is possible to experimentally visualize the structure of segregated lipid domains 

2, 8, a detailed description of such phases are inherently limited by the resolution of the 

experimental techniques. At this respect, molecular dynamics (MD) simulations provide a 

molecular understanding of membrane behavior. In fact, the presence of such lateral 

rearrangement has been studied extensively using coarse-grained (CG) MD of ternary 

lipid mixtures 9. These CG simulations suggest partial segregation in large lipid systems 

that mimic the lipid variability of the real cell membranes 10. MD simulations of such 

realistic biomolecular systems usually contain millions of particles, even when simplified 

models are used. When the purpose of such simulations is to gain biological or physical 

insights, it is challenging to identify patterns in the behavior encoded in the motion of 

thousands of molecules, so developing analytic tools for extracting functionally relevant 

features from MD generated trajectories is of great importance. 
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Currently, machine learning (ML) methods have shown a lot of promise in many fields 

11, and recently some of them have been applied for analysis and detection of classical 

and quantum phase transition data generated by simulations. Both supervised and 

unsupervised ML approaches have been used for this purpose 12-19, but most of these 

pioneer studies used small Ising-like systems for their investigations. ML has previously 

been coupled with MD simulations of biomolecular systems in a limited context. ML 

techniques were reported to predict free-energy differences when trained with MD 

simulation data 20, and unsupervised approaches such as PCA 21 as well as other 

techniques 22-23 have been used to reduce the dimensionality of MD generated data 24-28. 

In general, the unsupervised ML methods learn relationships between elements in 

uncategorized data and classify the data without human’s help but by revealing its internal 

structure and latent (i.e., not directly observable) features hidden in the data. The 

unsupervised methods include clustering 29, classical neural networks 30, and the more 

contemporary blind source separation (BSS) techniques 31. BSS is based on factorization 

which is one of the most powerful tools for extraction of latent features 32. BSS include 

principle component analysis (PCA) 33, singular value decomposition (SVD) 34, and more 

advanced methods, such as independent component analysis, ICA 35 and nonnegative 

matrix factorization, NMF 36. 

A limitation shared by PCA, SVD and ICA is the difficulty to relate the extracted latent 

factors to physically interpretable quantities; NMF overcomes this limitation because the 

nonnegativity of the extracted latent factors leads to a collection of strictly additive 

Page 4 of 43

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 12, 2019. ; https://doi.org/10.1101/527630doi: bioRxiv preprint 

https://doi.org/10.1101/527630


5

components that are sparse and parts of the data and hence are amenable to a simple 

and meaningful interpretation without introducing prior assumptions 37. NMF decomposes 

given data matrix, XLN, into two matrices, WLK, and H KM, such that XLN ≈ WLK H KM. The 

factor matrices, WLK and H KM, are both nonnegative and have one small dimension K that 

represents the number of the latent features in the data (Fig. 1). A mathematically rigorous 

formalism is given in the later sections. NMF ability to identify easy interpretable latent 

features enables discoveries of new causal structures and unknown mechanisms hidden 

in the data as discussed in the literature 38. Surprisingly, the implementation of NMF for 

analysis of MD simulations at the interface of physics and biology has been lacking.

Figure 1.  Illustration of a Nonnegative Matrix Factorization. The nonnegative matrix X 

is decomposed to the product of a nonnegative matrix W, containing K=2 basis lipid 

configurations, and nonnegative matrix H, containing the contributions of these two 

configurations in different time points.

Here, we present a new unsupervised machine learning algorithm based on NMF 

combined with custom k-means clustering, called NMFk, capable of analyzing phase 

separation in a system of mixed lipids directly from the pre-processed trajectories derived 
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by MD simulations. We use CG MD simulations of a physical system that comprises a 3-

component lipid mixture, commonly accepted to mimic the behavior of a cellular plasma 

membrane 5. We show that NMFk, applied to a pre-selected data from these simulations 

is able to, (a) determine the molecules that play different roles in phase separation, (b) 

characterize the formation of lipid nano-domains, (c) reveal the timescales of interest, and 

(d) extract physically meaningful features that characterize the phase separation. 

RESULTS 

Generation of lipid mixture data sets using coarse-grained MD simulations

For MD simulations of membranes and membrane-based biological systems, the Martini 

coarse-grained (CG) force field 39, considerably reduces the computational cost of 

calculations by nearly three orders of magnitude compared with similar MD simulations 

using fully atomistic force fields 40. Particularly, the CG approach can capture relevant 

dynamics and fluctuations of larger membrane patches, which are prohibitive with 

atomistic simulations. Such access to larger spatial and temporal scales enables direct 

comparisons with experimental measurements 41. Pioneering computational studies with 

the Martini CG force field allowed the characterization of not only lipid segregation and 

lipid phases, but also the relative partitioning of membrane proteins between these 

phases 9, 42-44. More recently, Martini has been used in simulations of membranes with 

lipid compositions of comparable complexity to those found in specific tissues of living 

cells 45-46.
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Regardless of the extensive use of the Martini force field, the building-block 

principle of Martini along with the 4:1 atoms to bead mapping unavoidably reduce the 

accuracy due to loss of detailed description of specific molecular chemical properties. 

Thus, despite the fact that many of the current Martini lipid parameters are sufficient to 

guide accurate membrane simulations 39, 47-48, global lipid properties are compromised 49. 

Consistent with previously published work 42, 50-51, the standard Martini V2.2 parameters 

for DPPC, DOPC, and CHOL do not phase separate at 298 K, or even at 290 K in the 

physiologically relevant Ld/Lo coexistence region of the phase diagram. Recently, we 

incorporated changes in the lipid Martini force field 52, greatly improving the lipid 

segregation in line with current experimental phase diagrams 8, 50. 

