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Abstract

Phenotypic variation in the copy number of gene products expressed
by cells or tissues has been the focus of intense investigation. To what
extent the observed differences in cellular expression levels are persistent
or transient is an intriguing question. Here, we develop a quantitative
framework that resolves the expression variation into stable and unstable
components. The difference between the expression means in two cohorts
isolated from any cell population is shown to converge to an asymptotic
value, with a characteristic time, τT , that measures the timescale of the
unstable dynamics. The asymptotic difference in the means, relative to
the initial value, measures the stable proportion of the original population
variance R2

α. Empowered by this insight, we analysed the T-cell receptor
(TCR) expression variation in CD4 T cells. About 70% of TCR expression
variance is stable in a diverse polyclonal population, while over 80% of
the variance in an isogenic TCR transgenic population is volatile. In
both populations the TCR levels fluctuate with a characteristic time of
32 hours. This systematic characterisation of the expression variation
dynamics, relying on time series of cohorts’ means, can be combined with
technologies that measure gene or protein expression in single cells or in
bulk.
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1 Introduction

The phenotypic variation among organisms or cells is a theme of growing impor-
tance in biology. Macroscopic phenotypes, such as body structures or physiologic
responses, have been studied for ages, but one phenotype particularly suitable
for quantification that has received attention in the last decades is the amount
of specific mRNAs and proteins expressed by single cells. Advances in genomics
have allowed the analysis of genetic contributions to variation in gene expression,
in terms of so-called expression quantitative trait loci (eQTL) [1, 2]. In this case,
expression levels, typically assessed via mRNA levels, are treated as quantitative
traits, and one is interested in the specific loci underlying variation in expression
levels among different individuals. The increasing availability of single-cell resolu-
tion genomics, proteomics and metabolomics technologies has enabled molecular
biologists to analyse cell lineages and tissues showing that what were previously
perceived as homogeneous cell populations are in fact a complex mixture of often
transient and interchangeable cellular types and cellular states (see discussion in
[3]). In parallel to these studies linking phenotypes to genotype, the literature on
stochastic gene expression [4, 5, 6, 7, 8], reviewed in [9], has brought to light the
variation in expression levels in isogenic cells, even when these are in the same
cellular state and in the same environment. The variation is typically attributed
to the “noise” resulting from the small copy number of molecules involved in the
process.

Several studies addressed the fluctuation dynamics of gene expression levels
[10, 11] revealing a complex picture of the variation in isogenic cell populations.
The fluctuation timescales range from hours [7, 12], to days [13, 14, 15] or weeks
[16, 17, 18], depending on the cells and on the degree of multimodality of the
expression distribution under study. The distinct timescales can be associated
with the different mechanisms that may cause the variation in the expression
levels of a molecular component of interest in some cell population. However,
most quantitative approaches developed up to this date have focused on noise in
gene expression as the predominant mechanism explaining the variation observed
(for example, [6, 7, 19, 20, 21, 22, 23, 24]). It remains unclear to which degree
less volatile dynamic processes or even persistent differences contribute to the
observed variation in a isogenic cell population. This is particularly relevant
in the case of cells from multicellular organisms, due to the robust epigenetic
processes that underlie differentiation stages, cell lineages or cell states, but also
the intraclonal structure of apparently homogenous populations [25, 26].

A case study of particular interest is the expression of Sca1 in a hematopoietic
cell line [16, 17] since it reveals the inherent complexity of variation dynamics and
also the difficulties in characterising it experimentally. Chang et al. [16] reported
that that biased cohorts of cells tend to restore the histogram of expression levels

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/527663doi: bioRxiv preprint 

https://doi.org/10.1101/527663
http://creativecommons.org/licenses/by-nc-nd/4.0/


of Sca1 of the starting population, albeit with very slow dynamics. In principle,
complete restoration would be consistent with a lack of stable variants in the
population, at least in terms of expression levels of Sca1. However, [17] have
shown that, even after 2 weeks, the reconstitution is not fully complete. More
importantly, these authors [17] showed that some cells in this population express
markers indicative of terminal differentiation, and have limited capacity for cell
division. This points to an inherent heterogeneity in the population that may
persist in time. An important limitation of these approaches was relying mainly
on the juxtaposition of histograms of expression levels in order to compare cell
populations, without a rigorous quantification. It is not clear how to analyse
such data and because of this the degree to which the original distribution is
restored remains uncertain. A quantitative approach that overcomes this impasse
is necessary and also important to provide formal concepts on which to ground
subsequent studies on the expression levels in cell populations.

Our work lumps the molecular mechanisms regulating expression levels in a
cell population into two components, one stable and another unstable. The sta-
ble component leads to permanent differences between the expression levels of
any two cohorts of cells. The unstable component, on the other hand, represents
transient differences in the expression levels of the cohorts, which will eventu-
ally vanish in time. Starting from these definitions, a general model is derived
to describe protein expression levels in a population with both the stable and
unstable components. The relative contribution of the stable component to the
expression variation is then defined as a single parameter termed R2

α. We show
theoretically that this parameter can be estimated in an unbiased way by fol-
lowing over time the mean expression in cohorts isolated from the population of
interest. This dynamical characterisation of the expression variation is completed
by concomitantly estimating the characteristic timescale τT .

This theoretical result is used to characterise the contributions to variation
in expression levels of the T-cell receptor (TCR) in two biologically relevant
CD4 T cell populations. The first population, purified from wild type mice, is
composed of clones emerging from the process of V(D)J recombination, each
carrying genetically distinct TCR loci. The second is a genetically uniform popu-
lation isolated from Marilyn TCR-transgenic mice, in which all T cells express the
same recombined receptor genes [27]. We find that the stable component is the
main contribution in the polyclonal population (R2

α ≈ 70%), while the unstable
component predominates in the Marilyn population (R2

α ≈ 20%). This suggests
that genetic heterogeneity contributes to stable differences in TCR expression
levels in T cells, but that there are other mechanisms contributing to persistent
expression variation in isogenic populations.
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2 A general model for protein expression levels
in a cell population

2.1 Partitioning the contributions to variation in expression
levels

We assume that any biological cell population, hereafter referred to as full pop-
ulation, is a mixture of sub-populations. Each cell belongs to and remains in one
of these sub-populations all the time. Using a mixture model formulation, each
sub-population is indexed by i = 1, 2, . . . , N , and described by three parameters
(µi, vi, wi): the mean µi and variance vi of expression levels, and the relative
frequency wi of cells in the full population that belong to this sub-population.
The latter is given by:

wi =
ni∑N
j=1 nj

(1)

where ni is the number of cells in the i-th sub-population and
∑N

j=1 nj is the
total number of cells in the full population. A related approach has been used by
Gianola et al. [28] to study genetic parameters in the context of the quantitative
genetics of mixture characters.

In the limit of large N , the parameters (µi, vi, wi) describing a sub-population
are taken as random variables (µ,v,w) (see methods for details of the nota-
tion used) following a particular multivariate distribution. Then, one can relate
the mean µF and variance vF of expression levels of the full population to the
properties of the sub-populations, as detailed in section A of the supplementary
information. Provided that there is no correlation between the frequencies (w)
and either the means (µ), the squared means (µ2) and the variances (v) of the
sub-population, it follows that (supplementary information, section A):

µF = E [x] = E [µ] (2)

vF = V [x] = E [v]︸︷︷︸
Within each

sub-population

+ V [µ]︸ ︷︷ ︸
Among

sub-populations

(3)

where the subscript F is used to highlight that these are properties of the full
population. Therefore, under these conditions, the mean of the full population
is simply the expected value of the means of the sub-populations (E [µ]), while
the variance of the full population is the sum of the variance within each sub-
population (E [v]) and the variance among the sub-populations (variance in the
means, V [µ]).

It is important to highlight that equations 2 and 3 are general and independent
of the precise definition of a sub-population. However, the two terms in equation
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Parameter Description Dimensions
α Mean protein production rate Molecules/Time
β Mean lifetime of the protein Time
σ Normalised dispersion of protein

production rate
Non-dimensional

τ Characteristic time of the fluctua-
tions in protein production rate

Time

Table 1: Description of the parameters of the stochastic model of protein ex-
pression defined by equations 4 and 5

3 suggest a specific definition, in which only the unstable component is present in
each sub-population. In this way, the term of variation within any sub-population
E [v] becomes the contribution of the unstable component to the variance of the
full population, while the variation among the means of the sub-populations V [µ]
is the contribution of the stable component. In the next section 2.2, expression
levels within each sub-population will be described by a stochastic model, while
the different sub-populations will have different means controlled by one of the
parameters of this stochastic model.

2.2 An explicit model of protein expression in a cell popu-
lation

2.2.1 Describing variation within a sub-population

The stochastic model of protein expression considered here is based on previous
work [29], and is defined by the following two equations:

dxt =

{
α exp

(
yt −

1

2
σ2

)
− 1

β
xt

}
dt (4)

dyt = −1

τ
yt dt+

σ√
τ/2

dWt (5)

where xt is the amount of protein expressed at time t, and yt is a stochastic
variable following the Ornstein-Uhlenbeck process. In equation 5, Wt is the
Wiener process [30]. The parameters for the model are presented in Table 1,
along with their respective dimensions.

The equation governing dxt has two terms.The first term, α exp
(
yt − 1

2
σ2
)
,

is the rate of production which depends on the stochastic process yt, and the
second term, xt/β, is the degradation rate following first-order kinetics with mean
β protein lifetime. A model with a similar overall structure was reported before
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[31], in which mRNA transcription and degradation have also been explicitly
incorporated. Equation 4 can be re-written as:

dxt
dt

= α zt −
1

β
xt (6)

where zt, defined as:

zt = exp

(
yt −

1

2
σ2

)
(7)

denotes the instantaneous rate of protein production. This rate is normalised, to
have unit expected value. All processes governing protein production (promoter
transitions, transcription and translation, among others) are lumped together into
the average rate α and the instantaneous rate given by zt. The representation
in equation 6, which highlights the contribution of lumped upstream factors, has
been applied before in the analysis of models of stochastic gene expression (for
example, [6, 7]). Equation 6 denotes that, in a single cell, the instantaneous rate
of protein production is proportional to the instantaneous levels of these lumped
upstream factors, and fluctuates as a function of time, with auto-correlation
time approximately equal to τ [29]. These fluctuations are then propagated
downstream, resulting in fluctuations in protein levels, with dynamics dictated
by τ (through zt) and β. For simplicity, protein degradation is assumed to be
deterministic, with the same rate 1/β for all cells. The temporal evolution of
the protein expression levels xt in two cells with distinct characteristic times τ is
illustrated in figure 1 (top).

