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Abstract  
 
Background: Modern network science has been used to reveal new and often 
fundamental aspects of brain network organization in physiological as well as 
pathological conditions. As a consequence, these discoveries, which relate to 
network hierarchy, hubs and network interactions, begun to change the 
paradigms of neurodegenerative disorders. We therefore explored the use of 
thermodynamics for protein-protein network interactions in Alzheimer disease 
(AD), Parkinson disease (PD), multiple sclerosis (MS), traumatic brain injury and 
epilepsy. 
Methods: To assess the validity of using network interactions in neurological 
disease, we investigated the relationship between network thermodynamics and 
molecular systems biology for these neurological disorders. In order to uncover 
whether there was a correlation between network organization and biological 
outcomes, we used publicly available RNA transcription data from individual 
patients with these neurological conditions, and correlated these molecular 
profiles with their respective individual disability scores.  
Results: We found a linear correlation (Pearson correlation of -0.828) between 
disease disability (a clinically validated measurement of a person's functional 
status), and Gibbs free energy (a thermodynamic measure of protein-protein 
interactions). In other words, we found an inverse relationship between disease 
entropy and thermodynamic energy.  
Interpretation: Because a larger degree of disability correlated with a larger 
negative drop in Gibbs free energy in a linear, disability-dependent fashion, it 
could be presumed that the progression of neuropathology such as is seen in 
Alzheimer Disease, could potentially be prevented by therapeutically correcting 
the changes Gibbs free energy.  
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Background 
 
The treatment and management of neurological dysfunction/ neurodegeneration 
is an area of a great medical need. The World Health Organization (WHO) 
estimates that neurological disorders contribute 10.9% and 8.7% of global 
disease burden in high- and medium-income countries,[1] and as the average 
age of the populations in developed countries increases in the coming decades, 
it is expected that the disease burden will continue to increase. Yet, the present 
treatment of neurological diseases constitutes by and large of management of 
disease symptoms because the etiology remains unclear. In Alzheimer disease 
for example, the earlier etiological hypothesis that amyloid deposits are caused 
by environmental stimuli is being supplanted by growing body of evidence that it 
is the genomic dysregulations of cellular and molecular pathways that cause 
accumulation of amyloid and tau proteins.[2] This may not only explain why 
targeting amyloid and/or tau proteins has been unsuccessful so far, it also 
unlocks the possibility of using targeted therapies. However, to realize the full 
potential of targeting these newly identified genomic patterns in Alzheimer 
Disease[3, 4] and in order to pursue these novel, molecularly-guided therapies, 
an improved understanding about the complexity of systems biology of 
neurological diseases is needed.  
 
Many pathologic conditions such as for example neurodegenerative disease, 
chronic inflammatory disorders, or cancer; are associated not only with 
mutational activation of genes, but also with re-activation of developmentally 
silenced pathways. Because the processes of tissue invasion, proliferation, 
inflammation and angiogenesis are common not only to oncogenic induction, but 
also to embryonal development and normal host response to tissue injury - a 
simple DNA mutation analysis would not provide sufficient information. The 
activation of pathways associated with inflammation and tissue injury is therefore 
best studied using mRNA expression. However, until very recently, it has been 
very difficult to directly correlate the levels of gene expression with the cellular 
effect of specific proteins. In fact high gene expression did not always imply 
increased protein function or activation of a biological process. The intensity of a 
biological effect is dependent on the interaction of the affected (overexpressed) 
gene with its neighbors, and the quorum effect of the innumerable feedback 
loops on the global protein-protein interaction network.  
 
The realization that the perturbations of individual genes can be measured by its 
effect on the global response of a network has led many scientists to finding 
alternative approaches for genomic interpretations. The one presented in this 
manuscript is based on using not only level of expression of a gene, but also its 
topology as a measure of its connectivity. This novel approach has been enabled 
by the vast amounts of well-curated information accumulated in publicly available 
protein-protein interaction networks (PPINs) over the last 4 decades, and has 
emerged quite recently.[5-8]  
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The underlying premise of our analysis is that biological systems are complex 
chemical networks. A cell, for example, consists of a large molecular network 
made of DNA, RNA, proteins, peptides, small molecules, and lipids. Each of 
these molecules is associated with potential energy contributing to an even larger 
energetic network. The energetic state exists in equilibrium, and any perturbance 
sets off a cascade of events striving to bring the overall network back to the 
same entropy. The prime force pushing the reaction back is Gibbs free energy, 
an expression of the thermodynamic energy reflecting the chemical potential 
between interacting proteins. This Gibbs Free Energy is used as a measure of 
the changes occurring within a disease-related protein-protein interaction 
network.  
 
