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Abstract

Massively parallel reporter assays (MPRAs) are a technique that en-
ables testing thousands of regulatory DNA sequences and their variants
in a single, quantitative experiment. Despite growing popularity, there is
lack of statistical methods that account for the different sources of uncer-
tainty inherent to these assays, thus effectively leveraging their promise.
Development of such methods could help enhance our ability to iden-
tify regulatory sequences in the genome, understand their function under
various setting, and ultimately gain a better understanding of how the
regulatory code and its alteration lead to phenotypic consequence.

Here we present MPRAnalyze: a statistical framework dedicated to
analyzing MPRA count data. MPRAnalyze addresses the major ques-
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tions that are posed in the context of MPRA experiments: estimating
the magnitude of the effect of a regulatory sequence in a single condition
setting, and comparing differential activity of regulatory sequences across
multiple conditions. The framework uses a nested construction of gener-
alized linear models to account for uncertainty in both DNA and RNA
observations, controls for various sources of unwanted variation, and incor-
porates negative controls for robust hypothesis testing, thereby providing
clear quantitative answers in complex experimental settings.

We demonstrate the robustness, accuracy and applicability of MPR-
Analyze on simulated data and published data sets and compare it against
the existing analysis methodologies. MPRAnalyze is implemented as an
R package and is publicly available through Bioconductor [1].

Introduction

Enhancers are non-coding DNA sequences that contribute to the regulation of
gene expression. Enhancers control the levels, timing and location of tran-
scription, playing a crucial role in maintaining and determining cell identity
and state. Sequence variants in enhancers can have significant consequences,
as demonstrated by most disease-associated expression quantitative trait loci
(eQTLs) identified through genome-wide association studies falling within non-
coding regions of the genome [2].

Since enhancers regulate transcription by interacting with transcription fac-
tors and the transcriptional machinery, active enhancers tend to reside in areas
of open chromatin. Additionally, enhancers have been shown to be marked by
the histone modification H3K27ac [3, 4, 5, 6]. Assays that map these properties
have been used extensively for genome-wide identification of active enhancers
in various contexts [7, 8]. However, while these assays enable identification of
candidate enhancers, they are limited to a binary view of enhancer activity,
and are therefore insufficient to fully understand cis regulation of transcription.
Functional assays are necessary to further our understanding of enhancers’ role
in gene expression regulation. Reporter assays have been used to functionally
annotate enhancers, by introducing fluorescent reporter constructs regulated by
the enhancer of interest, but these assays have limited throughput and don’t
scale to allow genome-wide functional annotations.

Recent advances in reporter assays address this issue, in a set of procedures
denoted Massively Parallel Reporter Assays (MPRAs). These assays replace flu-
orescent reporters with sequence-based identifiers, denoted “barcodes”. Broadly,
a synthetic construct that contains a minimal transcriptional structure is intro-
duced into cells. Each such construct is generally composed of an enhancer of
interest, a minimal promoter and a unique barcode. The synthetic enhancer is
assumed to regulate the transcription of the barcode sequence similarly to how
the native enhancer regulates the transcription of it’s target gene. The cells then
undergo RNA and DNA sequencing to measure both RNA transcript counts and
DNA construct counts for normalization purposes, and the RNA/DNA ratio is
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used to estimate the transcription rate. Relying on sequence-based identifiers
allows using the vast combinatorial space of unique sequences instead of a lim-
ited set of fluorescent reporters, and leveraging next generation sequencing to
measure the activity of thousands of enhancers in a given experiment.

MPRASs can be used to address several scientific questions. In mutagene-
sis experiments they are used to quantify the transcription rate of a variant,
enabling a quantitative comparison to other variants, thereby measuring the
effects of various mutations and alterations. Similarly, MPRAs can be used to
classify enhancers as active: significantly affecting the native transcription rate
of the promoter [9, 10]. In classification studies, control sequences are typically
included to establish a baseline transcription rate for the minimal promoter
used. Finally, MPRAs can be used for comparative analyses, comparing en-
hancer activity between different alleles [11, 12], tissues [13], or other conditions
of interest. More complex experimental designs are also possible, for exam-
ple measuring the interaction between alleles and condition [12], or measuring
temporal behavior with time-series data [14].