It follows from equation 7 that:

zt ∼ LN
(
−1

2
σ2, σ

)
, t→∞ (8)

and therefore the stationary rate of protein production follows a lognormal distri-
bution in cells of a sub-population, consistent with a report of lognormal rates of
protein expression [32]. Equations 4 and 5 are a simple model that generates, for
a wide range of parameter values, a lognormal-like distribution of protein levels
(figure 1,bottom), compatible with the widespread observation of the lognormal
distribution in cell populations. In this scenario, in terms of the log-transformed
protein levels (section B of the supplementary information), the mean and vari-
ance of a stationary sub-population are given by equations 9 and 10, respectively:

µlog = E [log (xt)] = log (αβ)− 1

2
σ2
W (9)

vlog = V [log (xt)] = g(σ2, τ/β) = σ2
W (10)

where the subscript W will be used hereafter to denote that the variation is due to
the stochastic process influencing the instantaneous rate of protein production. In
equation 10, g(·, ·) is an arbitrary function, which can be estimated via simulation.
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Figure 1: Dynamics of the protein expression levels xt according to the stochastic
model. Top- Time course of the log-transformed variable xt obtained for two
cells which differ in the characteristic time of the fluctuations (τ = 10 (grey) and
τ = 100 (black)). Bottom- Histograms of the log-transformed protein levels xt
in cell populations with slow and fast dynamics exemplified by the time courses.
Each histogram corresponds to 10000 independent realisations of the individual
cell model sampled at time t = 200a.u.. The histograms were normalised by
their maximum density. Remaining parameters: α = 1., β = 1, and σ = 0.5.
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2.2.2 Combining variation within and among sub-populations

As formulated in section 2.1, the stable component arises due to variation in
the means of the sub-populations. Therefore, we assume that parameter α in
equation 4 is distributed in the full population, becoming a random variable,
denoted by α. Consequently, each sub-population is described by one value of
α, resulting in different average rates of production, and hence different mean
expression levels.

For simplicity, we consider the case that α ∼ LN (µα, σα). For the i-th
sub-population, with parameter αi, the mean and variance follow from equations
9 and 10:

µi,log = log (αi β)− 1

2
σ2
W (11)

vi,log = σ2
W (12)

where σ2
W is assumed to be the same for all sub-populations. In terms of log-

transformed values, plugging equations 9 and 10 into equation 3, one obtains
the variance of the full population:

vF,log = σ2
T = σ2

W + σ2
α (13)

An important property of equation 13, which is based on log-transformed
values, is that the parameters that represent the variances due to the stable
and unstable components (σ2

α and σ2
W , respectively) remain separate. This is

a key feature, greatly simplifying the process of analysis and inference through-
out this work. As detailed in the supplementary information (section C), the
equivalent of equation 13 considering protein levels without any transformation
has an additional term, dependent on σ2

α and σ2
W . This additional term arises

since the variance of each sub-population in this case depends on the value of α.
Therefore, we consider, from this point on, the analysis based on log-transformed
values only.

3 Isolating cells to quantify the contributions to
the variation in a cell population

3.1 Defining the relative contribution of the stable com-
ponent

The previous section 2.2.2 showed that the variance of log-transformed expression
levels of the full population is simply the sum of variances due to the stable and
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unstable components (equation 13). In this context, in analogy with the R2

quantification of the variance explained by a linear regression model, we define
R2
α as:

R2
α =

σ2
α

σ2
T

, 0 ≤ R2
α ≤ 1 (14)

to denote the proportion of the observed variance that is explained by the stable
component.

Hence, R2
α formalizes and quantifies the relative contribution of the stable

component to the total variance of the full population, reducing the problem
of quantifying the contributions to the estimation of a single parameter. In the
case of R2

α = 0%, variation in expression levels arises exclusively due to the
unstable component; conversely, the stable component explains all the observed
variation if R2

α = 100%. Finally, in the intermediate case 0% < R2
α < 100%, a

combination of the two components is at play.

3.2 Estimating the relative contribution of the stable com-
ponent by isolating cells

After defining R2
α, a setup for its estimation is considered. Since the original

population is assumed to be heterogeneous, being composed of several sub-
populations, a natural approach for estimation is to isolate a cohort of cells and
to follow the temporal evolution of some property of this cohort. The isolation
of cells according to the expression levels of some protein has been described in
previous experimental works [16, 10, 14, 17, 18], usually employing fluorescence-
activated cell sorting (FACS). To simplify the presentation, it is assumed that
the property is always quantified based on a sufficiently large number of cells,
such that sampling effects are negligible.

Hereafter, a time reference t is defined beginning from the instant of isolation
in a hypothetical experiment. Let an isolated cell cohort correspond to cells
between percentiles p1 and p2 of expression levels of the original population.
Without loss of generality, it is assumed hereafter that p1 < p2. Therefore, the
two percentiles should satisfy 0% ≤ p1 < p2 < 100% or 0% < p1 < p2 ≤ 100%.
This ensures that at least one of the isolated cohorts to be used for inference
is not identical to the original population at time t = 0. Hence, isolating cells
corresponds, indirectly, to selecting some of the sub-populations, if any compose
compose the original population. Upon isolation, the expression levels of cells
in a given sub-population will relax to the stationary distribution of that sub-
population. Therefore, at the level of the isolated cohorts being tracked, changes
in the property of expression levels are related to the dynamics of the unstable
component, as expression levels of the sub-populations that have been isolated
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relax to their stationary values. The time for this relaxation to take place will be
hereafter referred to as the characteristic time of the variation.

In a given experiment, three outcomes are possible (figure 2). If only the
unstable component is present (R2

α = 0), after waiting a sufficiently long amount
of time, the distribution of protein expression in the isolated cohort will converge
to that of the original population (figure 2, top). In contrast, if the observed
variation is explained by the stable component only (R2

α = 100), the distribution
of the isolated cohort will not change as a function of time, remaining identical
to that just after being isolated; it will always differ from that of the original
population (figure 2, middle). Finally, if both the stable and unstable components
are present in the original population (0 < R2

α < 100), the isolated cohort
will evolve in time, but without ever restoring the distribution of the original
population (figure 2, bottom).

The key question now is what properties of the isolated cohort can be used
to infer R2

α. The next section shows that R2
α can be accurately inferred from

the dynamics of the means of the cohorts and examines the choice of a specific
approach for isolation in term of the percentiles p1 and p2. The additional features
that can be extracted from the variance of the isolated cohort are addressed in
supplemental information section E.

4 Estimating the relative contribution of the sta-
ble component

This section uses simulation to identify which property of the isolated cohorts can
lead to a good estimate of R2

α, when followed in time. In the simulations, protein
expression levels are described by the model derived in section 2, neglecting cell
division for simplicity. Since all derivations are based on equation 13, the analysis
herein relies on log-transformed values of protein levels.

The isolated cohort considered at first for inference here is composed of
the 10% of cells with the highest (respectively lowest) expression levels in the
original population hereafter referred to as “high expressors” (respectively “low
expressors”). Following the notation of section 3.2, we have p1 = 90% and
p2 = 100% (respectively, p1 = 0% and p2 = 10%). The choice of 10% is
arbitrary, and is deemed to represent, at least in principle, a good compromise
between resolution and number of cells obtained. Moreover, a random sample
of the original population will serve as reference.

We first address how the dynamics of the mean of log-transformed protein
levels in isolated cohorts, shown in figure 3 (left) for the high expressors. Briefly,
the mean of an isolated cohort will evolve smoothly until it reaches an asymptotic
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Figure 2: Simulation of the possible results obtained when a cohort of high
expressor cells is isolated from a full population and followed in time. The graphs
are histograms of the values of the expression levels variable x at the indicated
times in 10000 independent realisations of the model for three values of R2

α (0.0
(top), 1.0 (middle) and 0.25 (bottom)) simulating an isolated cohort of higher
expressors (blue) or the full population from which the cohort was isolated (gray).
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limit.
It turns out that the asymptotic mean of log protein levels of an isolated

cohort is a linear function of the R2
α of the original population from which it

was obtained, as illustrated in figure 3(right) in the cases of the isolation of
the 10% high and low expressors in populations with different R2

α. This linear
relationship allows one to define a straightforward approach for estimating R2

α.
Defining ∆A,B(t) as the difference between the means of log-transformed values
of two isolated cohort A and B, respectively µA(t) and µB(t), at time instant t:

∆A,B(t) = µA(t)− µB(t) (15)

then, R2
α can be estimated via:

R2
α =

limt→∞∆A,B(t)

∆A,B(0)
, ∆A,B(0) 6= 0 (16)

The condition ∆A,B(0) 6= 0 for using equation 16 implies that the two isolated
cohorts being compared must have different means just after isolation (t = 0).
From the inequality in equation 14, an additional relationship for ∆A,B(t) holds:

lim
t→∞

(
∆A,B(t)

)
≤ ∆A,B(0) (17)

Therefore, the stationary difference between the means of log-transformed ex-
pression levels of the isolated cohorts A and B is expected to be, under the
present formulation, lower than or equal to the difference immediately after iso-
lation. Therefore, a key result is that, to estimate R2

α, one may simply calculate
the ratio between the asymptotic value of difference between the means of log-
transformed protein levels in two isolated cohorts relative to its initial value after
isolation.

An important consequence for experimental design is that one can improve
the resolution in the estimation of R2

α by maximising the value of ∆A,B(0). For
any given percentage of cells to be isolated (the difference p2 − p1; see section
3.2), the maximal initial difference is obtained by isolating the extreme high and
low expressors. Consequently, the remainder of this work focuses on this case, by
always relying on the function ∆H,L(t) for estimation, where H and L denoted
respectively the high and low expressors.

Equation 16 has an important advantage from an experimental point of view:
the fact that it depends only on the differences between the means of the sorted
and reference populations. This is particularly important given that there are
typically day-to-day variations in the absolute values read by a flow cytometer,
to which equation 16 is robust.
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Figure 3: Simulation of transient dynamics and asymptotic limits of the mean
protein expression in isolated cohorts. a) Dynamics of mean log protein expres-
sion levels of “high expressors” after isolation as 10% of original populations with
different values of R2

α, but constant σ2
T . b) Asymptotic mean of 10% low expres-

sors, 10% high expressors and reference population as a function of R2
α in the

simulations. The symbols represent simulation results, while the lines represent
the best-fit of a straight line. Remaining parameter values: τ = 500, β = 5 and
σT = 0.3.
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The asymptotic analysis just presented does not allow to consider the dy-
namics of the expression levels. To address these dynamics we introduce the
time-dependent function ΩH,L(t) given by:

ΩH,L(t) =
∆H,L(t)

∆H,L(0)
, ∆H,L(0) 6= 0 (18)

Being based on the means of log-transformed values of two populations that have
been isolated, ∆H,L(t) follows an approximately exponential decay (figure 4; see
section D of the supplementary material for a rationale). Using the approximation
of exponential decay, and defining the effective characteristic time as τT , ΩH,L(t)
takes the following form:

ΩH,L(t) =
∆H,L(t)

∆H,L(0)
= R2

α︸︷︷︸
Relative

contribution
of the stable
component

in the original
population

+ (1−R2
α)︸ ︷︷ ︸

Relative
contribution

of the unstable
component

in the original
population

exp (−t/τT )︸ ︷︷ ︸
Relaxation

of the unstable
component
(timescale

term)

(19)

It follows that the effective characteristic time τT is undefined in the case of
R2
α = 100%, since ∆H,L(t) does not change as a function of time after isolation.