We use the above two versions of the Martini force field, one lipid parameter set 

that phase separates and the other that does not, to generate two data sets for the 

analysis using NMFk. The first set considers the data from the coarse-grained MD 

simulations of the current Martini force field (called “Standard”). As mentioned above, the 

current Martini V2.2 lipid parameters for DPPC and DOPC are not able to properly 

segregate the DPPC:DOPC:CHOL mixture. It serves as the prototype for non-phase 

separating homogeneous lipid mixture. The second set considers the refined version of 

the Martini (called “Updated”), which has been optimized to reproduce the experimental 

phase separation and domain formation for this ternary system 52. It serves as the 

prototype for phase separating lipid mixture. Using these two versions of force fields, we 

carried out 20 μs long CG MD simulations. The expectation is that we should able to 
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detect and analyze features associated with phase separation in one case but not in the 

other case.

Conventional Analysis of Domains in MD Simulations of Ternary lipid Mixtures

The formation of lipid domains has been heavily studied both experimentally and 

computationally 2-4, 8-10, 53-55 Computational observation of explicit lipid segregation at 

nearly atomic detail dates back to almost 10 years ago 9 Analysis of such processes 

involved direct visualization of cholesterol-rich/-poor domains, as well as physical 

quantification of the area per lipid, cholesterol content, radial distribution functions and 

membrane thickness mismatch 9. These analyses brought enough details that membrane 

domains could be discriminated at the nanoscale. A more sophisticated approach can be 

cited from the work of Baoukina et al.51, where a Voronoi tessellation methodology was 

applied in order to delineate the boundaries between ordered/disordered domains in 

monolayers. This approach can be also directly combined with automated predictive tools 

like Markovian based methodologies 54. Regardless of these published methodologies, 

the analysis and prediction of such fluctuating membrane domains become inaccessible 

when the complexity of lipid content increases with larger size membrane patches (e.g. 

plasma membrane).

A typical process of molecular lipid phase separation is depicted in Fig. 2. Initially, 

the lipid components are randomized, mimicking the homogeneity at a high-temperature 

(Fig. 2A). Subsequent fast quenching of the mixture to 290 K, well below the melting 
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temperature of the fully saturated DPPC lipid, leads to the rapid formation of nanoscale 

domains on a submicrosecond time scale with the Updated Martini force field (Fig. 2B 

top panel). These nano-domains are eventually formed over the entire surface of the 

membrane, but in different regions. After 0.5 microseconds, the nano-domains start to 

interconnect, leading to the formation of larger cholesterol-rich regions. In agreement with 

the general raft hypothesis 53 and previous computational studies 9, the ‘‘ordered’’ nano-

domains contain most of the saturated lipids together with cholesterol forming a Liquid 

ordered (Lo) domain, whereas the ‘‘disordered’’ nano-domain is mainly composed of the 

polyunsaturated DOPC lipid segregated in a Liquid disordered (Ld) region.  Contrary to 

the Updated force field, the lipid mixture based on the Standard Martini force field does 

not show any tendency for phase separation or domain formation (Fig. 2B, bottom 

panel), in agreement with previously published data 52.
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Figure 2.  Corse-grained simulations of ternary lipid mixture. (A) Initial system setup for 

the CG simulations. Lipids were initially randomly placed within the XY plane. Saturated 

lipid, DPPC, is colored in green while unsaturated lipid, DOPC, is colored in red. 
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Cholesterol is colored in white. Water is not shown for clarity in depiction. (B) Lipid phase 

separation within 2 us simulation. The updated CG force field shows clear phase 

separation into Lo (green) and Ld (red). Contrary, the standard Martini lipid force field 

does not show preferential segregation in cholesterol rich domains. (C) Time evolution of 

the normalized number of contacts between saturated and unsaturated lipids, showing 

poor separation with the standard Martini force field.

Following the conventional approaches to quantify the segregation tendency, we 

compute the normalized total contacts between DPPC and DOPC as a function of 

simulation time (Fig. 2C). Initially, these contacts are featured by larger values, meaning 

that these two lipid types are indeed in close contact, highlighting the initial homogeneous 

lipid mixing of the system. However, with the Updated Martini, lipid segregation leads to 

a decrease in the total number of contacts between DPPC and DOPC (Fig. 2C black 

line). Whereas, the contacts remain unchanged in the simulations with the standard 

Martini (Fig. 2C red line). In the case of Updated Martini, contacts decay during the 

simulations and begin to plateau with increasing simulation time. We should note here 

that the proper convergence to a stationary state may not be achievable within the 

simulation timescales considered here, as already published 54, while significant transition 

towards segregation occurs within the first 2 us (Fig 2C insert). We consider this time 

regime suitable for NMFk analysis to extract latent features associated with the phase 

separation.

NMFk implementation for analysis of ternary lipid mixture simulations 
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To perform the NMFk analysis, we first define the primary and secondary lipid types and 

then calculate the neighbor matrix at a given time t, , in terms of the number of 𝑿𝑳(𝒕)

secondary lipid type surrounding the primary lipid type. For this study, we considered 

DPPC and DOPC as the primary and secondary lipid types, respectively, although, there 

is no restriction of other combinations for primary and secondary lipid types. We compute 

the number of closest DOPC neighbors, , around every DPPC lipid, 𝑿𝑳(𝒕) 𝐿 = (𝐿1,𝐿2, …, 𝐿𝑀)

, within the distance corresponding to the second peak of the DOPC-DPPC radial 

distribution function (Fig. 3 blue dashed line). The number of neighbors within this 

distance serves as the order parameter for the lipid phase separation. This neighbor data 

is recorded at  consecutive simulation time points, t , corresponding to 𝑁 = (𝑡1,𝑡2, …, 𝑡𝑁)

the time evolution of the system up to first 2 us. The matrix  contains  arrangements 𝑿𝑳(𝒕) 𝑁

 time points, presented by the columns of  that form the matrix of the neighbors, at 𝑁 𝑿, 𝑿𝑳