Despite growing popularity of MPRAs, current studies have used various
ad-hoc methods or methods that were not developed for MPRA data, such as
DESeq2 [15], that relies on underlying assumptions that may not be true for
MPRA data. Other MPRA analysis methods only address some of the types of
questions MPRAs can address, such as QUASAR-MPRA[16] and mpralm [17]
that only perform comparative analyses, and both rely on ratio-based summary
statistics that limit the power of the analysis. In contrast, MPRAnalyze provides
a general statistical framework that allows all uses of MPRAs to be address using
a single model, leverages the unique structure and characteristics of MPRA data,
and avoids relying on limited statistics or over-reaching assumptions.

Results

MPRA data is produced from two parallel procedures: RNA-seq data from
post-transduction cells measures the number of transcripts produced of each
barcode, and DNA-seq data measures the number of construct copies of each
barcode. Thus for each barcode in the experiment both DNA and RNA counts
are observed, and the ratio RNA/DNA serves as a conceptual proxy for the
transcription rate. However, both DNA and RNA measurements are products
of sub-optimal and noisy procedures, an issue exacerbated by the unstable na-
ture of a ratio: minor differences in the counts themselves can result in major
shifts in the ratio, especially when dealing with small numbers. This problem
can be handled by associating multiple barcodes with each enhancer, providing
multiple replicates within a single experiment and a single sequencing library.
This approach introduces an additional problem of how to properly summarize
counts from multiple barcodes to a single transcription rate estimate of an en-
hancer, which is made difficult since transduction efficiency, while theoretically
uniform across the different constructs, has a significant degree of variability
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in practice (Figure 1A). Two methods of summarizing are commonly used: the
aggregated ratio, which is the ratio of the sum of RNA counts across barcodes
divided by the sum of DNA counts across barcodes; and the mean ratio, which
is the mean of the observed RNA/DNA ratios across barcodes. Both of these
summary statistics have inherent limitations. The aggregated ratio loses the
statistical power that multiple barcodes provide, and the mean ratio is highly
sensitive to noise, as demonstrated by Myint et al. [17].

1 MPRAnalyze Model

We propose MPRAnalyze, a dedicated model for the analysis of MPRA data
that uses a graphical model to relate the DNA and RNA counts, model the
uncertainty in both libraries and take advantage of the unique structure and
opportunities presented by MPRA data (Figure 1B). Our model relies on the
assumption of a linear relationship between the RNA counts and the DNA
counts: RNA = DN A-q, similarly to ratio-based approaches, with ‘e’ denoting
the transcription rate. To account for the variability of barcode abundances as
well as other covariates (conditions of interest, batch effects, etc), our model
constructs two generalized linear models (GLM). The first GLM is the DNA
model, which estimates the latent construct counts from the external covariates
and the observed DNA counts. The second GLM, the RNA model, estimates the
rate of transcription from the external covariates, estimated construct counts
obtained from the DNA model, and observed RNA counts. Formally, for a given
enhancer, we have two vectors observations: DNA counts d and RNA counts .
Then the MPRAnalyze models are:

log (d) = log @ +1og (Sp)
= Xpf +log (S})
log () = log () + log (k)
— log (cf @) +log (Sh)
— log @ +log (@) + log ()

:XDB—FXRV—Hog (S;:g)

Where cZ, 7 are the abundance estimates of the constructs and transcripts,
respectively; Sp, Sg are external normalization factors used to correct technical
effects such as library size; @ is the vector of transcription rate estimates, which
can be either a single value if the analysis is looking for a single estimate (this
would normally be the case for quantification and classification analysis), but
can encode for multiple estimates for a single enhancer - for example if multiple
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biological conditions are analyzed simultaneously, the model can compute the «
estimate for transcription rate for each condition; 5 ,7 are the model parameters
and Xp, Xg are the design matrices, which encode the experimental design of
the assay. Briefly, each column in the matrix corresponds to a single coefficient,
and each row to a single sample. Numerical factors are incorporated as single
columns, whereas for categorical factors (such as replicates or conditions of in-
terest), each category has a separate coefficient and therefore a separate column,
with one of the categories being absorbed as the reference (baseline) value, and
the rest being treated as contrasts, and the values of the matrix being binary,
determining the inclusion of each coefficient in the modelling of each sample (A
simplified example is provided in Figure S1).