In his earlier work, Rietman et al[9] described an inverse correlation between 
Gibbs free energy and percent 5-yr survival for ten different types of cancers . 
The study showed that poor prognosis cancers such as glioblastoma multiforme 
have low thermodynamic entropy, less negative Gibbs free energy, and very low 
5-year survival. This was consistent with the clinical status of the disease, which 
has average survival post diagnosis of 6 months, and a 5-yr survival of 2%. 
Similarly, the finding that in breast carcinoma, which had higher thermodynamic 
entropy, a more negative Gibbs free energy, and a much higher 5-year survival 
was also congruent with the clinical observation, as the average 5-year survival 
for breast cancers of all stages is ~ 88%.  
 
In this manuscript we describe a linear relationship between Gibbs free energy (a 
measure of thermodynamic energy for a specific disease), and disability weight 
(a clinically validated measurement of a person's functional status) for several 
neurological diseases. The choice of thermodynamics for the analysis was not 
fortuitous. Thermodynamic energy represents an important driving factor of 
chemical and biological interactions for all living organisms, and its correlation 
with biological events is not unexpected. Gibbs Free Energy, which incorporates 
information of both mRNA expression as well as protein-protein interaction, 
would be expected to have the ability to discriminate between “passenger 
genomic events” and “driving genomic events”. This remains the main quandary - 
finding ways to differentiate between causative vs ancillary molecular changes.  
The use of Gibbs Free Energy represents a novel approach, and may be of 
particular usefulness in neurological disorders/ neurodegerative diseases where 
complex and by and large unclear etiology, pathogenesis and clinical response 
prevent identification of a good therapeutic strategies.  
 
Gibbs Free Energy (G) is the energy associated with a chemical reaction that can 
be used to do work. The free energy of a system is the sum of its enthalpy (H) 
plus the product of the temperature (Kelvin) and the entropy (S) of the system. 
We propose that the use of this well-established thermodynamic measure is 
useful for analyzing the interplay between patient’s genomic information and the 
existing knowledge about protein-protein interactions.[7] Its use is based on a 
number of important observations. First, proteins interacting with a large number 
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of other proteins (even if not simultaneously) have higher entropy. Because each 
protein-protein interaction has a different molecular configuration, given by 
Boltzmann’s classic equation (S = kln(W)), the entropy, S, increases as the 
natural log of the number of configurations, W. As such, proteins with many 
interaction partners exhibit many possible configurations, and each protein-
partner interaction leads to a different configuration. Highly interconnected 
proteins such as, for example, ubiquitin (UBC) or TP53 can undergo a 
simultaneous physical interaction with hundreds of their respective interaction 
partners, because at any given time one UBC molecule interacts with a protein 
and another UBC molecule interacts with another protein inside the same cell. An 
RNA transcriptome from a tissue biopsy thus represents an ideal mixture of UBC 
and its interacting partners for a given condition.  
 
Second, transcription (RNA expression levels) data are good surrogates for 
protein concentration. Unlike the DNA level gene alterations, which are 
transcribed with variable frequencies to RNA, the number of mRNA copies is 
translated into individual proteins with great fidelity. Several research groups 
have confirmed this fidelity: Greenbaum et al[10] and Maier et al[11] report a 
Pearson correlation in the range of 0.4-0.9 for a large set of experiments across 
five different species. Similarly, Kim et al[12] and Wilhlem et al[13] found an 83% 
correlation between human transcription data and mass spectrometry proteomic 
data for multiple tissue types, supporting the use of human transcriptome as a 
surrogate for protein concentration.  
 
Third, the use of real-world dataset contains an inherent level of noise, but as 
new mRNA data sets emerge from ongoing clinical trials, the accuracy of the 
information in protein-protein interaction databases as well as in the gene 
expression data sets will improve as well. For the time being, the preliminary 
findings are a great way to discover new avenues for future analysis, but as data 
integrity and quality of our conclusions improve, we should be able to use this 
data for reliable therapeutic decisions. In addition, the ability to combine different 
data sources (mRNA expression data from individual patients and existing 
PPINs) as introduced in this manuscript, is likely to deliver new insight into 
biologically complex diseases than traditional approaches.  
 