Since τT is a measure of the time needed for the initial difference ∆H,L(0) to reach
the asymptotic value limt→∞

{
∆H,L(t)

}
, it provides a formal characterisation of

the timescale of the variation.
An exhaustive simulation study (figure 4, b-e) led to the conclusion that τT

can be approximated, with a typical bias of at most 5–10% of the true value, as:

τT ≈ β + τ (20)

Therefore, the auto-correlation time of the stochastic rate of protein production
(τ) and the mean lifetime of the protein (β) determine the timescale of the
variation in expression levels (τT ).

The relative contribution of the stable component (R2
α) and the effective

characteristic of the variation (τT ) can be visualized in a single plot, derived
from equation 19. As shown in figure 5, R2

α corresponds to the asymptotic value
of ΩH,L(t), while τT corresponds to the instant of time that satisfies:

1− ΩH,L(τT ) = (1− exp (−1))
(
1−R2

α

)
≈ 0.63

(
1−R2

α

)
(21)

Since equation 19 features an exponential decay, it follows that the plateau is
reached in practice after an amount of time approximately equal to 5 τT . .
Furthermore, the inequality in equation 17 becomes:

∆H,L(t) ≤ ∆H,L(0) ∀t (22)
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Figure 4: The function ∆H,L(t) decays with approximately exponential dynamics.
a) Simulations of the isolation of cells were done, for various values of τ and β,
with R2

α = 25%. Shown are simulation results (symbols), along with the results of
fitting the model of exponential decay ∆(t) = a+b exp (−t/τT ) to the simulation
data (dashed lines), where a and b are constants. Time is normalized in each
case by the instant t∗ such that ∆H,L(t∗) has decayed by 90%. The light to dark
gray tones correspond to the values of the ratio τ/β = 0.1, 1.0, 10.0 respectively,
with β = 50. b-e) Comparison between τ + β and the value estimated for τT .
Simulated data (∆H,L(t)) were fitted under the same setup as in (a) and the
resulting values of τT plotted as a function of the value of τ + β. Each graph
corresponds to simulations using the indicated value of σt with different values
of R2

α (0.0, 0.25, 0.50 and 0.75) depicted in different gray tones (the darker the
tone the higher the value of R2

α ). 16
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Figure 5: Illustration of function ΩH,L(t). Shown are simulation results (sym-
bols), with R2

α = 25%, τ = 50 and β = 5, which were fitted to the expression
for ΩH,L(t) in equation 19 (continuous line). The horizontal and vertical dashed
lines indicate respectively the true value of R2

α and the value of τT , as given by
equation 21.

since function ∆H,L(t) is monotonically decreasing with time.
Although this section has focused on the case in which high and low expressors

are used, all the properties derived also hold for any two isolated cohorts A and
B. The only requirement is that the condition ∆A,B(0) 6= 0 is satisfied.

5 Quantification of the components shaping the
variation in T-cell receptor expression levels

The theoretical framework developed in the previous section is used here in the
analysis of the variation in the expression of the TCR in mouse CD4+ T lym-
phocytes. The TCR is a heterodimeric membrane receptor that elicits signal
transduction upon interaction with MHC-peptide complexes on the membrane
of antigen-presenting cells [33]. In wild-type animals, the T cell populations are
genetically heterogeneous at the level of the TCR. The genetic diversity of the
receptor is brought about by the somatic recombination at the loci encoding the
receptor chains in thymocytes (reviewed in [34]). In contrast, genetically manip-
ulated mouse strains are available in which all the T cells express the same TCR
(for example, [27]). In these mouse strains, the somatic recombination is ablated
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(Rag2–/– background) and a single functional TCR is expressed in all cells driven
by transgenes encoding the two chains of the TCR.

To quantify the origin and timescale of the variation in the context of the
TCR, we used a polyclonal population from a wild-type imbred strain and a
surrogate monoclonal population from the Marilyn TCR-transgenic strain [27].
In this setup, we are interested in comparing the values of R2

α and τT estimated for
the polyclonal and the Marilyn monoclonal populations. These two populations
show comparable mean expression values (see figure 6, top graphs) but the
expression is more variable in the polyclonal population than in the monoclonal
one [35], presumably reflecting the genetic diversity [36].

In the model developed in section 2.2, the stable component arises from
different mean protein production rates. In polyclonal populations, the stable
variation in average TCR production may be caused by the differential regu-
lation of expression of the receptor sub-units, depending on the specificity of
the particular TCR, or by the differential ability of the specific sub-units to pair
and be expressed [37]. In either case, genetic heterogeneity would ultimately
explain some of the variation observed at the level of a polyclonal population.
If so, this would imply in R2

α > 0 for a polyclonal population. By analysing a
TCR-transgenic population, we address whether genetic variation is the only fac-
tor explaining the stable component. In the affirmative case, one would obtain
R2
α = 0 for a TCR-transgenic population. If one obtains R2

α > 0, non-genetic
mechanisms must be evoked.

We adopted an experimental design in which high and low expressors, defined
to contain 10% of the mass of the starting population distribution, were sorted
(figure 6, top) and then maintained in vitro without any stimulation. As described
before [38], there was no cell division under these conditions, and cells slowly
died off such that after 3 to 4 days no live cells were left. Since in the Marilyn
transgenic strain, all T cells have a naive phenotype [27], we restricted the analysis
of the wildtype polyclonal populations to those cells that express high levels of the
CD45RB marker, indicative of a naive phenotype [39]. By restricting the analysis
to naive cells, the distribution of cell size as measured by Foreward Scatter was
similar in the high and low expressor cohorts when sorted from the monoclonal
Marilyn population as well as from polyclonal population (supplemental section
F).

The dynamics of the frequency distribution of the TCR expression levels in
cohorts of high and low expressors sorted from polyclonal and monoclonal ani-
mals and subsequently cultured in vitro for up to 72h is illustrated in figure 6 for
a representative experiment. The distributions of the TCR expression levels in
the high and low expressors sorted from wildtype polyclonal population remain
clearly different. In contrast the high and low expressors from the monoclonal
Marilyn TCR-transgenic population become very similar as a function of time
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Figure 6: Dynamics of TCR expression in high and low expressor cohorts sorted
from monoclonal (Marilyn; left) and polyclonal (wildtype; right) populations.
The graphs are the histograms of frequency of log-transformed TCR fluorescence
in the high (blue) and low (red) expressors measured by flow cytometry at the
indicated times after sorting. Unstained population is also shown.

after sorting. In fact, this particular data set portrays an extreme case of conver-
gence of the histograms of high and low expressors and it was chosen to better
illustrate the difference between the monoclonal and polyclonal populations. In
the two other independent sets, the histograms of Marilyn high and low cohorts
did not converge (see figure 7 for the quantification including all experiments).

The values of ΩH,L(t) in three experimental data sets are shown in figure
7. The normalisation (equation 18) masks the fact that the value of ∆H,L(0)
was conspicuously greater for the polyclonal population, in accordance with the
observations [35], that the variance (σ2

T ) is larger in polyclonal populations than
in TCR transgenic populations (figure 8).

In order to estimate R2
α and τT by fitting the model to the experimental data
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Figure 7: Dynamics of ΩH,L(t) in sorted cohorts. The symbols are the point
estimates of ΩH,L(t) = ∆H,L(t)/∆H,L(0) at different times after sorting for
polyclonal (circles) and monoclonal (diamonds) cell population data sets. The
curves represent the best fit of the function ΩH,L(t) as defined by Modelling
Scenario 2 to the ensemble of the populations data sets. The horizontal dashed
lines indicate the estimates of the asymptotic R2

α.

equation 19 must be refined as follows :

∆H,L(t) = δ0

(
R2
α +

(
1−R2

α

)
exp (−t/τT )

)
(23)

where δ0 represents an estimate, obtained via fitting, of the “true” initial value
∆H,L(0). Equation 23 has the important property of preserving the statistical
independence between data points used as input for the fitting, a key requirement
for proper statistical analyses.

The analysis was based on fitting the three-parameter exponential model
(equation 23) to the ensemble of the data, composed of the multiple experiments
done for each biological population. The different modelling scenarios being
tested are defined by specifying each of the three parameters, R2

α, τT and δ0,
for each biological population as being shared or not between the polyclonal and
monoclonal populations. Small variations in defining the percentages for sorting
high and low expressors in different experiments are expected to sporadically
affect the value of δ0 and therefore this parameter was always fitted separately for
each experiment. Therefore, the modelling scenarios are obtained by specifying
how parameters R2

α and τT are shared between the biological populations. The
complete description of the modelling scenarios considered is presented in table 2
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Figure 8: Variance of the log-transformed TCR expression levels in monoclonal
(Marilyn; diamonds) and polyclonal (wildtype; circles) CD4+ T lymphocyte pop-
ulations. The points are estimates of the variance in independent samples and
the lines are the average value of these variances.

(column 2). Modelling Scenario 1 represents the null model, according to which
the polyclonal and monoclonal populations are described by the same values of R2

α

and τT . This is the scenario with the smallest number of parameters considered.
Scenario 2 represents the plausible situation in which these two populations may
be described by different values of R2

α, but equal τT , while in Scenario 3 parameter
τT is also allowed to be different in the two populations. Finally, Scenario 4
represents a lower bound in terms of the error in the fitting, where data from each
experiment is fitted independently, and has the largest number of parameters.
The Akaike Information Criterion (AIC) [40] is used to compare the different
modelling scenarios in their capacity to fit to the ensemble of the data. The AIC
has a solid foundation on information theory [40], representing a compromise
between the error in fitting the data and the number of parameters in the model.
The results are presented in terms of the difference ∆AICc between the AIC for
each Scenario and that of Scenario 1. In comparing different modelling scenarios,
the one with the smallest value of the AIC (and therefore, the smallest value of
∆AICc) provides the best and most parsimonious description of the data.