, where  is the number of the rows, and each row represents the time (𝒕); 𝑿 ∈ 𝑀𝑀𝑁(𝐼 + ) 𝑀

evolution of the closest neighbors of one specific lipid of the primary type. The  denotes 𝐼 +

the set of nonnegative integer numbers. Next, NMFk decomposes the neighbor matrix 𝑿𝑳

 as a product of two matrices: , where the columns of  are the (𝒕) 𝑿𝑳(𝒕) ≈ 𝑾𝑳𝑲 ∗ 𝑯𝑲(𝒕) 𝑾𝑳𝑲

 basis lipid configurations describing the state of the lipid system and  contains 𝑲 𝑯𝑲(𝒕)

the contributions of each one of these configurations at time  (see Fig. 1 where K=2).𝒕
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Figure 3. Lateral radial distribution function for the different lipid combinations. RDF 

was computing considering the center of mass of the molecules. The dashed blue line 

indicates the chosen cut-off distance for profiling neighbor list needed for the NMFk 

matrix construction.

The neighbor matrix, , contains relevant properties of the ternary lipid mixture. 𝑿𝑳(𝒕)

At the beginning of the simulations, the lipid mixture is homogeneous and there are no 

distinct phases, i.e., there is no specific structure in . Hence, contains uniformly 𝑿𝑳(𝒕) 𝑿𝑳(𝒕) 

distributed integer numbers that do not have any distinct features. With the Updated 

Martini force field, by 2 us, the primary lipid type, DPPC, segregates into the Lo region, 

while the secondary lipid type, DOPC, segregates into the Ld domain. In this case, if a 

concrete lipid of the primary type is located deep in a Lo domain, the probability to have a 

lipid-neighbor of secondary type is small (close to zero). In contrast, if this primary lipid is 
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situated outside of any domain, the probability to have a neighbor of the secondary type 

is much higher. Therefore, we expect the neighbor matrix to contain a structure that tracks 

this phase separation and the subsequent analysis by NMFk to extract the hidden 

features describing the structure and the phase separation.

The NMFk analysis, as we will see next, demonstrates exactly that: When phase 

separation begins at time,  = , for each one of the snapshots recorded at,  > , and 𝒕  𝒕𝒔  𝒕  𝒕𝒔

for each of the  lipids of the primary type, the values of the matrix  can be 𝑴 𝑿𝑳(𝒕 > 𝒕𝒔)

represented as a linear mixing of  basis lipid configurations presenting the probability of 𝑲

the given lipid of the primary type, , to have a closest neighbor-lipid of secondary type. 𝐿𝑖

NMFk decomposes the matrix  to a nonnegative probability matrix, 𝑿𝑳(𝒕), 𝑾, 𝑾 ∈ 𝑀𝑀𝐾(ℛ +

, corresponding to these  basis lipid configurations, blended by the weights, presented ) 𝑲

by the elements of a nonnegative matrix,  that reflects how these 𝑯, 𝑯 ∈ 𝑀𝐾𝑁 ― 𝑠(ℛ + )

configurations are active and mix in time. Thus, for a given arrangement of the primary 

lipids, , at a time point  we have,𝑿𝑳 𝒕 > 𝒕𝒔,

,𝑿𝑳(𝒕 > 𝒕𝒔) =  ∑𝑲
𝒊 = 𝟏𝑾𝒌(𝑳)𝑯𝒌(𝒕 > 𝒕𝒔) + 𝜺𝑳(𝒕 > 𝒕𝒔)

where  denotes the presence of a noise or unbiased error of 𝜺 ∈ 𝑀𝑀𝑁 ― 𝑠(ℛ + )

decomposition. Before the time point , there is no trace of a phase separation and 𝒕 = 𝒕𝒔

the pattern of the number of the closest neighbors is stochastic. Therefore, there is no 

clear features that could be recognized by NMFk. 

The reconstruction of , via the two factor matrices,  and ,  𝑿𝑳(𝒕 > 𝒕𝒔) 𝑾𝒌(𝑳) 𝑯𝒌(𝒕 > 𝒕𝒔)

serves as a measure for the significance and quality of the extracted latent features. For 
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the case of Updated Martini, Table 1 presents the Pearson correlation coefficient between 

the reconstructed lipid arrangements at each time point t (obtained by NMFk) and the 

original arrangements at the same time point (i.e., the corresponding column of the 

neighbor matrix ). The  unique basis lipid configurations (encoded in the probability 𝑿𝑳(𝒕) 𝑲

matrix ), reproduced the  lipid arrangements forming the matrix . With the 𝑾 𝑵 ― 𝒔  𝑿𝑴𝑵 ― 𝒔

standard Martini, the NMFk was not able to provide a set of lipid configurations that can 

reconstruct the simulations accurately. Indeed, and as shown in Table 1, the NMFk 

analysis did not reproduce accurately the simulation data. 

NMFk derived features associated with phase separation of ternary lipid Mixture

Here, we describe how the basis lipid configurations extracted by NMFk describe physical 

properties of the phase separation, such as, time profile of which lipid molecules belongs 

to which phases, the formation of nano-domain, and the spatial and temporal profiles of 

nucleation and phase separation. 