This formulation allows for straight-forward encoding of various covariates,
and easily supports the common structure of MPRA experiments: multiple bar-
codes per enhancer, multiple replicates, and often multiple conditions analyzed
simultaneously. This flexibility also allows for various covariates to only be mod-
elled in one of the models, depending on the scientific question and experimental
design. For instance, barcode-level effects should be incorporated into the DNA
model to allow for proper normalization of the transcript counts, but should
usually be excluded from the RNA model since we do not expect each barcode
to result in a different transcription rate. Alternatively, in unpaired settings
where the DNA sequencing was performed on pre-transduction libraries, there
might not be separate DNA estimates for each condition being tested, in which
case the conditions of interest would only be modelled in the RNA model, and
excluded from the DNA model.

We optimize this model by maximizing the likelihood of the data using cer-
tain distributional assumptions. First, we assume that the latent construct
counts, from which the observed DNA counts are sampled, are generated by
a gamma distribution: d ~ Gamma (k,b). Second, we assume that the con-
ditional distribution of the RNA counts follows a Poisson distribution: F]cf ~

Poisson (a . dj, which results in a closed-form negative binomial likelihood for

the RNA counts themselves: 7 ~ NB (,u = O‘T'k, Y = k) The negative bino-

mial distribution is a common approximation of sequencing data, and indeed
all datasets we examined have the negative-binomial characteristic quadratic
relationship between the mean and the variance. This relationship is also ob-
served for the DNA libraries, which is expected of Gamma-distributed data if
the distribution’s shape parameter k =~ 1 [Figure S2].

Our framework accounts for barcode specific effects and leverages them for
increased statistical power while simultaneously benefiting from the robustness
of aggregating information across barcodes. Since a standard for MPRA exper-
imental design has yet to be formed, the nested GLM construction is flexible
and can be easily extended to changing experimental designs. Our model is also
highly interpretable, easily allowing for quantitative estimates of enhancer ac-
tivity to be extracted, as well as differential activity to be tested directly using
established statistical tests. Our framework also explicitly leverages negative
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controls when available, either to establish the null distribution in classification
analyses or to correct for systemic bias in comparative analyses [see Methods].

To characterize the properties and evaluate the performance of the MPR-
Analyze model, we compared MPRAnalyze’s performance and the properties of
our model to other previously used and newly developed methods, using both
simulated data and a set of four MPRA datasets detailed in Table 1. These
datasets were chosen for representing a diversity of MPRA procedures (episo-
mal or lentiviral integration, DNA sequencing from pre- or post-transduction),
study focus (quantification, classification and comparative analyses), and ex-
perimental design (number of barcodes per enhancer). Note that only a subset
of features of the Kwasnieski datasets are used (Only the weak and strong cat-
egories were used), and only a subset of samples in the Inoue-Kreimer dataset
are used (only timepoint TO in the quantification and classification analyses,
and only TO and T72 in the comparative analyses).

[ Dataset | Description [ Integration | #Enhancers | #Controls | #Barcodes |
Kwasnieski Testing ENCODE putative Episomal 1200 568 4
weak/strong enhancers in K562
cells. [10]
Inoue (epi- Candidate liver enhancers in HepG2 Episomal 2338 102 100
somal) cells without genomic integration. [9]
Inoue Candidate liver enhancers in HepG2 Lentiviral 2338 102 100
(chromoso- cells with lentivirus-based genomic.
mal) integration [9]
Inoue- time-series MPRA during neural dif- Lentiviral 2464 200 90
Kreimer ferentiation induction in human ESCs.
[14]. For convenience, referred to as
Inoue-Kreimer.

Table 1: MPRA datasets used for evaluation of MPRAnalyze throughout the
paper.

When fitted to MPRA data, we found that the MPR Analyze model is able
to properly capture the characteristic of the data and provides a good fit across
all datasets (R? > 0.86 for all datasets, figure 1C). To examine the validity of
assuming the DNA counts are gamma-distributed, random data was generated
from the fitted DNA GLM and the residuals were compared with the residuals
of the observed counts. Quantile-based comparisons shows that the residuals are
generated by similar distributions [Figure S3], indicating that this assumption
does not significantly distort that distribution of the observed data.

2 Quantification

We set out to examine the properties of MPR Analyze’s estimate of transcription
rate, denoted ‘alpha’, and compare it to the naive ratio-based summary statis-
tics. Overall the three estimates are largely in agreement (Pearson’s r > 0.9
across datasets, Figure S4), demonstrating that alpha is indeed capturing the
correct signal.

