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Abstract 16 

Microbial colonies are fascinating structures in which growth and internal organization reflect the 17 

morphogenesis of complex spatiotemporal processes. However, there is no global understanding of how 18 

metabolic interactions between cells affect the internal structure of microbial colonies. Here, we generated 19 

long arrays of monolayer yeast colonies within a multi-layered microfluidic device perfused from only one 20 

side to study gradient formation and microbial colony dynamics within defined boundary conditions. We 21 

observed the emergence of stable glucose gradients using fluorescently labelled hexose transporters and 22 

quantified the spatial correlations with intra-colony growth rates and expression of other genes regulated 23 

by glucose availability. These landscapes depended on the external glucose concentration as well as 24 

secondary gradients, e.g., amino acid availability. This work demonstrates the regulatory genetic networks 25 

governing cellular physiological adaptation are the key to internal structuration of cellular assemblies. This 26 

approach could be used in the future to decipher the interplay between long-range metabolic interactions, 27 

cellular development and morphogenesis in more complex systems. 28 

  29 
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Introduction  30 

Structured cellular communities are complex, dynamic systems and their composition, expansion and 31 

internal structure are the result of interactions between the cells and their microenvironment. Cells absorb 32 

and metabolize nutrients and also produce and secrete metabolites, creating spatial gradients of nutrients 33 

and metabolites. Thus, the cells at the outskirts of a multicellular assembly do not experience the same 34 

microenvironment as the cells deeply buried within. In turn, cellular physiology is dependent on the cell’s 35 

position within a colony. Such variations in cellular physiology are consistently observed in a variety of 36 

multicellular systems – from bacterial and yeast colonies1,2 to biofilms3 and tumours4,5 – and are reflected 37 

by altered gene expression levels and cellular phenotypes such as specific growth rates, nutrient uptake 38 

rates and metabolic activity. Such variations presumably emerge as a result of long-range metabolic 39 

interactions between cells, in that the cellular microenvironment at one position depends on the nutrient 40 

uptake rate at another position.  41 

 42 

Notably, multicellular communities6–8 exhibit various adaptive benefits, including higher cell proliferation, 43 

improved access to resources and niches9, collective defence (e.g., against antagonists, drugs, antibiotics)3 44 

and optimization of population survival when confronted with diverse physical, chemical, nutritional or 45 

biological challenges10. These examples indicate that understanding the emergence and maintenance of 46 

complex spatial multicellular structures is important from ecological11–13, medical14–16 and evolutionary17–47 

19 perspectives. Yet, despite the obvious contrast between homogeneous environments and the pronounced 48 

environmental heterogeneity of microbial cellular assemblies, the majority of scientific research to date has 49 

either focused on single cells in homogeneous environments or populations of cells grown in batch or 50 

continuous liquid cultures, and ignored the spatial complexity of structured multicellular communities.  51 

 52 

Given the massive knowledge accumulated on gene regulatory networks within single-cell conditions, it is 53 

tempting to try to reconstruct the emergence of gene expression landscapes on a global scale (e.g., within 54 

structured communities) from local (e.g., single cell) properties. However, the variations in the 55 

microenvironment within a multicellular assembly and their interconnections with gene expression and cell 56 
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metabolism are not known. Additionally, direct observation of three-dimensional colonies is cumbersome 57 

and often constrained by existing technologies. For example, two-photon microscopy of sliced agarose-58 

encapsulated yeast colonies was required to show that yeast cells adopt different physiologies – and possibly 59 

different cell types – depending on their position within a colony2. Such complex methodologies are not 60 

amenable to time-lapse imaging, thus the temporal variations in gene expression and growth rates of single 61 

cells could not be discerned. As a result, experimental capacity limits our ability to observe the dynamics 62 

of colony morphogenesis and maturation. An alternative is to grow microbial cells in microfluidic devices 63 

to spatially constrain the growth of the cells and to control the delivery of nutrients20–24. Microfluidic 64 

experimental research is typically designed to ensure that the cells being studied experience a homogeneous 65 

environment as either completely independent single cells25,26 or as a part of a small cell assembly27–29; 66 

however, such research does not capture emerging properties at a colony level, i.e. spatial variations in 67 

growth rates, microenvironments and phenotypes. 68 

 69 

In order to observe emerging properties at a colony level, we developed a microfluidic device to grow thin, 70 

extended arrays of yeast cell monolayers that are perfused with nutrients from one direction only. We 71 

demonstrate we could reproduce and quantify spatial variation in the cellular growth rate and the formation 72 

of gene expression landscapes for key metabolic genes involved in glucose transport and utilization. 73 

Interestingly, the gene expression landscapes exhibited a high degree of spatial correlation over a range of 74 

glucose concentrations. Notably, we show that an extended assembly of cells presents a spatial transition 75 

between fermentative (high glucose environment, fast growth, rapid glucose utilization) and respirative 76 

(low glucose environment, slow growth, slow but efficient glucose utilization30,31) regimes, located close 77 

to and far from the nutrient source, respectively. This spatial structure emerges from the interplay between 78 

how cells individually adapt to the microenvironment and, at the same time, alter their surroundings as a 79 

result of their metabolic activity. 80 
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Results 81 

Growing extended yeast monolayers. Microfluidic systems are usually designed to ensure a homogeneous 82 

microenvironment for all cells20. In contrast, in this study, we designed a microfluidic device – dubbed the 83 