A typical outcome of NMFk analysis is presented on Fig. 4. According to our 

Silhouette-Reconstruction criteria (see Methods Section), NMFk determines that the 

optimal number of basis lipid configurations is 20 (Fig. 4A). The columns  of the matrix 𝑯𝒊

, each of which encodes the weights, that is, the participation of a basis lipid 𝑯

configuration in time, are presented on (Fig. 4B). It is clear that for each  there is a well-𝑯𝒊

defined time interval containing a number of consecutive frames where the corresponding 

basis configuration  is active. From Table 1, it can be seen that after 0.45 μs, NMFk 𝑾𝒊
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reproduces the neighbor matrix  very well: the cross-correlation between the 𝑿𝑳(𝒕)

neighbor matrix and the reconstructed matrix, for each time frame, is above 0.95. The 

much lower cross-correlation for reconstruction of the matrix  at early times suggests 𝑿𝑳(𝒕)

a prevalence of homogeneous lipid mixture in the first 0.45 μs. The 15 significant basis 

lipid configurations that are active at consecutive time intervals after the first 0.45 μs (#6; 

#10; #12; #15; #17; #19; #20; #18; #16; #14; #13; #11; #7; #2; #1) represent the evolution 

of the nucleation and phase separation.

A

B

C
0                0.5                      1                   1.5                    2 0                0.5                      1                   1.5                    2

Time (μs) Time (μs)

Figure 4.  Outcome from NMFk analysis. (A) The Silhouette-Reconstruction 

criterium (see the Methods Section). On the x-axis is denoted the number of basis lipid 

configurations and on the y-axis-the average Silhouettes (right y-axis, red marking) as 
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well as the Reconstruction (left y-axis, the blue marking). The double arrow denotes 

NMFk estimates of the number of basis lipid configurations. (B) Presentation of the 

columns  of the matrix  that encodes the weights of the basis lipid configurations at 𝑯𝒊 𝑯

given time frame. (C) A heatmap presenting the basis lipid configurations ordered along 

x-axis according to the time interval they occurred from early time to late as gathered 

from the corresponding weight-columns, . The color gradient from white to blue to red 𝑯𝒊

represents the increase in probability for a specific primary lipid to have a secondary 

lipid neighbor within each basis lipid configurations. The increase in white and gray 

colors with time is indicative of the evolution of the phase separation.

Each one of the  significant basis lipid configurations, extracted by NMFk, 15

contains a set of probabilities for the lipids of a primary type to have a close neighbor-lipid 

of a secondary type. Each basis lipid configuration (i.e., the specific set of probabilities) 

is active at a given time interval defined by the weight of this basis configuration at the 

corresponding column of the matrix . In each basis lipid configuration, we expect to have 𝑯

at least two groups of probabilities: (a) the probabilities of primary lipids situated in the 

nucleation domains that have relatively small number of neighbor-lipid of secondary type, 

and therefore these probabilities, on average, approach zero; and (b) the probabilities for 

primary lipids outside of any nucleation domain whose number of neighbor-lipid of 

secondary type is much higher. There are always transition of the primary type of lipids 

in and out of the nucleation domains or at the interface of the nucleation domains: at a 

certain moment, a given primary lipid could be situated outside a nucleation domain 

formed by primary lipids, but after a while it could reach interfacial region and eventually 
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get absorbed into the nucleation domain. Alternatively, primary lipids inside the nucleation 

domain or at the interfacial region may venture out into the liquid disordered region 

enriched of secondary lipids. These exchanges continuously alter the probability of a 

given lipid of the primary type to have neighbor-lipid of secondary type, as the phase 

separation proceeds which results in different basis lipid configurations at different time 

points as the system goes to a phase separation. At long timescale, when the phase 

separation has reached equilibrium, basis lipid configurations capture the exchanges of 

the primary lipids governed by the stochasticity and diffusion. 

 To better characterize the above observations related to the extracted basis lipid 

configurations, we applied k-means clustering on each of the 20 basis lipid configurations. 

We combined the k-means clustering with Silhouette statistics to determine the most 

probable number of clusters, i.e., the most probable number of groups of probabilities in 

each basis lipid configuration. Specifically, we calculate consecutively the Silhouettes of 

the resulting clusters, changing the number of clusters from 1 to 30 to determine the most 

probable groups of primary (DPPC) lipids with similar probabilities to have a neighbor 

secondary (DOPC) lipid-neighbor. Fig. 4C shows the basis lipid configurations ordered 

according to the sequence of the frames corresponding to consecutive time intervals 

determined by their respective weights. The k-means clustering procedure determined 

that each of the extracted 20 lipid basis configurations can be separated to two clusters: 

The first cluster contains the primary lipids with a low average probability to have a DOPC 

lipid-neighbor and the second cluster contains the primary lipids with more than four times 

higher average probability to have a DOPC lipid-neighbor. Further, we colored differently 
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the lipids in each of the 20 lipid basis configurations, with two clusters each, at the time 

intervals where the respective lipid basis configuration is active. The color gradient in Fig. 

4C captures these two groups of primary lipids: white to grey the primary lipids within the 

nucleation domains, and blue to red-the primary lipids at the interface or outside of any 

nucleation domain.

Next, we use the MD simulations trajectories to visualize and rationalize the two 

primary lipid groups as extracted by the clustering of basis lipid configurations derived by 

NMFk. We considered lipid basis configurations, #19 and #1 corresponding to 1us and 

2us time points, respectively. All lipids contributing to those lipid basis configurations are 

mapped into the trajectories at the corresponding time points in Fig. 5. At 2 us, 

approximately 70% of primary lipids (DPPC, colored in blue) are situated in large 

nucleation domains which are well packed and condensed by the high cholesterol 

concentration, leading to Ld phase. These primary lipids are predominantly shielded from 

the secondary (DOPC, colored red) lipids which themselves are localized to form the Lo 

phase. These primary lipids correspond to the first cluster identified by NMFk and are 

localized in nucleation domains. 