To examine the accuracy of the estimates, we used the negative control
sequences included in some of the datasets. These are assumed to have an
identical transcription rate induced by the minimal promoter with no additional
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enhancer activity. We examined the variance of the estimates on these sets. In
the Kwasnieski dataset, which has a limited number of barcodes, the three
estimates all had low variance. In the barcode-rich datasets, alpha was clearly
more consistent across the negative controls than the other two estimates, with
the aggregated ratio being the least consistent (Figure 24).

We then set out to explore the effect of the number of available barcodes
on the performance of the estimates. Using the barcode-rich datasets, bar-
codes were subsampled at various rates and estimates were recomputed for each
enhancer (3 independent samples per enhancer per barcode rate). Using the
full-data estimates as a baseline, we found that subsampling barcodes does not
result in a systemic bias in any of the estimates (Figure 2B). Expectedly, all
estimates showed reduced variance with increased barcodes, with the mean ratio
underperforming the other two estimates, and alpha having a similar or lower
variance than the aggregated ratio (Figure 2C).

In many cases the goal of quantifying enhancer activity is to rank and com-
pare different enhancers, as in mutagenesis experiments. To compare the stabil-
ity of the ordering of enhancers, the Pearson correlation was computed between
the estimates in each sub-sample to the estimates of the full data. Alpha has
either similar or higher correlation than both naive estimates across datasets
and barcode abundance (Figure 2D).

Noting that these analyses are limited by a lack of ground truth, MPRA data
was then simulated by generating random coefficients and using the same nested
GLM construction as described above to generate samples. To avoid biasing the
results, samples were generated with a log-normal noise model, instead of the
default Gamma-Poisson convolutional model MPRAnalyze uses [methods]. We
generated 101 enhancers with gradually increasing transcription rates (from 2 to
3, in 0.01 steps). The analyses above were repeated with the simulated data. We
found that while the measured bias was indeed not influenced by the number
of barcodes, the mean ratio displayed a significant amount of bias compared
with both alpha and the aggregated ratio (FIgure 2E). Similar to the real data
results, we found alpha has lower variance than both naive estimates, and higher
correlation with the true transcription rates (Figure 2F-G).

Overall, alpha is as or more stable and accurate as the aggregated ratio when
barcode information is limited, and is more consistent across similarly-behaving
enhancers than both the aggregated and the mean ratio.

3 Classification

MPRA-based classification of active enhancers has previously been done by
comparing the ratio-based estimates of candidate enhancers to the control set
[9, 10], an approach that suffers from the limitations of the summary statistics
demonstrated above. Other studies performed this analysis using DESeq2 [15],
a differential expression analysis (DEA) method, by treating the DNA and RNA
libraries as two conditions and looking for “differentially expressed” enhancers
[11]. However, the method relies on an implicit assumption that the majority of
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features do not display differential behavior, a valid assumption for DEA that
does not hold for classification of MPRA data, in which the candidate enhancers
are often explicitly selected as sequences that are likely to be active.

MPR Analyze performs classification of active enhancers by testing each en-
hancers alpha estimate against a null distribution describing the null transcrip-
tion rate induced by the minimal promoter without enhancer activity. When
negative controls are available, they are used to estimate the null distribution.
When they are not available, MPRAnalyze relies on a conservative assumption
that the mode of the distribution of transcription rate estimates is the center
of the null distribution, and that values lower than the mode all belong to the
null. Thus, MPRAnalyze estimates the null by locating the mode and using
only the values lower than the mode to estimate the variance. Each enhancer’s
alpha values are then tested by computing Median-Absolute-Deviation (MAD)
scores, median-based variants of Z-scores that are less sensitive to outliers.

To assess MPRAnalyze’s performance in classification analyses we compared
6 methods: MPRAnalyze with and without controls; empirical p-values com-
puted using the naive ratio estimates; and DESeq?2 in either full mode (barcode-
level data) or collapsed mode (summing across barcodes within each batch).
DESeq2 hypothesis testing was performed using an asymmetric alternative hy-
pothesis, only looking at enhancers that were more active in the RNA library
than in the DNA library.

We examined the fraction of enhancers that were significantly active (FDR
< 0.05) in each dataset, stratified by group: negative controls, candidate en-
hancers and positive controls when available. Expectedly, empirical p-values
from the naive ratio estimates show a clear lack of power, only being com-
parably sensitive in the Inoue-Kreimer dataset. Both DESeq2-collapsed and
MPR Analyze without controls have inflated rates of activity in the Kwasnieski
datasets, however overall both modes of DESeq2 and both modes of MPRAna-
lyze have reasonable results across datasets. Overall, MPRAnalyze and DESeq2
seem to find comparable numbers of active enhancers, with no clear advantage
to either method [Figure 3A].