The results of the model fitting, including the sum of squared residuals, point
estimates of the parameters, and the value of ∆AICc, are shown for each scenario
in table 3. It follows that Scenarios 2 and 3 have the lowest values of ∆AICc,
with Scenario 3 having a slightly higher value. Since the latter has one extra
parameter, this suggests that a scenario where only R2

α is allowed to be different
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Scenario Description # Parameters Fitted

1
R2
α and τT have the same

values in the two biological
populations

8

2

R2
α may have different values

for each biological
population, but τT has the

same value

9

3
Both R2

α and τT may have
different values for each

biological population
10

4
Each experiment was fitted

independently
18

Table 2: Overview of the Modelling Scenarios tested, with a description of how
parameters R2

α and τT were set in the two biological populations, and the resulting
number of parameters that are fitted. As discussed in the text, parameter δ0 were
fitted separately for each experiment

constitutes the most parsimonious explanation for the data. Hence, altogether
Scenario 2 is favoured, according to which the two populations differ only in
R2
α. In this case, we obtain an effective timescale of 32 hours, and values of

R2
α of 71% for the polyclonal and 17% for the monoclonal population, with

95% confidence intervals of [57%, 79%] and [0%, 31%], respectively. Finally, the
function ΩH,L(t) resulting from scenario 2 is shown in figure 7, highlighting the
values of R2

α estimated for each population.

6 Discussion

In this article, we developed a new approach to analyse the variation in protein
expression levels in a cell population, which enables measuring the characteris-
tic dynamics of the fluctuations in cellular levels and estimating the magnitude
of stable and unstable contributions to the variation across cells. The crux of
the proposed analysis is based on the realisation that the difference between the
means of log-transformed expression levels in two selected cohorts isolated from
a population of interest converges with aproximmate exponential dynamics to
an asymptotic value. By normalising this asymptotic value by the difference in
cohorts’ means immediately after their isolation one obtains an unbiased esti-
mation of the proportion of population variance that is explained by the stable
component R2

α, while the mean convergence time τT measures the timescale
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Fitting ∆H,L(t)

Scenario SS Residuals Population Exp. # δ0 R2
α (%) τT (h) ∆AICc

1 0.103

Polyclonal
1 0.55

61 32 0.0

2 0.62
3 0.63

Marilyn
1 0.24
2 0.29
3 0.26

2 0.028

Polyclonal
1 0.52

71

32 -40.5

2 0.58
3 0.59

Marilyn
1 0.37

172 0.40
3 0.37

3 0.025

Polyclonal
1 0.51

59 75

-39.6

2 0.57
3 0.58

Marilyn
1 0.37

24 242 0.41
3 0.38

4 0.015

Polyclonal
1 0.50 22 199

2.2

2 0.57 67 46
3 0.57 0 249

Marilyn
1 0.40 4 32
2 0.39 40 16
3 0.37 25 27

Table 3: Estimates for the parameters of the populations obtained by fitting the
data on ∆H,L(t), based on the different modelling scenarios under consideration.
The results are presented in terms of ∆AICc, the difference between the value
of the AIC (corrected for small sample size; see methods) of each scenario and
scenario 1. Modelling scenarios with lower values of ∆AICc provide a more
parsimonious explanation for the data
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of unstable component dynamics. This is the key insight of the analysis. This
insight stems from perceiving any cell population as a mixture of many inde-
pendent subpopulations, each with a characteristic mean expression level, that
is fixed yet distributed among the subpopulations. Under these assumptions, the
population variance is equated to the sum of the variance of the subpopulations
means, which embodies the stable component of variation, and the variance of
the expression level within the subpopulations, which represents the unstable
component.

At first sight, the stable and unstable components of expression variation
as formulated here are analogous to what Huang [10] referred to as population
and temporal noise, respectively. However, this analogy is not straightforward.
Huang’s definition of population noise precludes, by construction, any underlying
genetic and stable epigenetic mechanisms. In contrast, the stable component,
as defined here, is a statement about the dynamical aspects of variation and is
silent about mechanism. We believe that the terms stable and unstable compo-
nents are not only intuitive but convey a more precise description of variation
in terms of its temporal dynamics. The mechanistic basis of these components
remains a matter for further analysis. Putative mechanisms underlying the stable
component include genetic variation and non-volatile epigenetic traits [41, 10].
In turn, the unstable component may be explained by noise in gene expression
[9, 10] as wells as transient metastable epigenetic variants [41, 10]. Stable gene
expression variants, which would be part of stable component of variation, are
expected to be pervasive, since differentiation stages, cell lineages and cell types
are hallmarks of multicellular organisms [25, 26]. In spite of this expectation,
many quantitative approaches to expression variation in cells in the past have
focused on noise in gene expression [4, 19, 7, 21, 23, 24].

Measuring the extent to which selected cohorts of cells can restore the full
complexity of population from which they were sorted is an intuitive approach
to analyse the heterogeneity of a population. This basic intuition motivated the
experimental design used in several reports [16, 42, 14, 17, 18], in which the stable
and unstable components of variation were evoked and utilised in an informal
way. The capacity of cohorts to restore totally or partially the distribution of the
original population has often been interpreted and discussed qualitatively, based
on the visual inspection of raw flow cytometry histograms or of summary data
time series. The present report advanced beyond such ‘half-full / half-empty
glass” interpretations of data by contributing a rigorous quantitative method
to analyse these kind of sorted cohort experiments based on estimating two
parameters, R2

α and τT , that capture the essence of heterogeneity and dynamics
of the expression variation.

The analysis method is grounded on a stochastic modelling framework. The
protein expression levels in a single cell are described as very simple stochastic
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processes, based on [29], in which the instantaneous protein production rate (cap-
tured by variable zt) fluctuates generating a stationary log-normal distribution
of expression levels in each subpopulation. Protein expression has been mod-
elled by others considering transcriptional burst dynamics that can be shown to
generate discrete numbers of transcripts following a negative binomial distribu-
tion. Although transcript copy number distributions are generally assumed to be
described by a negative binomial distribution at any range of expression levels,
they are well-approximated by a log-normal distribution at high copy numbers
per cell [43]. Therefore the log-normal approximation underlying the dynamics
of zt is justified by the observation that the transcripts encoding the TCR α and
β chains are among the most abundant in the cell [44]. This model of the single
cell expression dynamics was used to simulate a population formalised as a large
mixture of independent subpopulations. By applying the equation for partitioning
the variance to this mixture model, the analysis based on log-transformed values
emerged as the best approach, since in this case the contributions due to the
stable and unstable components are additive, greatly simplifying inference. This
is particularly relevant for flow cytometry data, which is typically analysed in a
logarithmic scale. It is interesting to note that [18] also relied on log-transformed
values for quantification, based on the analysis of time-series of expression levels
in individual cells.

An important result here is that the rigorous unbiased estimation of R2
α can

be done based on a time series of normalised measurements of the difference
between the means of log-transformed expression levels in isolated cohorts. The
normalisation of these measurements by the value immediately after sorting is
a critical part of the inference procedure. A similar normalisation by the initial
value was used by Singh [31] to analyse the temporal evolution of the squared
coefficient of variation of a single population, under a model that assumed that
the observed variation was completely due to noise in gene expression. Using
this type of analysis in settings of transcription inhibition, these authors [31] as-
sessed whether noise in mRNA production and degradation or promoter activity
fluctuations contribute to noise in protein expression. The normalisation of the
differences by their initial value (t = 0) in the present work formalises the defini-
tion of how much of the initial difference, introduced by the process of sorting by
design, remains at later times (function Ω(t)). Hence, a key requirement is that
the isolated cohorts being compared have different means just after sorting. This
strongly argues to using high and low expressors as the basis for quantification, in
order to maximise the measurement resolution. In practice, one has to manage
a tradeoff between how extreme are the expression levels (to increase resolution
and dynamic range of the readout) and how many cells are contained in the
cohorts (sample size). The estimation based on the mean expression levels offers
great advantages in terms of the range of applications. It is often argued that
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the standard experimental techniques that measure bulk expression are obsolete
in the context of the studies of gene expression noise, because their population-
averaged readouts mask cell heterogeneity (see, for example, [10, 45]). The
present analysis framework enables to use these techniques, as one may combine
the isolation of cells (the only step requiring the analysis at the single-cell level),
with population-averaged readouts to quantify R2

α and τT . The function ∆(t),
which is at the core of the estimation process, can be approximated as the log-
arithm of the fold-ratio between the raw mean values of the two populations.
In theory, by measuring R2

α and the total variance of the full population (σ2
T ),

one could estimate the actual values of σ2
W and σ2

α in equation 13. This would
allow one to compare the values of σ2

W and σ2
α in different biological populations.

Furthermore, we also showed that the variances of the isolated cohorts can be
further informative, allowing the estimation of the ratio between the absolute
values of the contribution of the stable component in the isolated cohort and in
the starting population. However, the estimate obtained in this way is biased,
under-estimating the true value by up to 20%. Consequently, if an estimate of
this ratio is needed, we suggest a simulation-based approach.

Empowered by the quantitative framework, we analysed the variation in the
expression levels of the T-cell receptor (TCR) in mouse CD4+ T cells. T cells
are an interesting case study. It has been described that some molecules in
these cells have a component of stability in their expression levels, such as CD5
[46, 47, 48]. This has also been suggested for CD127 [49], a sub-unit of the IL-7
receptor. Also studies centred on chromatin regulation of expression of cytokines
in T cells [13, 15], found that the expression of IL-4 and IL-10 is unstable at
the level of single cells. With the increasing availability of single cell genomics,
proteomics and metabolomics techniques there is accumulating evidence that cell
populations that hitherto were perceived as homogeneous are in fact complex
mixture of cell types and cell states, that may be reversible and transient, raising
the issue of stability and dynamics. From a practical perspective, different mouse
models are available with different genetic diversity in the TCR loci, which gives
a handle to tease apart genetic and non-genetic components of variation. Hence,
in our analysis of TCR expression levels we studied a genetically heterogeneous
polyclonal population, and also a particular isogenic population, Marilyn TCR
transgenic [27] in a Rag2 -deficient background. These two populations display
distinct variances of the TCR levels that are, not surprisingly, positively associated
with the genetic TCR diversity. We asked whether these two populations could
be described by equal or different values of R2

α and τT and found that the overall
most parsimonious explanation for the data was a model where only one of
these parameters is allowed to be different. The model with different τT and
the same value of R2

α performed marginally better based on the AIC. However,
the point estimate of the characteristic time of the polyclonal population in this
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Figure 9: Overview of the components of TCR expression levels variation in
naive CD4 T cells from monoclonal Marilyn transgenic and polyclonal wildtype
mice. The first partition of the variance in each population corresponds to the
stable and unstable components experimentally estimated in this article. The
further partitions of the stable component are indicative of the putative genetic
and epigenetic causes of the variation. The percentages represent the expected
proportions of the variance in log transformed TCR expression levels explained
by the indicated components. The values in brackets in the diagram of the mon-
oclonal population were normalised by the variance in the polyclonal population.
The values in black are experimental estimations. The values in grey italic are
guesses obtained by assuming that the variance explained by somatic chimerism
and/or epigenetics is the same in polyclonal and transgenic populations.
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scenario was about 20 days, requiring an extrapolation beyond the experimental
observation time of 96 hours and involving an unreasonable large uncertainty.
Although such long time scales have been described for the restoration of a
bimodal population distribution from selected unimodal cohorts (e.g. over 30
days in [18, 42]), the scenario of very distinct τT values for wildtype and transgenic
populations is biologically unsound. This scenario requires that the expression of
transgenic TCR would differ from natural TCR expression in terms of the protein
turnover rate β as well as noise in gene expression, such that the same R2

α could
be present in populations with markedly different variances (figure 8). Therefore,
based on these statistical and biological considerations we rejected this scenario.
We concluded in favour of the scenario in which the TCR expression fluctuates
with a characteristic time of 32 hours in the both populations, which differ in
the values of R2

α, the polyclonal having R2
α = 71% and monoclonal Marilyn

having R2
α = 17%. The relatively small yet not negligible value of R2

α obtained
for the latter population may be particular and not necessarily generalisable to
other TCR-transgenic populations. It is worth mentioning that the analysis of
another such TCR transgenic population led to a higher R2

α value [50], suggesting
that transgenic populations, which are known to display different variance of the
TCR levels (e.g. [35]), may also differ in the extent of the stable component of
variance.