Nucleation Interfacial DOPCA
1 s 2 s
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Figure 5.  Visual inspection of simulations trajectories for evaluation of NMFk 

categorization primary lipids according to their localization. Primary (DPPC) lipids are 

colored according to NMFk output as purple (in nucleation domains) and yellow (out of 

nucleation domains) in MD configurations corresponding to two time points.  Secondary 

(DOPC) lipids are colored in red and cholesterol in white. Insets highlight a particular 

region where lipids can be differentiated as nucleating (purple) and boundary (yellow) 

lipids. As a comparison, the same region is represented using the conventional way of 

addressing the distinction between saturated (green), unsaturated (red) lipids, similar to 

Fig. 1.

On the other hand, at 2 us, approximately 30% of the primary lipids (DPPC, colored 

yellow) in the same lipid basis configuration #1 are located near the interfacial regions or 

deep into the Ld regions formed by secondary lipid types. Unlike the previous set of 

primary lipids, these lipids are in direct contact with the secondary lipids. The Fig. 5 insert 

shows how NMFk is able to distinguish these lipids from all DPPC lipids available. They 

correspond to the second cluster identified by NMFk.  Thus, each given lipid basis 

configuration contains physical and easily interpretable features that enable us to make 

a distinction on primary lipids depending on their location and their contribution to the lipid 

segregation. 

The strength of NMFk analysis is the ability to extract lipid basis configurations as 

a function of time. These configurations enable us to determine the time dependence of 

the latent features connected to the kinetics of phase separation without carrying out 

tedious multiple analyses. A conventional analysis that seeks to probe the temporal profile 
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would have considered the normalized number of contacts among DPPC lipids and 

between DPPC and DOPC to capture the nucleation process (Fig. 2C). NMFk 

decomposes the nucleation process in two components, as shown in Fig. 6, where the 

distinction is made on the temporal profiles of primary lipids from the nucleation domains 

from those that are still outside the nucleation domains. In Fig. 6A, the purple bars 

represent the total number of primary lipids in nucleation domains at consecutive time 

intervals (ordered on the x-axis), while the primary lipids outside of any nucleation domain 

are presented by yellow bars. At early time, rapid growth of domains is seen which is 

directly correlated to the increase of nucleation of primary lipids. After this rapid growth, 

a steadier behavior is observed which continues till the end of the simulation. In Fig. 6B 

we represent the normalized number of contacts with the secondary lipids for the primary 

lipids as identified from NMFk. At early times, these contacts are high due to random 

encounters between lipids. This behavior begins to change around 0.6 us and then the 

contacts between primary and secondary lipids are indicative of steady growth of the 

number of primary lipids in the nucleation domains and a decrease of the total number of 

lipids in the non-nucleating regions as the lipid mixture system phase separates.

Page 20 of 43

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 12, 2019. ; https://doi.org/10.1101/527630doi: bioRxiv preprint 

https://doi.org/10.1101/527630


21

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (μs)

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

nu
m

be
ro

fc
on

ta
ct

sD
PP

C-
D

O
PC

Nucleation region
Interface region
Total

A

B

Figure 6. Time dependent variation of the total number of nucleating primary 

(DPPC) lipids. (A) The purple bars represent the total number of primary lipids in 

nucleation domains, as concluded from their membership in different clusters of the 

corresponding basis lipid configuration, while the primary lipids outside of any nucleation 

domain are presented by the yellow bars. The labels on x-axis (the numbers) correspond 

to consecutive (in time) processes extracted from 0.45 us to 2 us simulation time. (B) The 

same distinction of nucleating primary lipids as in (A) obtained using the normalized 

number of contacts of the lipids identified by NMFk. The same color scheme is used. 

Black line corresponds to the normalized number of contacts using the total fraction of 

saturated lipids (i.e., without making the distinction within the nucleating primary lipids).

Page 21 of 43

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 12, 2019. ; https://doi.org/10.1101/527630doi: bioRxiv preprint 

https://doi.org/10.1101/527630


22

Furthermore, NMFk analysis extracts the temporal evolution of the primary lipids’ 

membership: in or out of a nucleation domain. Specifically, the membership is defined by 

identifying primary lipids that join a nucleation domain and remain in that domain till the 

phase separation. We ordered the  significant basis lipid configurations extracted by 15

NMFk according to the time intervals when the specific configurations are active, Fig. 7. 

We identify the primary lipids that participate in the nucleation by keeping track of the 

lipids in basis lipid configurations with low probabilities to have a secondary lipid-neighbor. 

In Fig. 7A, we present the concrete primary lipids that remain in the same cluster with 

small (purple color) or high (yellow color) probability to have a secondary lipid-neighbor 

at consecutive time intervals, which represents the evolution of nucleation. The inset in 

Fig. 7A demonstrates the system at much later time (~ 20 microseconds) after the initial 

nucleation when the phase separation has reached equilibrium and the primary lipids that 

are located in nucleation domains mostly preserve their membership in time. Importantly, 

this evolution of the primary lipids can be easily mapped at their spatial coordinates. In 

Fig. 7B, the patterns extracted by NMFk are mapped via MD trajectories to their spatial 

coordinates (at each time interval), to visualize the evolution of the different groups of 

primary lipids based on their membership: in nucleation domains (purple color) or outside 

those domains (yellow color). This again highlights the power of the NMFk to extract 

physical properties and details that can be easily visually tracked as the system 

undergoes localization and lipid segregation.  
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Figure 7. Temporal description of membership profile of primary lipids as captured by 

NMFk analysis. (A) The clear growth of nucleation domains with time, formed by primary 

lipids, is extracted from the clusters containing primary lipids with low probabilities to have 

lipid-neighbors of secondary type (refer Fig. 4C). The number of primary lipids that belong 

to nucleation domains are colored in purple whereas those appear at the interface (edges 

of the nucleation domain) or outside the nucleation domain are colored in yellow. The 

exponential growth of the number of the primary lipids that continue to be in the same 

cluster demonstrated the evolution of the steady state of the phase separation. The inset 

demonstrates the same process but at much later time (~ 20 microseconds) when the 

phase separation is in equilibrium. Here, although the minor changes still exist, primary 
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lipid membership numbers have stabilized. (B) Spatial visualization of the primary lipid 

memberships extracted by NMFk analysis (between 0.45 us and 2 us). These primary 

lipids were tracked using MD trajectories and rendered with the same color scheme as in 

(A) to distinguish the primary lipids in and out of nucleation domains. Other lipids are not 

rendered (silver background). The MD simulation box is represented as solid gray lines.