“yeast machine” – to grow long, narrow yeast monolayers with the aim of observing the emergence of 84 

nutrient gradients and spatial variations in cellular growth and gene expression landscapes. We used soft 85 

lithography techniques to fabricate a multi-layered microfluidic device composed of a large channel (to 86 

flow nutrients) and an array of perpendicular, extended (800 µm-long), narrow (50 µm-wide), flat (4.5 µm-87 

high) dead-end chambers in which yeast cells can grow as monolayers (Figure 1a, Supplementary Figure 88 

1). The length of the dead-end chambers was optimized to induce significant variations in the nutrient 89 

concentrations within the chambers due to cellular nutrient uptake (Figure 1a). The chamber width was 90 

large enough to avoid jamming during cell growth due to geometric constraints and small enough to avoid 91 

generation of complex, cell-recirculating flows induced by cell growth32. The chamber height was 92 

comparable to – but slightly larger than – the average size of a yeast cell, so the cells were vertically 93 

constrained to facilitate single-cell imaging and time-lapse fluorescence microscopy. 94 

 95 

The cells were injected into the main channel of the “yeast machine” and then forced into the dead-end 96 

chambers by centrifugation using a homemade 3D-printed holding device attached to a spin coater (see 97 

Supplementary Figure 1; Methods). The main channel was washed with yeast synthetic complete growth 98 

medium to remove excess cells; cells that were trapped in the dead-end chambers by centrifugation were 99 

not removed by the washing step. Nutrients were flowed through the main channel and could passively 100 

diffuse into the array of dead-end chambers. The cells formed growing monolayers that extended from the 101 

closed end of the chamber and collectively progressed towards the nutrient source (i.e. the open end of the 102 

chamber) as the cells pushed each other while growing (Figure 1a, b; Supplementary Movie 1). Cells 103 

eventually filled each chamber, forming an extended two-dimensional colony composed of about 2500 cells 104 

(Figure 1b), typically ~10 cells wide and ~200 cells long. Cells could be observed locally at high 105 

magnification (100× objective), while the whole assembly could be seen at low magnification (10× 106 

objective). We recorded the cellular expansion and subsequent internal dynamics of these long monolayers, 107 
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as well as the landscape of expression of key fluorescently tagged endogenous genes, over time and over 108 

an almost 1000-fold range of glucose concentrations (from 0.01% to 8% w/vol). 109 

Figure 1. Expansion and dynamics of extended cellular monolayers. 1a. The microfluidic device is perfused with 
nutrients using a pressure-driven system. Yeast cellular monolayers extend within the long chambers: front velocity 
(VF) and local velocity (Vz) are determined by cellular growth and division. 1b. Example of a time-lapse collage of 
yeast monolayer expansion along an 800 µm-long chamber (2% w/vol. glucose, 5× amino acid concentration). Front 
velocity increases and reaches a plateau (indicated by flattening of the slope of the green curve). When the front 
approaches close to the open end of the chamber (i.e., 0 µm), the over-spilling cells are constantly washed away by 
the nutrient flow within the main channel. 1c. Front velocity reaches a maximum when the position of the front 
becomes close to the open end of the chamber indicating that after expanding by a typical distance (~ 400 µm here for 
2% w/vol. glucose), the maximal number of cells that receive glucose and can participate in expansion has been 
reached. 340 velocity data points binned into 10 equally spaced position points were extracted from n=12 colony front 
trajectories (2% w/vol. glucose). The error bar denotes standard deviations of each bin (~15-30 velocity data points). 
1d. Front velocity as function of external glucose concentration. Data comes from the bin closest to the open end of 
the chamber as measured in Figure 1c for each glucose concentration (n > 5). Error bars denotes standard deviations. 
1e. Local cellular motion can be assessed by computing the standard deviation of pixel intensities across a stack of 
time-lapse images. Here, white areas indicate variations in movement across the time-lapse for cells below 400 µm, 
while the cells above do not move. Averaging over several channels (n=9), we obtained an indicator of cell motion 
and thus an estimate of the glucose penetration distance, H (~ 400 µm for 2% glucose). 1f. Local velocity decreases 
for cells deeper within the chamber. Local velocity also increases with external glucose concentration. Velocity Data, 
that were binned into 16 equally spaced position, comes from the analysis of >100 cell trajectories. Error bars denote 
standard deviations. 

 110 

Cells collectively create, and experience, a spatially structured micro-environment. Expansion of the 111 

monolayers of cells was observed by microscopy at low magnification (10× objective). Under standard 112 

glucose-rich conditions (2% w/vol; 111 mM) and excess amino acids (5× CSM, see Methods), the front 113 

velocity, VF, increased during the first 2-4 h and eventually reached a steady-state close to 100 µm.h-1 114 
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(Figure 1c, d, Supplementary Movie 1). Front velocity is the sum of the contribution of every cell to colony 115 

expansion. Therefore, VF depends on the quantities of glucose and other nutrients that penetrate inside the 116 

yeast monolayer, which impact both the number of cells that grow and their growth rates. Initially, the 117 

monolayer is sparsely populated and sufficient glucose is expected to reach all cells. After growth and 118 

division, a larger number of cells can participate in global expansion of the population. Thus, the front 119 

velocity is expected to quickly increase over time. However, at some point, as the size of the monolayer 120 

increases, the cells close to the dead end of the chamber will stop growing (due to absorption and 121 

metabolism of available nutrients by cells closer to the nutrient source/chamber opening) and the front 122 

velocity will plateau. Hence, a steady-state is reached where a constant number of cells with access to 123 

glucose continue to divide and move passively towards the nutrient source, while the number of cells at the 124 

dead end of the chamber deprived of glucose (and other nutrients) remains unchanged. If we consider the 125 

ideal case in which yeast cells are 4 µm-wide and divide every 90 min in the presence of glucose, each cell 126 

leads to an expansion of 4 µm every 90 min, or 2.6 µm.hr-1. The observed terminal front velocity of 94 ± 8 127 