However, only looking at the fraction of enhancers that pass a threshold
misses the overall statistical behavior of the method. We therefore examined
the full p-value distribution of each method within each dataset, finding that
despite comparable rates of enhancers found statistically significant, the MPR-
Analyze model is far better calibrated to MPRA data. When negative controls
are used, MPRAnalyze-generated p-values follow the theoretical behavior of
the statistic: uniform on null-generated data, low values otherwise. When neg-
ative controls are not used, MPRAnalyze has some deviations from behavior,
emphasizing the importance of including negative controls in classification ex-
periments, to properly characterize the null behavior. Both MPR Analyze modes
have significantly higher statistical power, demonstrated in the distribution of
p-values on the positive controls included in the Inoue datasets. Conversely,
DESeq2 p-values do not follow the theoretical behavior of a well-calibrated test,
instead mostly having a concentration of high and low p-values, both among
candidates and controls [Figure S5].


https://doi.org/10.1101/527887
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/527887; this version posted January 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

We hypothesized that these calibration issues are partly explained by the
asymmetric alternative hypothesis test we used when running DESeq2. When
directly comparing p-values from MPRAnalyze to the competing methods, we
indeed found that overall the scores are correlated, and that the abundance of
high-valued p-values are mostly among enhancers that MPRAnalyze and the
ratio-based p-values do not reject the null for, indicating that DESeq2 views
these as “down regulated”, meaning enhancers who’s expression in the RNA
library is lower then DESeq2 model expects it to be based on the DNA library
counts [Figure S6].

One of the major aspects of the DESeq2 model is the dispersion shrinkage
mechanism that the model uses. This is common practice among differential
expression methods, and includes pooling information across all features in-
cluded in the dataset (genes for RNA-seq, candidate enhancers in MPRA). Since
RNA-seq is a genome-wide assay, the set of measured features across different
experiments can be assumed to remain stable, if not necessarily constant. This
does not hold true for MPRA experiments, in which the number and composi-
tion of the measured regulatory sequences is curated according to the specific
goals and context of the given experiment. We therefore hypothesized that
DESeq2-based classification would be highly dependent upon the composition
of enhancers included in the analysis. To demonstrate this, we re-ran the anal-
ysis on the Inoue-Kreimer dataset, but only included the 200 control enhancers
and 685 enhancers that were classified as active by MPRAnalyze, DESeq2-full
and DESeq2-collapsed. This simulates a scenario in which an identical exper-
iment was performed, producing the same data, but included fewer enhancers
that were selected with higher degree of certainty of their activity. Since MPR-
Analyze only pools information across enhancers when correcting for library
size, we expected it to recapitulate the original results and indeed MPR Analyze
finds all candidates are significantly active. However, DESeq2-full only identifies
161 (23.5%) of the candidates as active, and DESeq2-collapsed finds no active
enhancers at all [Figure 3C]. These results are not surprising, as the high abun-
dance of activity would shift DESeq2’s estimate of the null behavior, whereas
MPR Analyze avoids using the entire population to estimate the null. This re-
veals an inherent reproducibility issue in using differential expression analysis
designed for RNAseq to perform MPRA classification.

4 Comparative Analysis

Another common use for MPRAs is comparative studies, looking for differential
behavior of enhancer induced transcription between conditions. These are often
comparisons between different tissues, stimuli or comparing different alleles of
an enhancer sequence [11, 13]. More complex experimental settings are also
possible, e.g measuring temporal activity as in the Inoue-Kreimer data [14],
or the interaction between differential allele activity and GATA1 presence in
Ulirsch et al [12].

MPRanalyze’s model construction is based on generalized linear models, and
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as such is highly flexible and extendable to various experimental designs. Per-
forming differential activity analysis in the MPR Analyze framework can be done
in two straight-forward ways: first, since MPR Anlyze optimizes the model using
likelihood maximization, any single hypothesis that can be encoded in a gener-
alized linear model can be tested using the likelihood ratio test. This includes
complex hypotheses that are not encoded in a single coefficient. Additionally,
in simple two-condition designs, or in cases where multiple contrasts are com-
pared to a single reference (e.g multiple different stimuli compared against the
unstimulated behavior), the model coefficients can be extracted from the RNA
model and tested using a Wald test. Both options are supported in the current
implementation of MPR Analyze, however results in this paper are based on the
likelihood ratio test option.