DISCUSSION

We introduce an unsupervised machine learning algorithm based on the nonnegative 

matrix factorization combined with custom clustering, called NMFk, for analysis of MD 

simulations. Specifically, we implement that algorithm here to detect and describe the 

lateral lipid segregation in a simplistic lipid “raft” model composed of a well-characterized 

ternary lipid mixture. Based on this study, we believe that the NMFk formalism can be 

also implemented for extracting relevant features from a more complex biological 

membrane. 

The DOPC:DPPC:CHOL ternary lipid mixture considered here can exist as a 

homogeneously mixed mixture or exhibit two distinct phases of Lo and Ld depending on 

temperature. NMFk is utilized to detect and analyze this phase separation behavior of this 

well-studied system. The distinction between the two phases, Lo and Ld, is sensitive to 

the spatial localization of DPPC lipids and the number of DOPC neighbors. We designate 

DPPC and DOPC as primary and secondary lipids in the NMFk formalism, respectively. 

At the beginning of the simulations, there are no distinct phases and the lipid mixture is 

homogeneous. As simulation time progresses, lipids begin to segregate. By 0.6 us, the 
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primary lipid type in this case, DPPC, begins to segregate into the Lo regions, while the 

secondary lipid type, DOPC, begin to segregate into the Ld domains. Thus, the number 

of secondary lipid neighbors around a given primary lipid should reflect that phase 

separation.

Given that a neighborhood profile of lipids can track the DOPC:DPPC:CHOL 

mixture, we first built a specific time-dependent data-matrix,  (see Methods section) 𝑿𝑳(𝐭)

whose elements represent the number of DOPC neighbors to each one of the DPPC 

lipids in the system, within a specific radius,  extracted from careful analysis of the rcutoff

radial distribution function. NMFk decomposed the matrix   into a product of two 𝑿𝑳(𝐭)

matrices: (i) the matrix of the basis lipid configurations, , whose columns present the 𝑾𝑵𝑲

configurations of DPPC lipids. NMFk determines the number of basis configuration K 

based on the robustness of the decomposition. Each one of the K basis lipid 

configurations in  contains the probabilities of the set of the DPPC lipids to have 𝑾𝑵𝑲

DOPC neighbors. The Silhouette-Reconstruction criterium was used to estimate the 

optimal number of basis lipid configurations to be 20. K-means clustering of each these 

20 basis lipid configurations is demonstrating the tendency of increasing the number of 

primary lipids with a neglecting probability to have a neighbor of type DOPC when the 

time advances, which correspond to an increased total number of DPPC lipids located in 

nucleation domains.

By relating the basis lipid configurations to MD trajectories, we were able to show 

details of phase separation extracted by NMFk analysis. The NMFk discriminates lipids, 
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depending on whether they belong to Lo or Ld phases or interfacial regions, as they 

undergo phase separation. Unlike, other analyses, basis lipid configurations provide 

details of lipids that take part in the nucleation versus those that establish line tension.  It 

tracks the complicated features of the lipid segregation process leading to Lo and Ld 

phases. We identify lipids within the boundary of Lo phase with lipid configurations basis 

corresponding to a signature of Lo domain where DPPC is well packed and condensed 

by the high cholesterol concentration. Separately, another basis lipid configuration 

captures interfacial lipids that shield the DOPC lipids from such Lo domains during phase 

separation. Importantly, we demonstrate that the evolution of the nucleation process is 

captured in terms of lipid membership to different basis lipid configuration active in 

consecutive time intervals. NMFk identifies the lipids that take part in the initial nucleation 

and remains as part of the domain towards the phase separation. Also, other lipids that 

join such nucleation and remain till the phase separation are identified as the time 

progresses.

CONCLUSIONS

The high variability and complexity of plasma membranes is still poorly understood. 

Higher resolution spectroscopy in combination with atomic detailed computer simulations 

are providing new insights, however, we are not yet close to fully understand or describe 

the membrane processes regulating cellular function. A detailed description of such 

complex systems undoubtedly requires novel mathematical frameworks that are able to 
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decompose and categorize the evolution of thousands if not millions of lipids involved in 

the phenomenon.

Here we show the power of NMFk formalism on analyzing lipid phase separation 

and providing a robust analysis of categorizing lipids according to their localization in the 

membrane and elucidating the time-dependency along the nucleation process. The NMFk 

discriminates all different types of lipids, part of Lo or Ld or interface, due to their particular 

behavior along the trajectory and the resulting probability to have a DOPC neighbor. If 

there is no clear pattern in the behavior of the lipids, for example, when MD simulations 

do not produce any distinct behavior associated with phase separation, NMFk analysis 

does not produce false features. This is the first demonstration of NMFk serving as a 

useful tool in detecting time-dependent domain formation and lipid separation in MD 

simulations of complex lipid mixture systems. Even though we have exhibited the 

usefulness of NMFk in the context of a well-studied ternary lipid mixture, an extension to 

more complicated lipid mixtures is feasible with a tensor formalism and is currently under 

consideration. 