µm.hr-1 (Figure 1) can be attributed to the first 36 ± 3 layers of cells, i.e. the first 140 µm of the colony. The 128 

glucose penetration distance can be approximated by assuming1 that glucose – of which the concentration 129 

is maintained at C0 at the front of the monolayer – freely diffuses within the assembly with a diffusion 130 

coefficient D ~ 100 µm2.s-1 and is absorbed by cells at a constant rate, q0, of ~ 1 mM.s-1. Diffusion law 131 

dictates that the glucose concentration is expected to decrease significantly after a typical distance, H, that 132 

scales with �DC0
q0

 ~ 100 µm. Our direct observation (Figure 1e) showed that for a layer of growing cells, H 133 

is around 400 µm at 2% w/v glucose. Notably, both estimations are in agreement, albeit they underestimate 134 

the observed size of the growing layer. These discrepancies result from discarding the decay in the cellular 135 

growth rate at decreasing glucose concentrations and the variation in the specific cellular uptake rate, q, 136 

with glucose concentration. Indeed, the interplay between glucose diffusion and uptake is central to 137 

structuration of the colony as it affects both the number of cells that have access to glucose and the glucose 138 

concentration in the microenvironment of each region, and thus determines which cells actually participate 139 

in colony expansion and by how much1. The true glucose penetration distance is therefore likely to be larger 140 

than the ‘guesstimate’ above. Yet, inferring the true penetration distance would require a detailed model of 141 
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the dependency of both cellular glucose absorption and the growth rate on the glucose concentration, as 142 

well as experimental measurements of the glucose concentrations within the monolayer. This outlines the 143 

difficulty of predicting the internal structure of a simple yeast monolayer due to our limited understanding 144 

of how yeast cells interact with nutrients and the difficulty of obtaining quantitative details of the 145 

microenvironmental landscapes within a yeast monolayer. In the following text, we quantify the expression 146 

of different glucose concentration-dependent transporters as a possible proxy for intra-colony glucose 147 

concentration. We even ventured further, to study how landscapes of cellular growth and expression of key 148 

genes involved in glucose transport self-emerge from long-range metabolic interactions within the yeast 149 

colony. 150 

 151 

Front velocity increases with glucose concentration. Increasing the glucose concentration (from 0.01% 152 

to 8% w/vol) led to higher terminal front velocities (Figure 1d), in agreement with the fact that at higher 153 

concentrations, glucose will penetrate further by diffusion in the colony (Figure 1a). Thus, increasing the 154 

concentration allows a larger number of cells to access glucose and participate in the growth of the colony. 155 

Yet, the front velocity does not increase linearly with glucose concentration, and plateaus at very high 156 

glucose concentrations (> 4% w/vol). One interpretation is that at this concentration range, sufficient 157 

glucose reaches the dead end of the chamber, allowing all cells to participate in the growth of the assembly. 158 

However, based on VF  ~ µL, where L is the length of the dead-end chamber and µ is the average cell growth 159 

rate, one would expect a saturating front velocity of 368 µm.h-1, much larger than the measured value of 160 

100 µm.h-1. 161 

 162 

Glucose is not the only nutrient required for cellular growth; amino acids can be a limiting factor for 163 

auxotrophic strains such as the one employed in this study (S288C background). This is why we used an 164 

excess of amino acids (5× CSM) compared to classic SC medium for yeast cell cultures. Indeed, using 165 

standard amino acid concentrations in the media resulted in significantly lower terminal front velocities, 166 

even at high glucose concentrations (Supplementary Figure 2). This suggests that amino acid availability 167 

can limit cellular growth, especially in the presence of high glucose concentrations, thereby leading to a 168 
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plateau in the terminal velocity (Figure 1d). As all experiments were performed under 5-fold higher amino 169 

acid concentrations than normal SC medium, other metabolites are likely to become rate-limiting for 170 

growth. Taken together, we conclude that the spatial variations in all metabolic components of the 171 

microenvironment need to be discerned in order to fully understand microbial colony growth. With that in 172 

mind, building a mathematical model to account for the observed expansion of a spatially structured colony 173 

is barely achievable, and we will not address this question here. Rather, we opted to further characterize the 174 

development of glucose gradients as a specific and critical component of the emergence of the metabolic 175 

landscape of the colony. 176 

 177 

Local expansion rate decreases with distance from the nutrient source. Once the dead-end chambers 178 

were filled with cells, we found the growth pattern was highly reproducible across parallel chambers at 179 

each glucose concentration. The cells closer to the open end of the chambers continued to divide, pushing 180 

cells out that were washed away by the flow in the nutrient channel. Cells closer to the dead end (y ~ 800 181 

µm) did not move, grow nor divide. At standard glucose conditions (2% w/vol) and a high amino acid 182 

concentration (5× CSM), significant cell motion was not observed after y ~ 400 µm, indicating very limited 183 

glucose is available to the cells that beyond this region. By tracking single cell trajectories, we measured 184 

the velocity field within the yeast monolayers over a range of glucose concentrations. We extracted > 100 185 

single cell trajectories per concentration, resulting in thousands of velocity data points (see Methods). As 186 

expected, increasing the glucose concentration in the nutrient channel (from 0.01% to 8% w/vol) led to 187 

higher local velocities deeper in the colony (Figure 1f, Supplementary Figure 3). Concomitantly, velocity 188 

also increased closer to the chamber opening when cells experienced a higher glucose concentration.  189 