Materials and Methods 
 
Because the study of chemical thermodynamics embodies chemical potential, for 
two molecules A and B interacting to form a new molecule, or an A-B molecular 
complex, the amount of A-B formed would be dictated by the amount of A and B. 
In cases where A is present in higher concentration than B, a chemical potential 
develops. As such, a protein, D, interacting with proteins, C, E, and F has 
chemical potential represented by: 
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where the chemical potential is the natural log of the concentration of protein D 
divided by the sum of the concentrations of protein D and all the concentrations 
of its neighbors. Because the argument of the natural log is a ratio, we can use 
scaled “concentrations,” or in this case, scaled expression values. The log-2 
normalized expression data typically fall in the range [-10, 10]. Rescaling sets the 
range to be [0,1], and we can compute the minimum emin, and the maximum, 
emax, for a given expression data set.  The normalized expression value for each 
gene are then computed as follows:  
  

 
 
The rescaling is justified from a mathematical perspective by the fact that the 
argument to the natural logarithm must be positive. Furthermore, if a gene 
mutation leads to loss of its RNA transcription (RNA transcription is said to be 
down-regulated), the concentration for the respective protein would essentially be 
zero. Likewise, when a gene alteration leads to constitutive activation of its 
transcription, multiple copies of its mRNA will be made (the RNA transcription is 
said to be highly up-regulated), and very large quantities of protein will be 
produced. In this case, the protein concentration would be effectively set to the 
maximum of 1.  
 
Thus, the computation of Gibbs free energy for a single protein in the PPI would 
be,  

  
which tells us to first compute the chemical potential, for protein i with neighbors 
j, and multiply it by the [0,1] scaled concentration to get the Gibbs free energy for 
protein i. For the overall Gibbs Free Energy for the network, the individual Gis for 
each of the protein within the network are summed up. In the final calculation the 
normalized expression data are overlaid on the BioGRID PPI and Gi followed by 
use of the above equation.  
 
We used three main data sources for our analysis: World Health Organization 
data on disability associated with neurological diseases, protein-protein 
interaction data from Biological General Repository for Interaction Datasets 
(BioGRID, Human ver. 3.4.139, September 2016, https://thebiogrid.org/), and 
RNA transcription data sets from Gene Expression Omnibus (GEO). 
 
WHO Tools and Statistics for neurodegenerative diseases: 
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Unlike the terminal conditions such as cancer, there is no direct correlation 
between death rate and disability in neurodegenerative diseases, and death rate 
is not a meaningful measure of morbidity. For example, while epilepsy may 
cause more deaths, multiple sclerosis (MS) far outweighs its impact in the sense 
of morbidity and disability during a person's lifetime. For this reason, the World 
Health Organization has elected Disability-Adjusted Life Years (DALYs) for 
evaluation of disability associated with neurodegenerative disease. DALYs 
combine two components: years of life lost due to premature mortality, and years 
lived with disability. DALYs are an expression of the number of healthy years a 
person looses in life. It is a more accurate representation of the damage a 
disease exerts on a healthy human population, and its measure - Disability 
Weight - is a number between 0 (perfect health) and 1 (death). While DALYs are 
population-dependent, and the same disease may lead to a larger apparent loss 
in a region where the disease is widespread, Disability Weight avoids the 
potential for biasing the numbers towards more prevalent diseases, and away 
from uncommon diseases, because it rates severity of a disease in an individual. 
The most recent public list of WHO for neurological diseases and their 
corresponding disability weights was published in 2006, and the “Neurological 
Disorders, public health challenges”[1] describes the demographics, geographic 
distributions, graphs and projections for many neurological diseases. It 
standardizes the comparison of neurological diseases, and was therefore used 
for our analysis. 
 
Sources of transcription data: 
 
The source of the transcription data was Gene Expression Omnibus (GEO) 
repository of -omics and high-throughput data https://www.ncbi.nlm.nih.gov/geo. 
The data sets for each of the selected neurological diseases were collapsed from 
probe IDs to gene IDs using GenePattern software (Broad Institute, Cambridge, 
MA; https://software.broadinstitute.org/cancer/software/genepattern), and the 
corresponding chip platform documented for the respective data set. The 
following datasets for specific diseases were examined: Alzheimer’s disease 
(GDS4136), Parkinson’s disease (GSE6613), Multiple Sclerosis (GSE19285), 
Epilepsy (GSE32534), Cerebrovascular disease (GSE36791), and Meningitis 
(GSE40586). Most data sets were already log-2 normalized, and transformed 
those that were not. Table 1 lists the GEO dataset number and pubmed ID 
(PMID) for each of the diseases. 
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Table 1: Disability score and Gibbs free energy for the neurological 
disorders studied. 
 