MATERIALS AND METHODS 

Membrane patch

An initial configuration of a CG membrane patch was obtained using the script tools 

provided in the Martini force field website (http://cgmartini.nl/). Our CG lipid system 
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contains DPPC:DOPC:CHOL lipids in a 37:36:27 ratio respectively, which initially were 

randomly placed within a XY plane. This lipid ratio has been experimentally and 

computationally observed to transitioning towards a phase separated Liquid-

ordered/Liquid-disordered state 54, 56. The lipids were represented using the Martini V2.2 

force field 39 with a refined set of parameters, which has shown an improved phase 

separation behavior 52. Similarly, simulation with the standard Martini lipid model was also 

carried on. The total system was composed of 16366 lipids, 718830 Martini water beads 

(175 atomistic water molecules per lipid) and 150mM NaCl to preserve an overall constant 

ionic strength. In order to avoid spontaneous freezing of the Martini water beads (a well-

known artifact previously reported in the original model 39), 0.1% M of the water beads 

were replaced by anti-freeze particles.

Molecular dynamics protocol

We followed a current update in parameters set-up for performing the CG simulations 57. 

The equations of motion were integrated every 30fs time-step. A reaction-field 

electrostatics algorithm was used with a Coulomb cut-off of 1.1 nm and dielectric 

constants of 15 or 0 within or beyond this cut-off, respectively. Lennard-Jones interactions 

were cut off at 1.1 nm, where the potential was shifted to zero. In order to accelerate the 

lipid phase de-mixing, constant temperature was maintained at 290 K via separate 

coupling of the solvent (water and ions) and membrane components using a velocity-

rescaling thermostat 58 with relaxation times of 1.0ps. During equilibration, the Martini 

beads representing the phosphate groups of the lipid head regions were positionally (xyz 

components) restraint in order to preserve the initial random positions. In this stage, the 
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solvent molecules (water and ions) were allowed to diffuse and the box pressure was 

maintained semi-isotropically coupled at 1 bar using the Berendsen barostat 59 with 

relaxation times of 12 ps and compressibilities of 3x10-4 bar-1. After that, production runs 

were performed using a Parrinello-Rahman barostats 60. Simulations were run for 20 μs 

using the GROMACS version 5.2.1 61 and the trajectories were saved every 3 ns providing 

the frames for the construction of the NMFk matrix (see later). 

Generation of the contact matrix 𝐗𝐍(𝐭)

Every frame stored within 2 us (667 frames in total) were used for generating the 

corresponding matrix for NMFk analysis. We rely on the implemented GROMACS tool 

gmx select to output the number of DOPC lipids around every DPPC molecule within 1.1 

nm. This cutoff-radius structurally corresponds to the second layer of neighbors, as 

estimated by the second maximum peak of the radial distribution function g(r) (Fig. 3). 

Thus, each column of the data-matrix, ), corresponds to a variable number of the 𝑋𝑁(𝐭

DOPC neighbors of a given DPPC lipid per frame, while the rows correspond to the 

number of the 3038 DPPC lipids in the system. Similarly, matrix reconstruction was 

carried out for 20 us collection. An example of the matrix can be found as part of 

Supporting material.

Nonnegative Matrix Factorization and NMFk

Nonnegative Matrix Factorization (NMF) is a well-known unsupervised machine learning 

method created for parts-based representation 36. NMF has been successfully leveraged 

for decomposing mixtures of various types nonnegative signals, i.e., for Blind Source 
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Separation (BSS) 38 problems. If the BSS problem is solved in a temporally discretized 

framework, the goal of the NMF algorithm is to retrieve the original nonnegative signals 

(sources),  that produced the observational records, , 𝑾; 𝑾 ∈ 𝑀𝑃𝐾(𝑅 + )  𝑿; 𝑿 ∈ 𝑀𝑁𝑃(𝑅 + )

detected at a set of sensors. Here  denotes the set of real nonnegative numbers,  is 𝑅 + 𝑁

the number of the recording sensors,  is the number of unknown original signals, and  𝑲 𝑃

is the number of discretized moments in time (time points or frames) at which the signals 

are recorded at the sensors. Only the matrix  is known initially. Thus, in a BSS problem, 𝑿

the recorded data, , is formed by a linear mixing of  unknown original signals , 𝑿 𝑲 𝑊

blended by an unknown mixing matrix, . Since both factor matrices  and  are 𝑯 𝑾 𝑯

unknown, and even their size  (i.e., the number of unknown original signals) is unknown 𝑲

the problem is typically under-determined. NMF can solve such kind of problems by 

leveraging, for example, the multiplicative update algorithm 37 to minimize the Frobenius 

norm . An additional advantage of NMF method is that it can work with 
𝟏
𝟐||𝑿 ― 𝑾 ∗ 𝑯||

𝟐

𝑭

data in which the original signals are not independent but partially correlated 38.

One of the difficulties of the NMF algorithm is that it requires prior knowledge of -𝑲

the number of the unknown original signals. Recently a new protocol called NMFk 

addressing this limitation has been reported 62-64. This protocol complements classical 

NMF with custom k-means clustering and Silhouette 65 statistics, which allows 

simultaneous identification of the optimal number of the unknown basis patterns. The 

NMFk was utilized to successfully decompose the largest available dataset of human 

cancer 66 genomes, as well as for extraction of physical pressure transients 64 and 

contaminants 67 originating from an unknown number of sources that may propagate with 
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a finite speed in nondispersive 68 or dispersive media 69 as well as for extraction of the 

original crystal structures and phase diagram from X-ray spectra of material combinatorial 

libraries 70. 