 190 

In conclusion, our setup captures the essence of structured colonies, with the emergence of a landscape of 191 

growth divided into a non-growing area and actively growing area. This spatial separation is the result of 192 

the formation of glucose (and other nutrient) gradients. These gradients emerge as a result of cellular 193 

metabolic activity, which in turn affects the cellular growth rate and physiology at the local scale.  194 

 195 
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Cellular metabolic activity creates gene expression landscapes. The emerging glucose (and other 196 

nutrient) gradients are expected to both trigger and be governed by differential gene expression landscapes. 197 

To this end, we studied the expression of seven key glucose transporters (HXT1-7) whose expression is 198 

regulated by the extracellular glucose concentration. We employed yeast strains in which these endogenous 199 

glucose transporters were tagged with GFP (Methods), and recorded the fluorescence signals at the global 200 

scale using a low-magnification objective (10×) and local cellular scale using a high-magnification 201 

objective (100×). Cells were loaded into the chambers as described above and observed after the 202 

establishment of a quasi-steady state (starting 10 h after the chamber was filled with cells, Supplementary 203 

Figure 4). We observed the formation of different landscapes of gene expression for each of the seven 204 

transporters, each with marked territories of low and high expression (Figure 2; Methods). In particular, 205 

HXT1 and HXT7 displayed inversely correlated landscapes of gene expression (e.g., Figure 2a, 2g for 2% 206 

w/vol glucose). Both patterns demonstrate the formation and maintenance of a glucose gradient that emerges 207 

from cellular metabolic activity. HXT1 is a low-affinity glucose transporter mainly expressed under high-208 

glucose conditions, while HXT7 is a high-affinity glucose transporter expressed under low-glucose 209 

conditions only (Figure 2b, 2f). Concomitantly, HXT1 was expressed at the highest levels in the cells close 210 

to the chamber opening (i.e., in the highest glucose concentration), while HXT7 expression peaked further 211 

away in the chamber, indicating a transition to a low-glucose region. We examined the cells at higher 212 

magnification (60×) to assess the localisation of HXT7 gene expression. As expected, in the cells expressing 213 

the highest levels of this gene, the fluorescence was localized to the cell membrane, indicating HTX7 played 214 

an active role in glucose transport in these cells. In contrast, deeper in the colony, we observed lower levels 215 

of HTX7 fluorescence due to the long lifetime of GFP-fused proteins and absence of dilution through cell 216 

division, though this fluorescence was localized in vacuoles, indicating the transporter had been targeted 217 

for degradation by the cells33 (Figure 2a). Assuming the observed peak of HXT7 fluorescence matches the 218 

peak fluorescence observed in batch culture at a glucose concentration of 0.016% w/vol. (Figure 2b, 3), we 219 

could locate the position in the yeast monolayer at which the glucose concentration reached 0.016% w/vol. 220 

This position was around Hf ~ 450 µm from the front, in good agreement with the transition in cell motion 221 

(Figure 1, Hm ~ 400 µm).  222 
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 223 

Figure 2. Landscapes of gene expression self-emerge in extended yeast monolayers. 2a. Expression profile of 
HXT7-GFP along the chamber (average fluorescence levels, n=9; standard deviation shown as the envelope) for an 
external concentration of 2% w/vol glucose. Membrane localization of HXT7 was only observed in the cells 
surrounding the area of peak HXT7 expression, localized at ~500 µm at 2% w/vol. glucose. 2b. FACS measurements 
of HXT7-GFP expression in batch culture (average of three replicates) showing a single intensity peak at C0 = 0.016%. 
This peak value can be mapped back to the spatial landscape of 2a to infer the glucose concentration in the region of 
peak HXT7-GFP fluorescence. n=3-6 per glucose concentration 2c. On varying the glucose concentration in the 
nutrient channel, we observed a transition in peak HXT7-GFP fluorescence within the 2D colony. At a concentration 
of 4% w/vol and above, the peak was located close to the dead end of the chamber or not visible, indicating sufficient 
glucose was available throughout the chamber (color code normalized to maximal expression level). Data obtained by 
from n=8-17 replicates per glucose concentrations. 2d. Compared with 2b, it is possible to roughly define areas of 
glucose presence in the monolayer for a range of glucose concentrations (n=8-17, per glucose concentrations, error 
bars denote +/- one standard deviation). 2e. Landscape of HXT1-GFP gene expression over a range of glucose 
concentrations (color code normalized to maximal expression); n=8-9 per glucose concentrations. 2f. FACS 
measurements of HXT1-GFP over a range of glucose concentrations; n=3 replicates. 2g. Overlay of HXT1 (red) and 
HXT7 (green) gene expression landscapes at three external glucose concentrations, showing that the expression 
landscapes of these transporters were inversely correlated, in agreement with their different glucose-dependent 
expression patterns (compare 2b and 2f). 