When performing differential activity analysis in MPRA data, it can be im-
portant to account for possible systemic bias, for example if the cell types being
compared have different inherent transcription rates. In RNA-seq experiments
this issue is usually resolved via library size correction, but with MPRA this
is not necessarily sufficient, and may actually introduce further bias. This is
because for the library size to properly correspond to inherent bias in the data,
either the vast majority of features must be non-differential, or the differen-
tial signal must be symmetric. Neither of these assumptions necessarily hold
for MPRA data, since the features are curated and vary between different ex-
periments. An MPRA can be designed with all features being up-activated
(more active in the contrast condition than the reference), and in which the
vast majority of features are indeed differentially active. To address this issue,
MPRAnalyze utilizes negative controls in the data to define the null differential
behavior. This is done be fitting a separate, joint model for the controls, in
which each control enhancer has a distinct DNA model but they all share a
single RNA model, essentially finding the common activity pattern across the
conditions. The model coefficients of this joint model are then incorporated into
the model fitted for each candidate enhancer as additional correction factors [see
Methods].

Alternative methods have been developed to address this question. QuASAR-
MPRA [16] was designed specifically for allelic-comparisons and uses a beta-
binomial model and mpralm [17] which is a general differential-activity tool
designed for MPRA which fits a linear model. Both methods use summary
statistics and do not include barcode-level information in their model. Mpralm
enables using either the aggregated ratio or the mean ratio as the statistic,
and therefore inherently suffers from the limitations of these statistics described
above. QUASAR-MPRA, similar to MPRAnalyze, models the DNA and RNA
separately, but it does so on the sum of counts across all barcodes in each
condition, collapsing the data into a single measurement.

To compare the performance of MPRAnalyze to the above methods, we
used the Inoue-Kreimer dataset and extended the subset of samples we used to
include both T0 and T72 timepoints (0 and 72 hours into neural induction of
hiPSCs). We then compared enhancer activity between the different timepoints,
using the four methods: MPRAnalyze, mpralm in both aggregated ratio and

10
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mean ratio modes, and QuASAR-MPRA.

The distribution of p-values [Figure 4A] shows that overall MPRAnalyze
and both modes of mpralm are well calibrated, following the expected mix-
ture of uniform and low values among candidates, and showing slight inflation
but overall uniform behavior among the controls. Conversely, QuUASAR-MPRA
seems poorly calibrated on both candidates and controls, recapitulating the re-
sults described by Myint et al [cite]. Indeed, QuASAR-MPRA only identified 2
candidates as significantly differential (BH-corrected p-values < 0.05).

We then examined the agreement among the methods by comparing the log
Fold-Change estimates produced by each method. For QuUASAR-MPRA we used
the betas.beta.binom value, which is the logit transformation of the allelic skew,
a proxy for biological effect size. Overall all four methods are well correlated
(Pearson’s 1 §, 0.84 across all pairs), so similar biological effect is being observed
by all methods. MPRAnalyze is more conservative than both mpralm modes,
and has overall a positive skew compared with QuASAR-MPRA [Figure 4B].

We then compared MPRAnalyze’s statistical effects to the other methods by
looking at BH-corrected p-values [Figure 4B|. Both modes of mpralm are corre-
lated with MPRAnalyze among statistically significant candidates, but demon-
strate reduced statistical power. QuASAR-MPRA is expectedly uncorrelated,
since the model is not statistically well calibrated.

Further examination of the results excluded QuUASAR-MPRA since it did
not identify enough differentially activated candidates for the subsequent anal-
yses. After filtering the results to only include candidate enhancers that are
also classified as active in at least one of the conditions (BH-corrected p < 0.05,
using MPR Analyze’s classification method, since mpralm does not support clas-
sification analysis), we found that MPRAnalyze identifies a higher number of
significantly differentially active candidates than mpralm in either mode [Figure
4C]. Interestingly, mpralm in aggregate mode finds a roughly balanced number
of enhancers that are increasing (99) and decreasing (91) in activity, and in
mean mode finds more decreasing (89) than increasing (49), while MPRAna-
lyze finds far more increasing (351) than decreasing (115) enhancers. However,
the experimental design of the selected enhancers in the Inoue-Kreimer dataset
explicitly favored sequences that corresponded to increase in gene expression
over the course of differentiation, therefore MPRAnalyze’s up-skewed results
are expected, and better correspond to the dataset design.