NMFk determines the number of the unknown original signals based on the 

robustness and reproducibility of the NMF solution. Specifically, it explores consecutively 

the possible numbers of configurations  (  can go from 1 to N-1, where N is the total 𝑲 𝑲

number of frames), by obtaining sets of NMF minimization solutions for each . Note that 𝑲

 serves to index the different NMF models, and it is distinct from , which is fixed, albeit 𝑲 𝑲

unknown number. Further, NMFk leverages a custom clustering using the cosine 

similarity, in order to estimate the robustness of each set of NMF solutions with fixed 𝐾 

but derived with different initial guesses. Comparing the quality of the derived clusters (a 

measure how different are the extracted signals) and the accuracy of minimization among 

the sets with various , which we call a Silhouette-Reconstruction criterium, NMFk 𝑲

determines the optimal numbers of the unknown original signals. To access the quality of 

the clusters obtained for each set we use their average Silhouette width, . NMFk utilizes  𝑺

 to measure how good is a particular choice of  as an estimate for .  Specifically, the 𝑺 𝑲 𝑲

optimal number of patterns is picked by selecting the value of  that leads to both: (a) an 𝑲

acceptable reconstruction error R of the observation matrix , where𝑿

,𝑹 =
‖𝑿 ― 𝑾 ∗ 𝑯‖𝑭

‖𝑿‖𝑭

and (b) a large average Silhouette width (i.e., an average Silhouette width close to one). 

The combination of these two criteria is easy to understand intuitively. For solutions with 

 less than the actual number of patterns (  < ) we expect the clustering to be good 𝑲 𝑲 𝑲
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(with an average Silhouette width close to 1), because several of the actual patterns could 

be combined to produce one “super-cluster”; however, the reconstruction error will be 

high, due to the model being too constrained (with too few degrees of freedom), and thus 

on the under-fitting side. In the opposite limit of over-fitting, when  >  (  exceeds the 𝑲 𝑲 𝑲

actual number of configurations), the average reconstruction error could be quite small - 

each solution reconstructs the observation matrix very well - but the solutions will not be 

well-clustered (e.g., with an average Silhouette substantially less than 0.8), since there is 

no unique way to reconstruct  with more than the actual number of configurations, and 𝑿

no well-separated clusters will be formed. 

Thus, the best estimate for the number of unknown original signals, , 𝑾

corresponding to the true number of unknown original signals , is given by the value of 𝑲

 that optimizes both of these metrics simultaneously. Finally, after determining , we 𝑲 𝑲

use the centroids of the  clusters as a final robust representation of the original signals.𝑲

NMFk minimization algorithm

Here we leveraged the multiplicative algorithm 37 based on Kullback–Leibler divergence 

71 as well as the block coordinate descent algorithm 72 based on Frobenius norm. We did 

not observe any significant difference between the results obtained via these two 

algorithms.

NMFk clustering algorithm

NMFk creates up to N-1 sets of minimizations (called NMF runs), one for each possible 

number  of original patterns. In each of these runs,  solutions (e.g., ) of the 𝑲 𝑸  𝑸 = 200

NMF minimizations for a fixed number of patterns  are derived. Thus, each run results 𝑲

in a set of solutions :𝑈𝐾
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,𝑼𝑲 = {𝑾𝟏
𝑲,𝑯𝟏

𝑲; 𝑾𝟐
𝑲,𝑯𝟐

𝑲;…;𝑾𝑸
𝑲,𝑯𝑸

𝑲}

where each of these “tuples” represents a distinct solution for the nominally same NMF 

minimization: the difference is stemming from the different (random) initial guesses. Next, 

NMFk performs custom clustering, assigning the  columns/features of each  of all  𝑲 𝑾𝒊
𝑲 𝑸

solutions to one of the   clusters, representing  basic patterns. This custom clustering 𝑲 𝑲

is similar to k-means clustering but with an additional constraint which holds the number 

of elements in each of the clusters equal to the number of solutions . For example, with 𝑸

 each one of the  identified clusters must contain exactly 200 solutions. This 𝑸 = 200 𝑲

condition has to be enforced since each minimization (specified by a given  tuple) (𝑾𝒊
𝑲,𝑯𝒊

𝑲)

contributes only one solution for each feature, and accordingly supplies exactly one 

element to each cluster. During the clustering, the similarity between patterns is 

measured using the cosine similarity. 

Numerical codes, data and Supporting Information

The following files: COORD.gro with the coordinates; INPUT.mdp with the parameters set 

to start the simulation with Gromacs; PARAMETERS.top with the Martini force field-based 

topology for the membrane system; DPPC-DOPC-1.1nm.xvg with an example matrix 

generated from the MD trajectories used for NMFk calculation, are also provided as 

supporting information accompanied this paper. 

To extract patterns of the basis lipid configurations from the MD simulations we used the 

NMFk method which is an extension of the original NMF 37  that includes a custom 

clustering for determination of the number of patterns 66. Our NMFk protocol is based on 

the SigProfile software created for identification of mutational signatures in human cancer 

66. 
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The SigProfile code is freely available at: https://www.mathworks.com/matlabcentral. To 

use SigProfile, an input file should be at place. In our case, the input file is the contact 

matrix  with size (N x M), where N is the number of the lipids in the MD simulations 𝑿𝑵(𝐭)

and M is number of the frames. A detailed description of NMFk is available elsewhere 64. 

The input data-file, containing the contact matrix  as well as a script, needed to run 𝑿𝑵(𝐭)

the SigProfile, are provided as supplemented information accompanied this paper. 

A README.docx file with a list of included files, links to publicly available repositories 

along with their brief description and instructions is also provided as supporting 

information.

The simulated MD-data containing the lipids’ trajectories (~ 100GB) is available 

freely but because of its size-upon request to gnana@lanl.gov. 
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Table 1. The quality of reconstruction of X, estimated by the mean Pearson correlation 
between the columns of X and columns of W*H.
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