 224 

Gene expression landscapes depend on the glucose source concentration. Increasing the glucose 225 

concentration in the nutrient channel changed the gene expression landscape of all seven glucose 226 

transporters (Figure 2, 3). In particular, at 1% w/vol glucose, HXT1 was only expressed at low levels at the 227 
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growing front of the colony (y < 60 µm). In contrast, at the highest glucose concentration (8% w/vol; Figure 228 

2e), HXT1 was expressed at high levels throughout the whole colony, demonstrating glucose was available 229 

throughout the chamber. As HXT1 is mainly expressed under high-glucose conditions (> 1% w/vol glucose) 230 

in batch culture, this observation indicated the glucose penetration distance (within the chamber) increased 231 

with the external glucose concentration. This is in agreement with the increase in local velocity with the 232 

external glucose concentration in Figure 1, with the size of the growing area also increasing with the 233 

external glucose concentration.  234 

 235 

In contrast, HXT7 exhibited a peak-like expression pattern, and was repressed under both high-glucose 236 

conditions and when no glucose was present. At low-glucose concentrations (0.1% w/vol), a peak in HXT7 237 

expression was observed at the very beginning of the colony (y ~ 20 µm), indicating glucose was quickly 238 

absorbed by the cells closest to the chamber opening, thus these were the only cells with access to sufficient 239 

carbon resources to grow and divide. The peak of HXT7 expression moved deeper into the colony as the 240 

glucose concentration increased and disappeared completely at 8% w/vol glucose, again indicating 241 

sufficient glucose could diffuse to the end of the chamber under high-glucose conditions (Figure 2, 3).  242 

 243 

Reconstructing glucose concentration landscapes using glucose transporter gene expression levels. 244 

We assessed the expression profiles of HXT1-7 in batch culture as a function of glucose concentration (see 245 

Methods) to obtain a qualitative idea of the glucose concentrations within the microfluidic device. The data 246 

for HXT7 was particularly revealing: its rather sharp, well-defined expression peak at 0.016% w/vol 247 

allowed to define the distance in the microfluidic device at which the glucose concentration is close to that 248 

value (Figure 2a, c). This concentration boundary separates the yeast monolayer into two regions with 249 

different properties, i.e., actively dividing and growth arrest. The position of this boundary moved deeper 250 

into the colony as the external glucose concentration increased (Figure 2d).  251 

 252 

We extended this idea further and used the complete HXT7 expression profile to infer the glucose 253 

concentrations at all positions within the chambers. Assuming that the local level of HXT7 254 
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expression is only set by the local glucose concentration, we can use batch culture measurements 255 

of HXT7 expression (based on flow cytometry) to determine the glucose concentration at a given 256 

chamber position (Figure 3c, 3d). However, this only allows us to reconstruct the glucose 257 

concentration gradient up to 0.016% w/vol., i.e. in the domain where cells are actively dividing. 258 

The idea is simply to linearly map the two sets of measurements (in batch culture and in the 259 

microfluidic device) based on the fluorescence levels that correspond to the maxima Fmax and F’
max 260 

and HXT7-GFP fluorescence levels at the chamber entry F0 and F’
0. Using the data for HXT7 in 261 

Figure 2, we were able to reconstruct the glucose gradient for different initial glucose 262 

concentrations (Figure 3e). When applied to HXT1, the same inference led to very similar results 263 

(Figure 3f). In both cases, glucose concentrations decay very quickly moving away from the 264 

chamber opening and then exhibit a relatively long tail moving deeper into the colony.  265 
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Figure 3. Using the fluorescence landscapes of glucose transporter gene expression to infer glucose 
concentration gradients. 3a. FACS measurements for HXT1-GFP to HXT7-GFP in batch culture over a range of 
glucose concentrations. The expression levels of each HXT show a specific dependence on glucose concentration 
(n=3-6 replicates per glucose concentration). 3b. Landscapes of gene expression for all HXTs-GFP at an external 
glucose concentration of 2% w/vol. HXTs are ordered by their relative glucose specificity: HXT1 is expressed under 
high-glucose conditions, while HXT5 is only expressed at very low-glucose conditions. Assuming a progressive 
spatial decay in the glucose concentration away from the chamber opening, all maps of gene expression are in perfect 
agreement with the intensity profiles observed in batch culture (n=8-10 replicates per glucose concentration). 3c-d. 
Method of glucose gradient reconstruction. The fluorescence landscape of HXT7 (resp. HXT1) shows a peak Fmax 
(resp. a minimum, Fmin) at a given location. The fluorescence intensity at the opening of the chamber, F0, corresponds 
to the external glucose concentration, C0. Using the FACS measurements of HXT7 (resp. HXT1) as a function of 
glucose concentration, one can define the concentration of glucose that matches the peak Fmax (respective to the 
minimum Fmin), and the fluorescence intensity that corresponds to C0. This allows us to linearly map all other 
fluorescence intensities for a given glucose concentration from the batch culture to the fluorescence intensities inside 
the colony, allowing the glucose concentration across the entire cellular monolayer to be reconstructed. Data comes 
from previously mentioned HXT1 and HXT7 microfluidics and flow cytometry measurements. 3e-f.  