Disease Tissue 
Analyzed 

GEO 
number PMID Disability 

Weight 
Gibbs Free 
Energy 

Number of 
Patients 

Alzheimer 
Disease hippocampus GSE28146 21756998 0.666 -14735 22 

Cerebrovascular 
Disease 

blood in ruptured 
intracranial 
aneurysms 

GSE36791 23512133 0.266 -11761 43 

Epilepsy neocortex tissue GSE32534 23418513 0.113 -11467 5 

Meningitis peripheral blood 
cells GSE40586 23515576 0.615 -16918 21 

Multiple 
Sclerosis 

peripheral blood 
cells GSE19285 22727118 0.411 -12109 30 

Parkinson 
Disease whole blood cells GSE6613 17215369 0.351 -10043 50 

 
 
Results and Discussion  
 
Neurological disorders are common and represent a major public health problem. 
Even though neurological impairment and its sequelae constitute over 6% of the 
global burden of disease,[1] the management of neurological disorders has not 
significantly changed in the past few decades, and the mainstay of therapy 
remains focused on symptomatic management. As such the already very high 
disease burden is likely to continue to increase as the life spans across the 
world’s population increase. According to the recently published Global Burden of 
Disease 2010 Study (GBD 2010),[14] stroke is the second leading cause of 
death globally and the third leading cause of premature death and disability as 
measured in disability-adjusted life-years (DALYs).  
 
There are many reasons for the lack of effective therapies, but the principal 
challenge is the complexity of data and the inconsistency in assigning causality 
to genomic alterations. There exists a great struggle with discriminating between 
incidental molecular findings, and those that may be driving disease 
pathogenesis. This not only hinders the search for effective therapies, but the 
absence of tissue targets also prevents effective clinical initiatives. Until recently 
much effort was dedicated to statistical interpretation of RNA expression levels. 
But the level of mRNA expression is not always reflective of the gene importance 
in a biological event on in a particular disease. An overexpressed gene that is 
peripheral to a major proliferative pathway will have minimal effect on 
proliferation, whereas a mild elevation in the expression levels of a well-
connected gene will have a crucial effect on the process. Minute changes in the 
levels of genes coding for very important growth factors such as VEGF, or 
inflammation regulators interleukins lead to biological events that are normally 
carefully managed through feedback loops.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2019. ; https://doi.org/10.1101/527820doi: bioRxiv preprint 

https://doi.org/10.1101/527820
http://creativecommons.org/licenses/by-nc-nd/4.0/


Any measurement of disease activity must therefore incorporate the intracellular 
protein-protein interactions. We introduce a method for interrogating individual 
tissue expression of mRNA against existing, well-curated protein-protein 
interaction networks. We focus on proving that thermodynamics, i.e. the 
molecular changes defined by Gibbs free energy, can be correlated with disease 
state and progression. Figure 1 shows the correlation of Disability Weight with 
average Gibbs Free Energy for six neurological conditions. The relationship 
between disease-related disability and Gibbs Free Energy is linear, with 
progressively worsening disability correlating with increasing more negative 
Gibbs Free Energy. The respective values used for the figure are shown in Table 
1. We confirm that low entropy (less negative Gibbs free energy) for epilepsy 
correlated with the lowest disability, whereas the higher entropy (more negative 
Gibbs free energy) in Alzheimer’s disease correlated with the highest disability. 
These findings correlate with clinical observations that the severity of 
neurological dysfunction in multiple sclerosis, bacterial meningitis and Alzheimer 
disease is certainly higher than in epilepsy.  
 
We further explored whether Gibbs free energy correlated not only with severity 
of the disease, but also with disease progression. Seven stages have been 
described in the Alzheimer Disease (AD) progression, from no impairment (Stage 
1) to loss of ability to respond to their environment or communicate, needing 
assistance with all activities of daily living, and loss of ability to swallow (Stage 7). 
The GEO data sets tend to simplify these stages into only 4 stages (Figure 2a), 
and we show a clear linear relationship (R = 0.7978) between thermodynamic 
energy (Gibbs free energy) and the 4 stages of the disease. The positivity of the 
slope is most likely reflective of neuronal loss, with less and less metabolically 
active tissue. This is in direct contrast with epilepsy, typified by an abnormality of 
conduction of an action potential across neuronal tissues rather than by a 
neuronal loss, where Gibbs free energy is less negative (i.e. more positive).  
 