We then explored the set of candidates that were detected by each method.
For each candidate sequence potential transcription factor binding sites (TFBS)
were identified [see Methods|. The set of differentially active enhancers we di-
vided to decreasing and increasing, then within each set each transcription fac-
tor was tested for enrichment (hypergeometric test, BH-corrected p < 0.05).
To narrow down the results, we examined the union of top 15 most enriched
transcription factors by each method [Figures 4D, full results at Supp.]. Addi-
tionally, we examined a consensus+noise option, wherein we took the consensus
set of enhancers for which all methods agree and added artificial counts to match
MPR Analyze number of significant enhancers. These counts were taken from
the remaining population and are proportional to the fraction of enhancers
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that contain a binding site to some factor, to simulate enrichment inflation
that doesn’t reflect true biological signal [See methods]. Among decreasing-
activity enhancers, on which the three methods are largely in agreement, we get
an expected similarity of enrichment scores across transcription factors, with
MPR Analyze outperforming the other methods in two of the core pluripotency
factors (NANOG, POU5SF1). Among increasing-activity enhancers, in which
the differences between the three methods are more profound, we find a higher
variability of enrichment scores across the top-enriched factors. Overall, mpralm
in mean mode fails to capture many of the enriched transcription factors cap-
tured by the two other methods, only finding 23 enriched transcription factors
(compared with 106 and 195 found by mpralm aggregate and MPRAnalyze,
respectively) and having diminished statistical power. When comparing MPR-
Analyze to mpralm aggregate, we find overall agreement on the set of enriched
factors, with MPRAnalyze consistently having increased statistical power with
few exceptions. This increase in power cannot be explained simply by MPRAnR-
alyze’s detection of more enhancers, as can be seen by the background + noise
results, demonstrating that MPRAnalyze’s results reflect true biological signal.
Notable disagreements between the methods include TEAD2 and NRF1 that
are enriched in MPRanalyze’s results but not in either mode of mpralm. Both
factors have been implicated in neurogenesis by previous studies [18, 19], and
show increased expression in the later time frame [Figure S7]. In the other di-
rection, MYF5 and GSX1 are enriched according to mpralm but not enriched
according to MPRAnalyze. However, when examining mRNA levels of these
factors, both factors have low expression levels, below their characteristic ex-
pression levels in tissues they are known to be active in (based on GeneCard[20)]
reported levels), making them less attractive candidates of driving differential
gene expression.

Overall, MPRAnalyze identifies a similar biological signal to the competing
methods, with increased statistical power which allows for more nuanced results.

Discussion

Massively Parallel Reporter Assays are a powerful technique for functional char-
acterization of enhancer activity in a high-throughput manner. MPRAs can
be used to directly quantify enhancer-induced activity and identify active en-
hancers, compare regulatory activity of different alleles, elucidate regulatory
grammar via mutagenesis studies, and compare enhancer activity between con-
ditions. Complex experimental design can include interaction studies, studying
how sequence changes affect differential enhancer activity [12], or identifying
temporal activity patterns in time-course MPRA data [14].

Since MPRAs are still a nascent technology, they often vary in experimental
design. While MPR Analyze can analyze any MPRA dataset, the method bene-
fits from certain experimental decisions that are generally recommended but not
always leveraged in other analyses. First, pairing the DNA and RNA libraries
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by extracting DNA from the same post-transduction libraries that the RNA
libraries are extracted from, avoids introducing further experimental noise into
the data, and enables MPRAnalyze to better fit and relate the two models to
increase accuracy of estimating nuisance factors. Additionally, as demonstrated
in our results, increasing the number of available barcodes can greatly reduce
the measured noise and increase performance of all methods. Finally, the inclu-
sion of negative control sequences allows explicit modeling of the null behavior
and avoids relying on assumptions that may bias the results and prevent proper
interpretation of them. The curated nature of MPRA datasets makes negative
control a valuable and often crucial aspect of properly interpreting the results.

MPRAnalyze is the first method to emerge that offers a robust statistical
framework that enables analyzing data for all major uses of MPRAs in a unified
model. MPRAnalyze models noise in both DNA and RNA libraries and uses a
powerful nested GLM design to control barcode-specific effects and leverage the
multiplicity of barcodes for increased statistical power. The method is highly
flexible and allows various complex study designs to be tested in a straight-
forward manner. Additionally, MPRAnalyze avoids relying on population-level
properties in the analysis, instead leveraging negative controls when available
to establish null behaviors.
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Figure 1: MPRAnalyze model properties and fit. (A) Distribution of construct
abundances (DNA barcodes) across datasets, computed as the observed bar-

code count + 1 for visualization purposes.