 

Gene expression landscapes of other genes and transcription factor activity confirm the inferred 266 

glucose gradients. The fact the seven glucose transporters exhibited varied, robust spatial expression 267 

patterns under identical conditions (e.g., Figure 3a), together with the observed growth rate landscapes 268 

(Figure 1), suggests cellular metabolic state varies significantly across the longitudinal axis of the yeast 269 
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monolayers. This variation was further assessed by mapping the expression and localisation of additional 270 

key genes involved in glucose metabolism.  271 

 272 

MIG1 is a key transcription factor involved in glucose repression that localizes to the nucleus in the 273 

presence of glucose, to repress genes that participate in parallel carbon metabolic pathways (e.g., galactose). 274 

Observing the cells at high magnification, we quantified the distance after which MIG1 fluorescence was 275 

not present in the nucleus of the cells (Figure 4b). This distance, around 400 µm at C0 = 2% w/vol glucose, 276 

was in excellent agreement with the data obtained by HXT7 profiling. Interestingly, the spatial transition 277 

from nuclear MIG1 to cytoplasmic MIG1 localisation was very sharp and occurred over just a few cells.  278 

 279 

In agreement with the batch culture observations, we found HXT5 was only expressed in regions with very 280 

low or no glucose concentrations where the cells did not seem to divide over several hours (Figure 4a). 281 

Therefore, HXT5 appears to be an excellent marker of growth arrest in this context34.  282 
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Figure 4: Other landscapes of genes involved in glucose metabolism. 4a. Landscape of HXT5 expression. HXT5 
is expressed under very low and no glucose conditions and appears to be a good marker of growth arrest. At C0 = 2% 
w/vol, HXT5 expression is in good agreement with the observed absence of cellular division (see Figure 1). 4b. 
Landscape of MIG1 activity. MIG1 fluorescence was located in the nucleus in the presence of glucose, with a sharp 
transition in nuclear localization observed (middle picture, at 2% w/vol glucose in the nutrient channel), confirming 
the existence of a glucose gradient (n=3 replicates). Total number of cells and cells with nuclear localization of 
fluorescence were annotated manually and binned into 25 µm bins. 4c. HXK1 and HXK2 are hexokinases involved 
in glucose metabolism. Their landscape of expression exhibited peaks that indicate a transition from high to very low 
glucose levels (n=8-9 replicates per glucose concentration). 4d. FACS measurements of HXK1 and HXK2 expression 
over a range of glucose concentrations (n=3-6 replicates per glucose concentration). 

 283 

The expression landscapes of two hexokinases involved in glucose metabolism, HXK1 and HXK2 (Figure 284 

4c) that are expressed when cells are grown on non-glucose carbon sources, were also consistent with the 285 

batch measurements (Figure 4d, Supplementary Figure 5) and further validated the existence of a glucose 286 

gradient. For each profile, we extracted the position of maximal expression and inferred the glucose 287 

concentration at this position from the FACS measurements of batch cultures. The batch measurements 288 

indicated maximal HXK1 and HXK2 expression were observed at a glucose concentration of about 0.016% 289 
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w/vol. As expected, neither enzyme was expressed at very high glucose concentrations. The HXK1 and 290 

HXK2 expression maxima were similar at the two other glucose concentrations studied, around 300 µm at 291 

C0 = 1% and 500 µm at 2% w/vol. Again, these data are in very good agreement with the positions of HXT7 292 

peak expression at the same glucose concentrations.  293 

 294 

Finally, we examined the expression of PDC1 and SDH2, which are overexpressed in fermenting and 295 

respiring cells, respectively. Their expression landscapes were inversely correlated (Figure 5a), indicating 296 

a transition from fermentative metabolic activity at the nutrient front of the colony to respiratory metabolic 297 

activity towards the dead end of the chamber where glucose is scarce. These expression maps are in good 298 

accordance with our previous results (Figure 1, 2, 4) and the levels of PDC1 and SDH2 expression in batch 299 

culture (Figure 5b, 5c).  300 

 301 

Figure 5. Impact of the glucose gradient on yeast physiology and the emergence of a landscape of phenotypes. 
5a. Overlay of the landscapes of gene expression of PDC1 (blue) and SHD2 (pink). PDC1 is known to be expressed 
when yeast cells ferment, SDH2 is mainly expressed in respiring cells. 5b. FACS measurements of PDC1 expression 
over a range of glucose concentrations in batch culture (n=3). 5c. FACS measurements of SDH2 expression over a 
range of glucose concentrations in batch culture. Taken together, the observed inverse correlation between PDC1 and 
SDH2 expression in batch culture translate into the emergence of inversely correlated spatial expression patterns 
within yeast cell monolayers (n=3). 
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 302 

 303 

Multiple gene expression landscapes are spatially correlated. We decided to compare the landscapes of 304 

gene expression for the entire set of reporter genes by aligning the different landscapes across varied 305 

nutrient conditions (Figure 6a). Strikingly, all landscapes showed a high level of spatial correlation. Two 306 

major landscapes emerged: peaking (e.g., HXT7) and switching (e.g., HXT1 or MIG1). We defined and 307 

extracted the typical lengths of the peaking and switching landscapes (Figure 6b) and plotted them as 308 

function of the external glucose concentration (Figure 6c). The typical lengths of all of these landscapes for 309 

different reporter genes were remarkably close, despite the fact that we looked at different cellular 310 

components: a transcription factor (MIG1), glucose transporters (HXTs), metabolic enzymes (HXKs) and 311 

metabolic state reporters (SDH2, PDC1). Notably, we gained a global view of gene expression landscapes 312 

and their interrelationships along a monolayer colony. All data showed the colonies were structured into 313 

two regions with very different properties (Figure 6d): an actively growing region, where cells divide 314 

abundantly and ferment glucose, and a quiescent area, where cells do not divide much and have switched 315 

to respiratory metabolism to compensate for the very low glucose availability. While it is not surprising to 316 

see the expression levels of metabolic genes vary with the glucose concentration, our approach 317 

demonstrates genetic programs not only allow individual cells to adapt to changes in the nutrient 318 

environment, but also enable multicellular assemblies to self-organize spatially through long-range 319 

metabolic interactions. This sheds new light on the coordinated actions of these genes in a biologically 320 

relevant multicellular context that has impact on ecology, evolution, development and emergence of 321 

multicellularity. 322 

 323 

Overall, we studied how cells within a monolayer colony collectively shape their microenvironment 324 

through long-range metabolic interactions. This is a complex process, in which cells adapt locally, 325 

and shape a spatial landscape of gene expression as a global phenotype. As a whole, the structure of 326 

an assembly of cells and the microenvironment landscapes emerge as the result of local cellular 327 

metabolic activity.  328 
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 329 