The capacity to analyse the variation in TCR expression validates experi-
mentally the theoretically-designed methodology. We could quantify the two
key parameters in the two cell populations, implying that the methodology has
enough power to resolve the stable and unstable components of variance even
when the distribution of interest is remarkably unimodal and narrow.

Beyond this key methodological result what do the actual estimates of R2
α

and τT tell about phenotypic variation in TCR expression?
It is important to highlight from the outset that the stable proportion of vari-

ance and the timescale may be constrained by the experimental setup on which
we intentionally relied. High and low expressors were maintained in vitro for as
long as possible in the absence of any stimulation in conditions that precluded cell
division. Using this setup, we focused on cell-intrinsic components only, avoiding
complications arising from cell division. As a consequence of this choice, the
present data do not exclude the possibility that signals arising from the intermit-
tent stimulus from the antigen-presenting cells in the in vivo environment may
change the values of both R2

α or τT for the populations tested. Also, cell division
is expected to decrease the timescale of the fluctuations in a twofold manner.
First, protein dilution into the daughter cells may effectively reduce the value of
β, even if yeast studies indicate that protein levels are remarkably constant if
corrected for cellular volume [51]. Second, cell division may affect the stability
of epigenetic modifications facilitating the transitions between chromatin states
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or bistable transcriptional switches that affect quantitatively TCR expression in
this way reducing the effective τT . A similar point was made in a study [52] of
induced pluripotent stem cells. These cells maintained a memory of transcrip-
tional and epigenetic signatures indicative of the cell of origin that vanished with
sequential passages. Hanna et al. [53] reported a similar impact of cell division
itself. Furthermore, cell division and generation time variability may introduce
cell-extrinsic deformations of the expression distribution by differential selection
of lineages (see [54] for a theoretical analysis). These potential peculiarities of
the experimental design notwithstanding, the estimates of R2

α and τT are to our
knowledge the first reported values and therefore interpreting the meaning of
these values requires indirect comparison with other estimates.

The characteristic time of the variation in protein expression represents a
transient memory of expression levels [7]. Various studies have quantified the dy-
namics of fluctuations in expression levels of various molecules, reporting charac-
teristic times that range from hours [7, 12] to days and weeks [16, 14, 17, 18, 42].
In studies quantifying the dynamics of the percentage of T cells inducing the ex-
pression of cytokines [13, 15], the effective timescale was estimated to be about
70 hours for the cytokines IL-10 [13] and IL-4 [15], under conditions in which
the cells divide. In terms of molecular mechanism, this has been linked to slow
dynamics of chromatin remodeling [13, 15]. The longer time scales were system-
atically obtained in scenarios with cell division and that involved the restoration
of a multimodal distribution of expression levels from biased cohorts. The dy-
namics of multimodal distributions, in which cells switch between overtly distinct
subpopulations may correspond to transitions between cellular states. For the
unimodal TCR expression, we estimated an effective timescale of 32 hours, in
the absence of cell division. This timescale is shorter than that necessary to re-
store a full multimodal distribution from extremely biased cohorts [18, 42]. The
TCR protein complex is arguably one of the most complex receptors in terms of
its composition, trafficking and regulation. In quiescent cells, such as the naive
cells analysed here, it is continuously recycled between the plasma membrane
and intracellular membranes with a fast rate of less than an hour. The TCR in
the ensemble of these two pools has a slow turnover rate. The treatment with
protein synthesis inhibitor up to 12 hours led only to modest changes in expres-
sion levels [55], suggesting that β might be greater than 12 hours. However, this
estimate is potentially problematic, since this treatment may alter the regulation
of the TCR complex levels, as it may up-regulate the expression of the mRNA
encoding its ζ chain sub-unit [56]. Sousa and Carneiro [57] estimated the base-
line TCR turnover in an human T cell line by fitting the dynamics of the mean
upon short-term stimulation, and found a value for β of 15 hours. Both values
[55, 57] are compatible with the effective timescale estimated here, which lumps
protein stability and the auto-correlation time of the rate of protein production,
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and suggest that β is of the same order of magnitude as τT in the case of the
TCR.

The different components that may underly the stable variation in TCR ex-
pression levels are systematically addressed in figure 9. The mean TCR level
has been shown to be distributed among the Vβ-family subsets in CD4 as well
as CD8 human T cell populations [36], under conditions in which there was a
strong correlation with cell size. Despite the fact that the high and low expressors
cohorts in our experiments had virtually the same size distribution as assessed by
the respective forward scatter signal, it is likely that part of the stable variance
in TCR expression is in fact due to the genetic diversity at the TCR locus. The
question is whether genetic diversity explains all stable variation. The estimate
of a positive value for R2

α in the nominally monoclonal TCR transgenic popula-
tion suggests that non-genetic variation may contribute to stable differences in
expression levels of the TCR among cells. This might be a particular feature of
TCR-transgenic populations, as their relationship to the actual clones in a poly-
clonal T cell population is not trivial. The specific mechanism that would mediate
such non-genetic variation is unclear at present. We speculate that the stable
component in this system may arise from a myriad chromatin modifications in
the form of “molecular switches”, which would affect, directly or indirectly, the
expression of the TCR. This speculation is inspired on theoretical studies [58, 13],
which have predicted these marks to be stable once fully established, but also
potentially variable among cells. In terms of the full range of modifications af-
fecting expression of the TCR in cis and in trans, some could be present, while
others could be absent in each individual cell in a stochastic yet stable pattern
of modifications [58, 13]. In those cells in which the balance of modifications
happens to be tilted towards those inducing expression, levels of the TCR would
be higher than average, while in cells with lower TCR levels this balance would
be shifted in the direction of those leading to decreased expression. Similar con-
siderations could be made to any epigenetic variants in any of the vast number
of transcription factors and regulatory proteins that control the TCR complex
expression. Finally, in this enumeration of the causes of stable variation in TCR
levels, it is worth noting that despite we have been referring to the population
of T cells in Marilyn transgenic mice as “monoclonal” throughout this article,
the cells are not a T cell clone derived from a mature T cell. Instead, they are
continuously differentiating in the thymus and being exported to circulation. One
cannot rule out that these T cells or their bone marrow and thymic precursors
underwent sporadic somatic mutations in any of those genes affecting TCR com-
plex expression. The existence of genetic mosaics in somatic tissues has been
well documented (reviewed in [59]) following the advent of single cell sequenc-
ing, and thus, one must envisage the possibility that part of the stable variation
observed in transgenic TCR expression is due to bone fide genetic variation.
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Simple back of the envelop calculations suggest that epigenetic variants and/or
mutational mosaicism outside the TCR locus may represent more than 1/6 of the
stable variance in the wild type CD4 T cells (assuming that epigenetics and/or
mosaicism explain the same amount variance in both monoclonal and polyclonal
populations, that all the stable variance in the former (which corresponds to 17%
relative to monoclonal and 8% relative to polyclonal variances) is explained by
these two processes and that the stable variance in latter is explained by these
two processes and by TCR diversity, we have that in the polyclonal population
8/71 of the stable variance is explained by epigenetics/mosaicism and 63/71 is
explained by genetic TCR diversity; see figure 9).

This quantitative framework makes a connection between systems biology,
in particular works focused on noise in gene expression [9], and quantitative
genetics [60]. In both domains, approaches for decomposing the variance, or
another measure of variation, have been instrumental in studying the properties
of different biological systems (see, for example, [41]). In the studies of noise in
gene expression, the notion of intrinsic and extrinsic noise put forward by Elowitz
and colleagues [4, 19] is based on decomposing the coefficient of variation of
expression levels into these two noise sources. Other works have focused on either
generalising this distinction or developing new decompositions [21, 61, 24, 23]. In
fact, these approaches may be combined with the framework developed here, to
further partition the unstable component, for example, into intrinsic and extrinsic
noise. Likewise, in connection with quantitative genetics, parameter R2

α can
be interpreted as the “heritability” in expression levels of a population. This
arises from an analogy with the decomposition of phenotypic variation into a
contribution from additive genetic variation and another due to environment (see,
for example, [28, 60]), neglecting non-additive genetic variation. At present, this
constitutes a mere analogy, since R2

α is defined even in the absence of cell division.
Hitherto, the studies on the phenotypic variation in gene expression levels at

the individual cell level have relied experimentally on timelapse imaging of sin-
gle cells or on population snapshots using single-cell resolution techniques such
as flow cytometry, qPCR, RNAseq or Cytof. The quantitative framework and
methodology proposed here, relying on estimates of the mean of the expression
levels in apropriately selected cohorts, enables studying the sources and dynamics
of the variation in cellular expression levels by conjugating a single step of sorting
with the full gamut of transcriptomic, proteomic, and metabolomic technologies
available to measure bulk expression. This opens new prospects for studying
quantitative traits and responses in heterogeneous cell populations. In particu-
lar, by providing a rigorous approach to quantify the relative contribution of the
stable component, this work allows the determination of the extent this com-
ponent contributes to variation in different biological and experimental systems
[16, 14, 17]. Furthermore, the model for expression levels considered here can
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be further extended to incorporate, for example, more elaborated formulations,
such as those with positive and feedback loops, as in the case of gene regu-
latory networks regulating cell differentiation (for example, [62]). Finally, the
sophistication of DNA recording-based methods to account for past fluctuations
in transcript levels of a cell or its lineage will generate massive sets of single-cell
transcriptomics data points suitable for decomposition into stable and unstable
components [63]. In summary, we have put forward a solid theoretical framework
to dissect the components of variation in expression levels according to their sta-
bility and dynamics, which enables the further analysis of how different molecular
mechanisms may modulate each component.