Similarly strong correlation (R=0.932) was observed between Gibbs free energy 
and the degree of amyloid deposition in Alzheimer disease (Figure 2b). In this 
case, progressive histological changes in the form of extracellular deposits of 
amyloid β peptides, senile plaques, and intracellular neurofibrillary tangles of 
hyperphosphorylated tau in the brain, relate to neuronal death and correlate with 
severe disability. The amyloid metabolic cascade and the posttranslational 
modification of tau protein, often considered causal in AD, are sufficient to 
explain the diversity of biochemical and pathological abnormalities in AD. There 
is a multitude of cellular and biochemical changes leading to the accumulation of 
extracellular senile plaques made of deposits of Aβ peptide, and all have the 
outcome of neural degeneration and loss. The correlation of Gibbs free energy 
with histological changes and disease progression implies a global value of our 
measurement and the need for future evaluation of the hidden metabolic 
information. 
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Yet another scale is used by clinicians for evaluation of disability in multiple 
sclerosis (MS). The Expanded Disability Status Scale (EDSS), was developed by 
a neurologist (John Kurtzke) in 1983, and ranges between 0-10. It is based on 
neurological evaluation of pyramidal (limb movement), cerebellar (ataxia, 
coordination, tremor), brainstem (speech, swallowing and nystagmus), sensory, 
bowel and bladder, vision, or cerebral (mental) functions. Its 0.5 unit increments 
represent progressively higher levels of disability. EDSS 1.0-4.5 refers to people 
with MS who are able to walk without any aid, whereas 5-6 refers to progressive 
motor and cognitive disability. Similarly to AD, we find a positive linear slope 
between Gibbs Free Energy and disability in MS  (Figure 3), as consistent with 
neuronal loss due to demyelination. The respective correlation coefficient 
between EDSS and Gibbs free energy in MS was found to be very strong at 
R=0.913.  
 
Conclusions 
 
We provide early evidence for using not only expression data, but also 
connectivity/topology data for analysis of genomic information in 
neurodegenerative disease. One of the approaches is using a thermodynamic 
measure such as Gibbs Free Energy to identify the disease-related global 
changes in protein-protein interactions network resulting from changes in 
genomic profiles of individual patients. The ability to correlate these molecular 
profiles disease severity and disease progression suggests that we can use 
Gibbs Free Energy in the future to evaluate causative vs ancillary molecular 
changes through mathematical simulation of the protein inhibition/stimulation. 
This is the first installment in developing mathematical algorithms that would 
facilitate identification of relevant, therapeutically targetable pathways in 
neurodegenerative diseases.  The use of Gibbs Free Energy in genomic analysis 
would be beneficial not only from therapeutic point of view, but also from cost 
and sustainability perspective, because it would minimize futile clinical trials.  
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Figures and Legends 
 
 

 
 
 
 
Figure 1. The correlation of Disability Weight and Gibbs Free Energy for six 
distinct neurological conditions. The mRNA expression values available from 
publicly available GEO data sets (Alzheimer’s disease GDS4136, Parkinson’s 
disease GSE6613, Multiple Sclerosis GSE19285, Epilepsy GSE32534, 
Cerebrovascular disease GSE36791, and Meningitis GSE40586) were used to 
calculate Gibbs free energy, a thermodynamic measure of protein-protein 
interactions. As would be expected based on the level of clinical disability, 
epilepsy has low Gibbs free energy (low entropy) and correlates with the lowest 
neurological disability. This is in stark contrast with the high Gibbs Free Energy 
(high entropy) and high neurologic disability in Alzheimer disease as would be 
consistent with clinical observations in this disease. The respective values, and 
the size of cohort are summarized in Table 1, and the error bars have been set to 
5% of the average Gibbs Free energy value, given that the actual errors of the 
reported mRNA gene expression values were not reported.  
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Figure 2. The correlation between disease progression and pathological 
findings with Gibbs free energy in Alzheimer Disease. The analysis of 2000+ 
Alzheimer Disease patients from GSE84422 data set revealed a correlation 
coefficient R = 0.7978 between Gibbs Free Energy and disease progression 
using disease stage (panel a), and an even stronger correlation (R= 0.932) using 
tissue pathological analysis such as amyloid plaque density (panel b).  
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Figure 3. The correlation between disease progression and Gibbs free 
energy in Multiple Sclerosis. Thirty patients with multiple sclerosis from the 
GEO data set GSE19285 revealed a correlation coefficient R=0.913 between 
Gibbs Free Energy and disease progression as reflected by The Expanded 
Disability Status Scale (EDSS).  
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