 330 

Figure 6: Global view of the emergence of landscapes of gene expression. 6a. The different landscapes of gene 
expression presented in this study are aligned, regrouped and displayed over a range of glucose concentrations. This 
simple view sheds light on the macroscopic spatial correlations between these different landscapes, which are both 
setting and traces of the establishment of glucose gradients. 6b. For each gene expression landscape, we identified the 
fluorescence peak (HXT7, HXK1, HXK2) or the position of the transition between low and high expression (HXT1, 
HXT5, SDH2, PDC1) or activity of the transcription factor (MIG1). 6c. Landscapes of gene expression delimit two 
regions in which cells are physiologically different. Phase I indicates active growth by fermentation in the presence 
of glucose; Phase II indicates growth arrest or very limited growth via respiratory metabolism at zero or close to zero 
glucose concentrations. The transition between the two phases typically takes place relatively sharply, over a hundred 
micrometers or ~ 20 cells.  

 331 

Discussion 332 

Here, we took an alternative point of view compared to traditional systems and single-cell biology. Rather 333 

than studying single-cell metabolic properties in a well-mixed, homogeneous environment, we designed a 334 

microfluidic chip to force yeast cells to grow and shape their microenvironment, solely by fixing the 335 
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properties of the microenvironment at the boundary of the monolayer. This approach allowed us to 336 

simultaneously measure properties on both the single-cell–scale and structured population–scale and holds 337 

potential for establishing a quantitative link between these scales.  338 

 339 

Specifically, we showed that cells self-generate nutrient landscapes that in turn influence cellular 340 

metabolism and gene expression profiles. This behaviour, based on nutrient uptake adaptation, is generic 341 

and feeds back on the behaviour of other cells through what we call non-specific long-range metabolic 342 

interactions. Indeed, the microenvironment sensed by cells a few hundred micrometres inside a colony is 343 

very different from the microenvironment experienced by external cells. Notably, gradients emerge over 344 

relatively short distances, and this process may possibly affect studies of cellular populations within 345 

microfluidics settings. More importantly, quantitative description of gene expression maps is critical if one 346 

wants to understand the establishment and behaviour of cellular communities, whether these are as simple 347 

as yeast colonies or more complex, such as biofilms and complex microbial ecosystems in which several 348 

types of cells cohabit and interact. Indeed, in addition to the described long-range metabolic interactions, 349 

many other environmental and genetic determinants such as intercellular communication, cell surface 350 

properties, cell-cell adhesion strength and secretion of extracellular matrix components have been shown 351 

to participate in the emergence of the complex morphology3,35,36 and internal structure of microbial colonies 352 

in such complex situations. The nature of many of these interactions could also be studied using similar 353 

microfluidic devices to identify the relative contribution and relationship of environmental and genetic 354 

determinants to the metabolically generated microenvironment.  355 

 356 

Even in a simple situation such as the monolayers studied here, it is not straightforward to infer the spatial 357 

structure of the microenvironment from single-cell knowledge. A proper model should take into account 358 

how the growth rate and specific absorption rate vary with the glucose concentration and the 359 

microenvironment. Modelling the entire complexity of the microenvironment is hardly possible, even 360 

today. Thus, we decided to take a different approach and use key genes involved in glucose metabolism to 361 

infer the glucose concentration gradient. We showed that different reporter genes consistently reported the 362 
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same glucose gradient. We envision that the data extracted from relevant fluorescent reporters could be fed 363 

into agent-based or mean-field models that take cell-cell interactions, mechanics and spatial diffusion of 364 

metabolites into account to fill the gap between data generated from single cells to data that is relevant to 365 

evolution and ecology, i.e. at the colony scale. We anticipate that linking local properties to macroscopic, 366 

global behaviour will help to understand the architecture of microbial communities and how evolution 367 

shapes the development of these architectures through long-range metabolic interactions. 368 

 369 

Furthermore, while the spatial microenvironment is not fully characterized, we have shown the emergence 370 

of gradients, and simultaneously gene expression landscapes, are robust and reproducible features of the 371 

colony. Moreover, the landscapes can be compared to extract correlation patterns and infer how gene 372 

regulatory networks act in synchronicity to establish the microenvironment within the colony. This 373 

approach may provide a relatively simple, yet effective method of screening for “organismic” properties 374 

that have been shaped by evolution and are only relevant in a multicellular context. 375 

 376 

Our future efforts to extend the application of this setup will be dedicated to the study of how the 377 

microenvironment dynamically changes when external conditions are altered, an uncharted territory at the 378 

scale of a multicellular assembly that is central to the understanding of microbial ecosystem resistance to 379 

stress, environmental fluctuations and adaptation. We anticipate that similar approaches could be used 380 

to study aging, cooperation and competition, cell memory or evolutionary dynamics, as well as 381 

quantitative characterization of (synthetic) ecological systems and mixtures of cells relevant to 382 

ecology and chemical biology.  383 

 384 

  385 
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Materials and Methods 386 