Materials and Methods

Notation

The function log (·) denotes the natural logarithm, and random variables are
represented as bold symbols, as in x. We use E [x] to denote the expected value
of a random variable x, and V [x] the variance. The notation z ∼ LN (µ, σ)
represents a random variable z following a lognormal distribution with parameters
µ and σ, having therefore the probability density function:

f(z) =
1√

2 π σ z
exp

(
− 1

2σ2
(log (z)− µ)2

)
(24)

Numerical simulations

Simulations of the model based on stochastic differential equations were per-
formed using custom software written in C++, based on the GNU Scientific
Library (http://www.gnu.org/software/gsl/). For a given value of the parame-
ters τ and β, the stochastic model (equations 4 and 5) was simulated, using the
Brent-Dekker method (GNU Scientific Library) to adjust the value of σ so as to
obtain the desired value of σW .

Simulations of cell sorting experiments to isolate appropriate cohorts were
done using an initial population with σT = 0.3, having 1.2 × 106 cells and
2 × 104 sub-populations, with the number of cells per sub-population following
a multinomial distribution. From the starting population, 10% of cells were
isolated. As a simple approximation of an experimental setting, each isolated
cohort was divided into 3 replicates, and simulated for a given period of time,
with snapshots of each replicate being collected at equally spaced times.
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Data analysis, fitting and model selection

Numerical analysis was conducted using MATLAB (Mathworks). The exponen-
tial model was fitted to the data by non-linear least squares. To study the
relationship between τT and parameters β and τ , simulations were ran for sev-
eral combinations of values of (R2

α, β, τ). The values of τT were estimated by
fitting the exponential model. Fitting the ensemble of the experimental data
was done by equally weighting each experiment, based on the number of data
points per experiment. Values of the Akaike Information Criterion (AIC) were
corrected for small sample size, as highlighted in section 2.4 of ref. [40], and
include the residual variance as an additional effective parameter being estimated
for each model. Confidence intervals (95%) were obtained by bootstrapping each
experiment separately, then fitting the ensemble of the data.

Mice

C57BL6/J and B6.Rag2–/– mice were obtained from the Jackson Laboratory.
Marilyn mice [27] were kindly provided by Olivier Lantz (Institut Curie, France),
and bred with B6.Rag2–/– to produce Marilyn.Rag2–/–. Mice were bred and
maintained under specific pathogen free conditions at the animal house of the
Instituto Gulbenkian de Ciência, and used for experiments with ages between 8
and 12 weeks. All animal procedures were approved by the ethics committee of
the Instituto Gulbenkian de Ciência.

Antibodies and Flow Cytometry

Flow cytometry was performed using a Beckman-Coulter CyAN ADP. Fc recep-
tors were always blocked prior to staining, by incubation with FcBlock (2.4G2,
produced in-house). Cells were stained at 4◦C, in ice-cold buffer with PBS, 5%
fetal bovine serum (PAA), and, except in the case of sorting, with 0.1% sodium
azide.

Monoclonal antibodies produced in-house used were: anti-TCR-Cβ (H57-
597), anti-CD4 (GK1.5), anti-CD8 (YTS169.4), anti-CD25 (PC61), anti-CD45RB
(16A), anti-CD62L (MEL-14), anti-B220 (RA3-6B2), anti-MHC-II (M5/114),
anti-Mac1 M1/70), anti-CD3ε (2C11), anti-CD3ε (2C11) . Commercial antibod-
ies were: anti-CD49b (pan-NK, DX5, BD), anti-CD4 (RM4-5, BD), anti-CD44
(MEL-14, eBioscience), anti-TCRγδ (GL3; BD). Biotinylated antibodies were
further labeled with PE-Streptavidin (BD).
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Cell sorting and in vitro cultures

Single-cell suspensions were prepared from lymph nodes, and also spleens in the
case of Marilyn.Rag2–/– animals (due to limited number of cells), by passing cells
through a nylon mesh. Cohorts of cells were sorted according to the TCR levels
on a FACSAria (BD), using a strategy based on negative selection of CD4+ T
cells. Briefly, cells were stained for TCR (anti-TCR-Cβ) and lineage markers
not expressed by naive CD4+ T cells, and then lineage- cells falling within the
desired TCR gates (illustrated in figure 6 and F) were sorted. A polyclonal naive
population was sorted as CD45RBhigh, lineage- (CD8, pan-NK, B220, TCRγδ and
CD25) cells, while Marilyn cells were sorted as CD62L+, lineage- (B220, CD11c,
pan-NK, Mac1, MHC-II). The use of CD62L as an alternative marker of naive
cells allows for a more efficient sorting (due to a slow loss in the CD45RB signal
throughout the sorting), given the limited number of cells, based on the fact
that the vast majority of Marilyn cells retain a naive phenotype [27]. Before each
sorting for Marilyn cells, the gating for CD62L+Lineage- cells, when analysed in
a control sample also labeled for CD4, includes more than 80% of TCR+CD4+

Marilyn cells. Purities of the sorted populations were assessed by staining aliquots
of the sorted populations for CD4 expression, were typically greater than 96%.

After sorting, T cells were cultured in flat-bottom 96-well plates (50 × 103

cells per well), in RPMI (Invitrogen), 10% fetal bovine serum (PAA), 1% Sodium
Pyruvate (Gibco), penicillin/streptomycin (Gibco), gentamycin (Sigma), 50µM
2-ME (Gibco), in an incubator at 37◦C, with 5% CO2.

TCR levels were quantified by staining, under optimal, saturating conditions,
with anti-TCRCβ antibody, which binds to the constant region of one of the
sub-units of the TCR (see, for example, [64]). Cells maintained in culture were
analysed at different time-points by re-staining the TCR, using the same antibody
anti-TCRCβ (clone and fluorochrome) as used for the sorting. In each time-point,
3 replicates (wells) of each sorted population were analysed. In each experiment,
an additional population (control) was sorted in parallel, keeping the same gates
used for all expressors, but without staining for the TCR, as a control for the
impact of this staining. In each time-point, TCR levels of the control population
were compared against those of “all expressors”, confirming that the staining for
the sorting does not induce massive changes in TCR expression levels .

Data were analysed using FlowJo 8.8.7 (Tree Star Inc.). Cells gated on
forward-scatter and side-scatter, live cells (propidium iodide negative) and CD4+

cells. For the analysis of TCR levels, cells were further gated on CD62L+ cells,
to reduce experimental variation in TCR levels. Percentages of CD62L- cells
were always lower than 20% in early time-points (up to 48 hours), and similar to
those from control cells, arguing against impact of staining for the TCR in order
to sort cells. Gated data was exported as text files and analysed in MATLAB
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(Mathworks) using custom code.
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Supplementary information

A Detailed derivation of the mean and variance
of the full population

This section presents the detailed derivation of the mean and variance of the
full population, given the parameters describing the sub-populations (equations
2 and 3 in the main text).

A.1 Mean and variance given the parameters of each sub-
population

We start from the mixture model formulation, where x represents protein expres-
sion levels:

f(x | θ1, θ2, . . . , θN) =
N∑
i=1

wi fi(x | ζi) (25)

where θi = (wi, ζi) are parameters describing each of the N sub-populations. The
frequency of the cells in the full population that belong to the i-th sub-population
is represented by wi (see equation 1 of the main text), while ζi parametrizes the
probability density function fi(x | ζi) of protein expression levels in that sub-
population. For example, in the case that fi is a normal distribution, ζi would
be the mean and variance of expression levels in that sub-population.

It follows from equation 25 that the mean of the full population is given by:

µF = E [x] =

∫ ∞
−∞

x f(x | θ1, θ2, . . . , θN) dx

=
N∑
i=1

wi

∫ ∞
−∞

x fi(x | ζi) dx︸ ︷︷ ︸
µi

=
N∑
i=1

wi µi (26)

where µi is the mean of the i-th sub-population. Therefore, the mean of the
full population (µF ) is simply the average of the means of the sub-populations,
weighted by the frequencies wi. The variance of expression levels, on the other
hand, follows from:

vF = V [x] = E
[
x2
]
− µ2

F (27)

where:

E
[
x2
]

=
N∑
i=1

wi

∫ ∞
−∞

x2 fi(x | ζi) dx︸ ︷︷ ︸
vi+µ2i

(28)
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vi being the variance of each sub-population. Hence, the variance is given by:

vF = V [x] =
N∑
i=1

wi
(
vi + µ2

i

)
− µ2

F =
N∑
i=1

wi vi +
N∑
i=1

wi µ
2
i − µ2

F (29)

By Jensen’s inequality, it follows that:

N∑
i=1

wi µ
2
i − µ2

F ≥ 0 (30)

and, therefore, the variance vF is always non-negative, as expected.
Therefore, for the “full” population, one has the mean and variance given by:

µF = E [x] =
N∑
i=1

wi µi (31)

vF = V [x] =
N∑
i=1

wi vi +
N∑
i=1

wi µ
2
i − µ2

F (32)

As a remark, these results are independent of the underlying probability density
functions fi describing the expression levels in each sub-population.

A.2 Mean and variance in the limit of large number of
sub-populations

In the following, we study the asymptotic properties of the equations describ-
ing the mean and variance of expression levels in the full population (equations
31 and 32, respectively). In this case, the parameters of the sub-populations
introduced in the previous section become themselves random variables, de-
noted as w, for the frequency, µ as the mean expression level, and v for
the variance of a sub-population. To avoid confusing notation, in this sec-
tion we will refer to the mean and variance of the random variables w, µ
and v solely using the notation E [·] and V [·]. In the general case consid-
ered here, these random variables are described by a joint density h(w, µ, v).
Hence, the full population to be studied is constructed from a sample S =
{(w1,µ1,v1) , . . . , (wi,µi,vi) . . . , (wN ,µN ,vN )} of N vector-valued random
variables (w,µ,v) sampled from an unknown distribution. A key simplifying
assumption made hereafter is that (wi,µi,vi) and (wj ,µj ,vj) are independent
and identically distributed (iid) for all i 6= j. In terms of the frequencies, this is
not immediate, since wi and wj are dependent due to the constraint of unity sum

(
∑N

i=1 wi = 1). However, this dependency is expected to become negligible, as
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long as the numbers of cells in each sub-population (see equation 1 of the main
text) are iid, and N is sufficiently large.

In the following, it is shown that, for a fixed N , the mean and variance of
the full population are basically “sample estimates” based on S. Since these es-
timates are functions of random variables, they are themselves random variables,
denoted as NµF and NvF , respectively (as in equations 31 and 32):

NµF =
N∑
i=1

wiµi (33)

NvF =
N∑
i=1

wi vi +
N∑
i=1

wiµi
2 − NµF

2 (34)

It should be highlighted that wi, µi and vi are, in equations 33 and 34, random
variables.

In this framework, one is interested in the expected value of the mean and
variance of the full population. Under the law of large numbers, the sample
estimates (equations 33 and 34) will converge to the expected values of the
mean and variance for sufficiently large N . We start by deriving the asymptotic
mean of the population:

µF = E [NµF ] = N E [wµ] = N (E [w] E [µ] + C [w,µ]) (35)

where C [w,µ] is the covariance between the random variables w and µ. Given
that E [w] = 1 /N , by definition of the frequencies, one obtains that:

µF = E [NµF ] = E [µ] +N C [w,µ] (36)

Therefore, it follows that, when the w and µ are uncorrelated, the expected
mean of the population is simply the expected mean of the sub-populations,
corresponding to equation 2 of the main text.

Following a similar reasoning, one obtains the variance:

vF = E [NvF ] = N
(
E [wv] + E

[
wµ2

])
− E

[
NµF

2
]

(37)

where:

E [wv] =
1

N
E [v] + C [w,v] (38)

E
[
wµ2

]
=

1

N
E
[
µ2
]︸ ︷︷ ︸

V[µ]+(E[µ])2

+C
[
w,µ2

]
=

1

N

(
V [µ] + (E [µ])2)+ C

[
w,µ2

]
(39)
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Note the appearance of the term C [w,µ2], containing the additional random
variable µ2. Furthermore, the last term in equation 37 can be written as:

E
[
NµF

2
]

= V [NµF ] + (E [NµF ])2 (40)

which, using equation 36, becomes:

E
[
NµF

2
]

= V [NµF ] + (E [µ] +N C [w,µ])2

= V [NµF ] + (E [µ])2 + 2N E [µ] C [w,µ] +N2 (C [w,µ])2 (41)

Plugging back equations 38, 39 and 41 into 37, it follows that the variance is
given by:

vF = E [NvF ] = E [v] +N C [w,v]

+ V [µ] + (E [µ])2 + C
[
w,µ2

]
− V [NµF ]

−
{

(E [µ])2 + 2N E [µ] C [w,µ] +N2 (C [w,µ])2} (42)

which is reduced to:

vF = E [NvF ] = E [v] + V [µ]

− V [NµF ] +N
{
C [w,v] + C

[
w,µ2

]
− 2E [µ] C [w,µ]−N (C [w,µ])2

}
(43)

The term V [NµF ] represents an additional contribution, due to variance in the
sample mean of the full population as a consequence of sampling, and tends to
zero as N grows. In this case, provided that there is no correlation between
the frequencies (w) and either the means (µ), the squared means (µ2) and the
variances (v) of the sub-population, one obtains equations 2 and 3 of the main
text.

B Basic properties of the logarithmic transfor-
mation

In this session, we recall some basic properties of the logarithmic transformation.
First of all, recall that, a lognormally-distributed random variable x ∼ LN (µ, σ)
has expected value, variance and coefficient of variation given, respectively, by:

E [x] = exp

(
µ+

1

2
σ2

)
(44)

V [x] =
(
exp

(
σ2
)
− 1
)

exp
(
2µ+ σ2

)
(45)

K [x] =
√

exp (σ2)− 1 (46)
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Conversely, the parameters µ and σ of the lognormal distribution are obtained
from E [x] and V [x] via:

µ = log

 (E [x])2√
V [x] + (E [x])2

 (47)

σ =

√
log

(
1 +

V [x]

(E [x])2

)
(48)

In order to frame the relationship between untransformed and log-transformed
values, consider a random variable z, and define y = log (z). If y can be well
approximated by a normal distribution, then equations 44 and 45 can be used to
relate the mean and variance of z and y:

µy ≈ log (µz)−
1

2
σ2
y (49)

σ2
y ≈ log

(
k2
z + 1

)
(50)

where kz = K [z] is the coefficient of variation of z.

C Model of protein expression in a cell popula-
tion, for untransformed values

C.1 Variation within a sub-population

Starting from equation 4, it follows that a population of cells with dynamics
of protein expression levels governed by equations 4 and 5 has stationary mean
given by:

µ = E [xt] = αβ (51)

and therefore the stationary mean depends on the average expression rate (there-
fore, α) and on the timescale of protein degradation (β). Moreover, the squared
stationary coefficient of variation is given by:

k2
W = K [xt]

2 = gk(exp
(
σ2
)
− 1, τ/β) (52)

where gk(·, ·) is an arbitrary function, which can be estimated via simulation
(analogous to g(·, ·) in equation 10), and the subscript W highlights that the
variation is due to the stochastic process influencing the instantaneous rate of
protein expression. Hence, the stationary variance is given by:

V [xt] = (αβ)2 k2
W (53)
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C.2 Variation among sub-populations

Following equation 53, the i-th sub-population, with parameter αi, has mean
and variance of protein levels (see equations 51 and 53):

µi = αi β (54)

vi = α2
i (β kW )2 (55)

where it should be noted that k2
W is the same for all sub-populations. Applying

equations 2 and 3 of the main text, one obtains that the squared coefficient of
variation of the full population is given by:

k2
F = k2

W + k2
α + (kW kα)2 (56)

Therefore, equation 56, based on untransformed values, does not follow the
simple additive relationship obtained for the variances of log-transformed values
(equation 13 of the main text), given the extra term (kW kα)2.

D Dynamics of the mean of log-transformed val-
ues

This section studies the dynamics of the log-transformed mean, to provide a ra-
tionale for the exponential-like decay of the function ∆H,L(t) shown in figure 4
(section 4) of the main text based on simulations. The first step is the deriva-
tion of a linearised approximation of the log-transformed stochastic model that
describes protein expression in a sub-population (defined by equations 4 and 5
of the main text). Afterwards, the dynamics of function ∆H,L(t), which depends
on the mean of log-transformed values of high and low expressors, are related to
the dynamics of expression levels in the underlying sub-populations.

Since analysis is based on log-transformed values, we define the log-transformed
protein level st:

st = log (xt) (57)

such that:

xt = exp (st) (58)

d st
dt

=
1

xt

d xt
dt

(59)

where xt is the protein level and yt is the Ornstein-Uhlenbeck process in the
original stochastic model (section 2.2.1 of the main text) Therefore, it follows
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from equation 4 of the main text that:

β dst =

{
αβ exp

(
yt − st −

1

2
σ2

)
− 1

}
dt

=

{
exp

(
log (αβ) + yt − st −

1

2
σ2

)
− 1

}
dt (60)

The dynamics of the mean of log-transformed values in a sub-population are then
given by:

β dE [st] =

{
E
[
exp

(
log (αβ) + yt − st −

1

2
σ2

)]
− 1

}
dt (61)

In order to derive an approximation for the function E [st], it is necessary to
simplify the term E

[
exp

(
log (αβ) + yt − st − 1

2
σ2
)]

. Introducing:

St = log (αβ) + yt − st −
1

2
σ2 (62)

and assuming that it is well-concentrated around a certain instantaneous mean,
such that it can be approximated by a normal distribution with mean mt and
variance vt, it follows that (see equation 44):

E [exp (St)] ≈ exp

(
mt +

1

2
vt

)
(63)

mt = E [St] = log (αβ) + E [yt]− E [st]−
1

2
σ2 (64)

vt = V [St] = V [st] + V [yt]− 2C [st, yt] (65)

Assuming that
∣∣mt + 1

2
vt
∣∣ is relatively small, the exponential term in the left-

hand side of equation 63 can be linearized:

E [exp (St)] ≈ E [1− St] = 1 +mt +
1

2
vt (66)

Plugging back into equation 61, one obtains the following linear approximation
for the dynamics of the mean of log-transformed values:

β
dE [st]

dt
= log (αβ) + E [yt]− E [st] +

1

2

(
vt − σ2

)
(67)

The equation for the mean of the Ornstein-Uhlenbeck process follows as:

τ
dE [yt]

dt
= −E [yt] (68)
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with solution:

E [yt] = E [y0] exp (−t/τ) = µy,0 exp (−t/τ) (69)

Therefore, one obtains the following equation for µt = E [st], which denotes the
instantaneous mean of log-transformed values of a single sub-population:

β
dµt
dt

= log (αβ) + µy,0 exp (−t/τ)− µt +
1

2

(
vt − σ2

)
(70)

where recall that vt (equation 65) depends on the variances of log-transformed
values of the sub-population (st) and the Ornstein-Uhlenbeck process variable
(yt), besides the covariance between these two.

In terms of the function ∆H,L(t), recall that it is defined as (equation 15 of
the main text):

∆H,L(t) = µH,t − µL,t (71)

where µH,t and µL,t are the means of log-transformed values of high and low
expressors, respectively, at time t. Using equation 36, ∆H,L(t) can be written
as:

∆H,L(t) = E [µH,t]− E [µL,t]

+ (NhC [w,µH,t]−NlC [w,µL,t]) (72)

where µH,t and µL,t are random variables denoting the instantaneous mean of
a particular sub-population in the high (Nh sub-populations) and low expressors
(Nl sub-populations), respectively. Neglecting the term of weighted difference
between the covariances in equation 72, it follows that:

∆H,L(t) ≈ E [µH,t]− E [µL,t] (73)

and therefore the dynamics of ∆H,L(t) can be approximated as:

d

dt
∆H,L(t) ≈ d

dt
E [µH,t]−

d

dt
E [µL,t]

E
[
d

dt
µH,t

]
− E

[
d

dt
µL,t

]
(74)

An approximation to the term d
dt
µH,t has been derived in equation 70, such

that:

E
[
d

dt
µH,t

]
≈ 1

β

{
E [log (αH β)] + E [µyH ,0] exp (−t/τ)

− E [µH,t] +
1

2

(
E [vH,t]− σ2

)}
(75)
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and analogously for the low expressors. Plugging into equation 74, one obtains:

d

dt
∆H,L(t) ≈ 1

β

{
E [log (αH)]− E [log (αL)]

+ (E [µyH ,0]− E [µyL,0]) exp (−t/τ)

− (E [µH,t]− E [µL,t]) +
1

2
(E [vH,t]− E [vL,t])

}
(76)

By symmetry, the difference E [vH,t]− E [vL,t] in equation 76 is expected to be
close to zero. Defining the constants:

Γ = E [log (αH)]− E [log (αL)] (77)

Λ = E [µyH ,0]− E [µyL,0] (78)

equation 76 is simplified to take the form:

β
d

dt
∆H,L(t) ≈ Γ + Λ exp (−t/τ)− (E [µH,t]− E [µL,t]) (79)

Finally, using the original approximation in equation 73, it follows that:

β
d

dt
∆H,L(t) ≈ Γ + Λ exp (−t/τ)−∆H,L(t) (80)

Introducing the auxiliary variable U(t) = Λ exp (−t/τ), then equation 80 can
be written as a two-dimensional linear dynamical system:

d

dt

[
∆H,L(t)
U(t)

]
=

[
− 1
β

1
β

0 − 1
τ

]
︸ ︷︷ ︸

A

[
∆H,L(t)
U(t)

]
+

[
Γ
β

0

]
(81)

subject to the initial condition:[
∆H,L(0)
U(0)

]
=

[
δ0

Λ

]
(82)

Since the matrix A (equation 81) has always non-imaginary eigenvalues, it follows
that ∆H,L(t) is the combination of two exponential decays with mean times given
by τ and β, with a single dominant exponential for the extreme cases β � τ or
β � τ .
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E Analysis of the variances of isolated cohorts

In this section, it is shown that analysing the variances of isolated cohorts can
provide additional information, given the estimate of R2

α. This analysis is based
on the same simulation setting considered in section 4. However, it was found
that the estimates derived herein are much more sensitive to sampling effects.
Therefore, the starting populations considered here had a much larger number
of cells (see methods in section E.1).