Yeast strains. All experiments were performed using haploid S. cerevisiae strains derived from the S288C 387 

background - BY4741: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0. See Supplementary Table T1 for a detailed 388 

list of the yeast strains used in this study. 389 

 390 

Microscopy. We used an inverted fluorescence microscope (IX81, Olympus) equipped with an EMCCD 391 

camera (Evolve 512, Photometrics) and X-Cite exacte fluorescence light source (Lumen Dynamics). 392 

Optical filters from Chroma Technology Corporation ET-EGFP (U-N49002; Ex 470/40nm Di495 Em 393 

525/50nm) and ET-DsRed (U-N49005; Ex 545/30nm Di570 Em620/60nm) were used to observe GFP and 394 

RFP fluorescence. Cells were observed using Olympus 10× (Plan 10x / 0.25 NA), 60× (PlanApo N 60x / 395 

1.42 NA Oil) and 100× (UPlanFL N 100x / 1.3 NA Oil) objectives. Open-source µManager37 microscopy 396 

software was used to control all of these components and setup multi-dimensional acquisition. The 397 

temperature inside the microscope incubation chamber that contained the media and cells was maintained 398 

at 30 °C (Life Imaging Services). Fluorescence intensity was set to 10% of maximum output, fluorescence 399 

exposure was set to 1000 ms and camera gain was set at maximum. The time interval between each 400 

acquisition cycle was 6 min.  401 

 402 

Microfluidics and cell loading. Microfluidic devices were constructed using soft lithography techniques. 403 

Photomasks were drawn using L-Edit software (Tanner) and printed on a high-resolution glass substrate 404 

(Delta Mask). A master wafer was created using SU-8 2000 (MicroChem) epoxy-based photoresist that 405 

was spin-coated to the appropriate thickness and exposed to UV light using an appropriate photomask to 406 

create the desired pattern. Multi-layered patterns were aligned and exposed to UV light using a MJB4 407 

manual mask aligner (SUSS MicroTec) and the dimensions of the master wafer were checked using a 408 

Dektak 150 surface profiler (Veeco). The master wafer was treated with 95% (3-mercaptopropyl)-409 

trimethoxysilane (Sigma) for 1 h in the vapour phase. Microfluidic chips were created by casting a degassed 410 

10:1 mix of polydimethylsiloxane (PDMS) and curing agent (Sylgard 184 kit; Dow Corning) on the master 411 

wafer, followed by at least 2 h curing at 65 °C. Each chip was gently cut and peeled off the master wafer; 412 
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the entry/exit ports were punched out. The chip and a glass coverslip (24 x 50 mm #1; Menzel-Gläser) were 413 

treated with O2 plasma for 1 min in a plasma cleaner (Harrick Plasma), bonded together and incubated at 414 

65 °C for 10 min. Before loading cells, the chips were coated with 1% Pluronic F-127 (Sigma) for 30 min. 415 

Cells were precultured overnight in 5 mL of synthetic complete (SC) medium containing 2% w/vol glucose 416 

in a shaking incubator at 30 °C, diluted 50-fold into 50 mL of SC + 2% w/vol glucose, cultured for 5-6 h in 417 

a shaking incubator at 30 °C to an OD600 of 0.2-0.4, collected by centrifugation, and loaded into the 418 

microfluidic system with a pipette. The microfluidic system was centrifuged for 2 min at 1000 rpm using 419 

3D-printed adaptors (Laurell WS-650 spin coater) to force the cells into the dead-end cell chambers. Liquid 420 

media was flowed rapidly through the flow channel to remove excess cells and the flow rate was set to 5 421 

µL/min. A pressure-based microfluidic flow control system (MFCS; Fluigent) coupled with a flow rate 422 

platform (Fluigent) and a flow rate control module (Fluigent) that measured the flow rate and kept it 423 

constant by adjusting the pressure through a feedback loop was used to push liquid media through the flow 424 

channel. The output was kept at a constant pressure of 100 mbar above atmospheric pressure to minimize 425 

formation of air bubbles inside the flow channel. 426 

 427 

Flow cytometry. Flow cytometry experiments were performed on a Gallios Flow Cytometer (Beckman 428 

Coulter) using a 488 nm excitation laser and 530/30 nm FL1 emission filter to detect GFP fluorescence. 429 

Data analysis was performed using Kaluza Flow Cytometry Analysis Software (Beckman Coulter). 430 

Approximately 104 cells were inoculated in 10 mL of SC medium containing various glucose concentrations 431 

(log2 dilutions from 8% to 0.0078125%, and 0% w/vol glucose) and cultured in a shaking incubator at 30 432 

°C to an OD600 of ~0.02-0.2 depending on the starting glucose concentration. Cells were then diluted 10-fold 433 

into 10 mL of fresh SC media containing the same starting glucose concentration and grown for 4-5 h in a 434 

shaking incubator at 30 °C, centrifuged at 4000 rpm for 10 min, re-suspended in 300 µL of PBS pH 7.4 435 

buffer (Gibco) and fluorescence was measured using the flow cytometer. The supernatant of each sample 436 

was collected, and the glucose concentration was measured using the Glucose (HK) Assay Kit (Sigma) to 437 

confirm the glucose concentration remained constant during the growth phase.  438 

 439 
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Image analysis. Image analysis was performed using open-source ImageJ software38. To obtain front 440 

velocity, we applied a threshold (Otsu) to detect the bottom frontier over time after flattening the 441 

background using a FFT band-pass filter. To compute the local speed of the cells inside the cell assembly, 442 

we used the plugin TrackMate39 to track cell trajectories. 443 

 444 
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