Figure 10 shows the variance of log-transformed values as a function of time
for the “high expressors”. As in section 4, the “all expressors” are also included,
as a reference of the starting population. The variance of high expressors is lower
than that of the starting population, and either remains constant or increases as a
function of time. The same takes place for the low expressors, since the variance
is a moment of even order. Finally, as observed for the mean of log values,
the asymptotic (stationary) variance is equal to that of the “all expressors” for
R2
α = 0, since in this case the unstable component is the only contribution

present.

Figure 10: Variance (log values) of “high expressors” after isolation as 10% of
starting populations with different values of R2

α, but constant σ2
T . Parameters:

τ = 500, β = 5 and σT = 0.3.

Focusing on the asymptotic (stationary) variance, figure 11 shows that the
simple, linear, relationship between the mean and R2

α does not hold in this case.
In particular, for R2

α ≤ 30%, the variance of high and low expressors is very close
to that of the all expressors. In order to understand the basis for the relationship
showed in figure 11, we consider hereafter the partitioning of the variance of
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each isolated cohort, in contrast to the main text, which focused on the starting
population. However, the value of R2

α considered will always refer to that of the
starting population.

Figure 11: Asymptotic (stationary) variance of expression levels (log values)
of high and low expressors, isolated in the simulations as 10% of the starting
population, and also of all expressors. The symbols represent the values obtained
from the simulations, while the lines represent linear interpolation. Parameters:
τ = 500, β = 5 and σT = 0.3.

Recall that the variance of the starting population is given by:

σ2
T = σ2

W + σ2
α (83)

For a general isolated cohort D, based on equation 43 (section A of the supple-
mentary information), the variance is partitioned as:

σ2
T,D(t) = σ2

W,D(t) + σ2
α,D + δT,D (84)

The subscripts H, L and A in place of D will be used to refer to the isolated
cohorts corresponding to high, low and all expressors, respectively. The notation
σ2
W,D(t) highlights that the variance due to the unstable component becomes

a function of time, which will increase until the population becomes stationary.
The variance due to the stable component in the isolated cohorts is represented
by σ2

α,D, to highlight the fact that it may be different from that of the starting
population (σ2

α) as a consequence of isolating only some sub-populations (see
discussion in section 3.2 of the main text). Finally, the term δT,D in equation
84 represents a “residual contribution”, which may be introduced by the process
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of isolating cells. It arises from the covariance terms, which may become non-
negligible even for a starting population satisfying equation 83. Note that, by
definition, δT,A = 0 (since the “all expressors” satisfy equation 83).

In analogy with the standard F-statistic used for comparing the variances of
two samples, we will denote by FD the ratio between the asymptotic variance
of the isolated cohort (equation 83) and the variance of the starting population
(84):

FD = lim
t→∞

σ2
T,D(t)

σ2
T

(85)

highlighting that this ratio depends only on measurable properties of the two
populations. Moreover, define ΦD as the ratio between the absolute variances of
the stable component in the isolated and starting populations:

ΦD =
σ2
α,D

σ2
α

, R2
α 6= 0 (86)

to denote the relative change, as a consequence of isolating cells, in the variance
of the stable component in the “new” (isolated) population. In the following, it
is shown that FD and R2

α can be used to construct an estimator for ΦD, denoted

as Φ̂D. The requirement for R2
α 6= 0 stems from the constraint of σ2

α 6= 0.
It follows from taking the ratio between equations 84 and 83 that:

FD =
σ2
W

σ2
W + σ2

α

+
σ2
α,D + δT,D

σ2
W + σ2

α

=
σ2
W

σ2
W + σ2

α

+

(
σ2
α,D + δT,D

)
/σ2

α

1 + (σ2
W/σ

2
α)

=
σ2
W

σ2
W + σ2

α

+
1

1 + (σ2
W/σ

2
α)

(ΦD + εV,D) , R2
α 6= 0 (87)

where εV,D is defined as:

εV,D =
δT,D
σ2
α

(88)

Using the definition of R2
α:

ΦD = 1− 1

R2
α

(1− FD)︸ ︷︷ ︸
Φ̂D

−εV,D, R2
α 6= 0 (89)

it follows that one estimator for ΦD, denoted as Φ̂D, can be obtained via:

Φ̂D = 1− 1

R2
α

(1− FD) (90)
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Hence, the “true” and estimated values are related via:

Φ̂D = ΦD + εV,D, R
2
α 6= 0 (91)

in which εV,D becomes the bias in the estimation of ΦD.
Hereafter, we conduct a more detailed analysis of the contributions to the

variance in the isolated cohorts, to evaluate the use of the estimator Φ̂D in
quantifying ΦD. This analysis is based on isolating the populations of interest,
and simulating until they become stationary. At this point, using the underlying
structure of each isolated cohort, the expression levels and number of cells in
each sub-population were determined. Using equation 43, the different terms
were then calculated.

To understand the basis of the residual contribution (δT,D), figure 12 depicts
the contributions to the asymptotic variance (σ2

T,D, σ2
W,D, σ2

α,D and σ2
W,D+σ2

α,D)
of each of the isolated cohorts, as a function of the value of R2

α. For each isolated
cohort, the total variance (σ2

T,D) corresponds exactly to the data shown in figure
11, while the term due to the unstable component (σ2

W,D), being equal to that
in the starting population (σ2

W ), is simply σ2
T (1−R2

α). The converse holds for
the term arising due to the stable component in the population of all expressors
(σ2

α,A = σ2
T R

2
α), since this population is equivalent to the starting one. On

the other hand, for high and low expressors, the value of σ2
α,D, follows a more

complicated dependence on R2
α, reaching a maximum for values of R2

α around
60%. Moreover, in these two isolated cohorts, the sum σ2

W,D + σ2
α,D is greater

than the total variance σ2
T,D, especially for intermediate values of R2

α. This
difference corresponds exactly to the residual component δT,D. Moreover, as
shown in figure 12 (bottom right), it constitutes up to 15% of the total variance,
having negative values for all R2

α. The occurrence of negative values is not
unexpected, given that there are both positive and negative terms in equation
43.

However, it is important to recall that the bias εV,D in the estimation of
ΦD corresponds to the residual component divided by σ2

α. The bias is shown in
figure 13 as a function of R2

α, keeping in mind that it is only defined for R2
α 6= 0.

While the residual variance has an absolute value of up to 5% (figure 12, bottom
right), it follows that the bias εV,D varies from -0.18 to 0, vanishing only for

R2
α → 100%. Hence, it is expected that Φ̂D under-estimates ΦD.

Finally, the “true” and the estimated values of ΦD are shown in figure 14. In
this figure, ΦD was calculated based on data on the sub-populations composing
each isolated cohort, while the estimate Φ̂D was obtained based on equation 90.
These two values are clearly different for values of R2

α lower than 70%. Figure 14
also shows that, when the bias εV,D is accounted for (using equation 43, to obtain
the residual component and σ2

α), subtracting it from the estimate results in the
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High expressorsLow expressors

All Residual components

Figure 12: Properties of the isolated cohorts for various values of R2
α, always

considering log-transformed expression levels. Shown here are the variance com-
ponents in the various isolated cohorts, along with the residual component (δT,D).
The latter has been calculated based on equation 43, and the values shown are
normalized by the total variance.

Figure 13: Bias term εV,D as a function of R2
α (for R2

α 6= 0), considering the
analysis based on the pairs (high, all) and (low, all), determined based on the
residual variance (equation 43) and σ2

α.
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“true” value. However, given that the bias cannot be estimated in practice, since
it depends on the underlying structure of each cell population, it follows that the
estimation of ΦD via Φ̂D is, indeed, biased in most of the cases.

High

Low

Figure 14: Comparison between the “true” value of ΦD and the estimated value
Φ̂D obtained according to equation 90. Each graph also includes the results of
subtracting the bias (obtained as in figure 13) from the estimated value, to show

that it explains the discrepancy between ΦD and Φ̂D.

Therefore, we conclude that the variance can provide additional information.
The variance allows to estimate the ratio between the stable component in an
isolated cohort (such as the high or low expressors) and the stable component
in the starting population (or its proxy the all expressor cohort). This estimate
depends on the value of R2

α, which can be estimated using the approach outlined
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in section 4 of the main text, and the ratio between the total variances of the
two populations being compared (either high and all expressors, or low and all
expressors). However, it was shown here that this estimate is biased, due to
introduction of a residual component as a consequence of isolating cells based
on the expression levels. This bias results typically in an under-estimation of
the “true” value of ΦD by up to 20% of the true value. Hence, we interpret
these results to imply that the asymptotic (stationary) variance is uninformative.
Further highlighting the approach based on the means to estimate R2

α, in the
case that an estimate of ΦD is needed, a simulation-based approach is suggested:

1. estimate R2
α using the analysis of the means

2. using R2
α, simulate the actual isolation of cells from the starting population,

and determine ΦD

E.1 Materials and methods

Simulations were done with the same parameters as those for section 4 of the
main text, but with a much larger number of cells in the starting population
(30 × 106), and the same number (2 × 104) of sub-populations. Statistics on
the sub-populations were calculated based on the asymptotic mean and variance
defined by the parameters {αi, β, σ2

W} describing each sub-population.
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F Forward scatter distributions in sorted cohorts
of high and low expressors

Chapter 3

Figure 3.15: Comparison of the relationship between TCR expression levels and forward-
scatter on the TCR-transgenic Rag2–/– populations Marilyn and OT-II, along with a naive
polyclonal population, based on staining for TCRβ (second experiment). For consistency
with the setup in section 3.4, analysis of all populations was done based on the same gating
strategy used for cell sorting (see methods), followed by gating for TCRβ+CD4+ events.
Cells from each population, as in figure 3.13, were gated as around 10% into high and low
expressors based on TCR levels, and compared in terms of the forward-scatter (often used
in flow cytometry as an initial approximation of cell size). Data correspond to the second
of 2 independent experiments.

137

Figure 15: Forward scatter distributions in cohorts of high and low TCR expres-
sors sorted from naive polyclonal (top) and Marilyn monoclonal (bottom) CD4 T
cells. Left: Histograms of TCR intensity in the cell populations are shown on the
left together with the gates used to sorting the high and low expressor cohorts.
The numbers are the percentage of cells in each cohort. Right: Histograms of
Foreward Scatter Area for the high (blue) and low (red) expressors immediately
after sorting.
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