(B) A graphical representation of

the MPRAnalyze model. External covariates (e.g conditions of interest, batch
effects, barcode effects) are design-dependent; Latent construct and transcript
counts are related by the transcription rate a. (C) Goodness of fit plots for
both libraries across datasets. Expected counts were extracted from the fitted
GLMs. MPRAnalyze’s model fits MPRA data well, with R? > 0.86 across all

datasets.
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Figure 2: Comparison of MPRAnalyze’s a estimate of transcription rate with
the naive ratio-based estimates. (A) The variance measured among estimates
of negative-control enhancers in each dataset (these are assumed to have an
identical transcription rate). (B-D) Barcodes were subsampled and quantifica-
tion was recomputed based on the partial data to measure the effect of barcode
number on estimate performance [See methods for further subsampling details].
Analyses were performed using the full-data estimate as the ground truth. (E-
G) MPRA data was simulated to provide an actual ground truth. In each
case we measured the bias (estimate — truth) (B,E); the standard deviation

(\/ Var (estimate — truth)) (C,F); and the Spearman correlation between the

estimates and the ground truth (D,G).
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is based on performance on the negative controls, Recall is based on the total
population of enhancers, assuming all candidates are active. Error bars are +
the standard deviation of these measures across datasets. (C) Fraction of ac-
tive enhancers detected after re-running the analyses on 685 enhancers from the
Inoue-Kreimer dataset that were identified as active by MPRAnalyze (regular
mode) and both DESeq2 modes, and the 200 controls from the same dataset.
MPRAnalyze recapitulates the same results, finding that 100% of the candi-
dates are active, whereas DESeq2 full only identifies 161 (23.5%) and DESeq2
collapsed completely fails to identify any active enhancers.
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Figure 4: Comparative analysis results of comparing timepoint Oh to 72h in the
Inoue-Kreimer dataset. (A) P-value distributions of candidates (top) and con-
trols (bottom). QuASAR-MPRA is poorly calibrated, whereas MPRAnalyze
and both mpralm modes follow the theoretical behavior (mixture of uniform
and low values). (B) Direct comparison of MPRAnalyze to competing meth-
ods. Top panels show the biological effect size (log Fold-change); Bottom panels
show the statistical significance (BH-corrected P; dotted lines are 0.05 thresh-
old). (C) Venn diagram for MPRAnalyze and mpralm (both modes). The
numbers in each area are (top) the total number of enhancers in the area, and
(bottom) the number of decreasing-activity enhancers (left) + and increasing-
activity enhancers (right). (D) Enrichment of transcription factor binding sites
in differentially active enhancers as determined by each method. Solid line rep-
resents threshold of 0.05. (see Methods for further details).
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Supplemental Figure 1: A simplified example of the MPRAnalyze model: two
conditions are tested with three barcodes in a paired experiment (each DNA
observation has a corresponding RNA observation). No replicates or external
normalization factors are included in this design to maintain simplicity. The
DNA’s model estimation of the latent DNA count, computed as Xp 5 , is included
in the RNA model. The « estimates of transcription rate can be extracted from
the model as: apef = €70, Quef = 0T Vcontrast . Note that while modeling the
barcodes in the RNA model is possible, the result will be a separate « estimator
for each barcode, which is usually not desired. Barcode-level information is
therefore only incorporated into the RNA model via the nested DNA model.

20


https://doi.org/10.1101/527887
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/527887; this version posted January 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Kwasnieski Inoue (episomal) Inoue (chromosomal) Inoue-Kreimer
/|

10000 10000
10000

1e+07

1e+06 1000 1000

1000

1e+05

DNA
Variance

100

1e+04 100

16403 .

100 1000 1000C

1e+06 16406

1e+07 1e+05

Tes
1e+05 05

Te+04
16405 Te+04
Te+04

RNA
Variance

1e+03
1e+03
1e+03

16403 1e+02

/ /
10 100 1000 10 100 1000
Mean Mean

1e+02

10 100 1000 10000
Mean

Supplemental Figure 2: Relationship between the mean and variance of the
counts measured for each enhancer. Reference line (slope = 2) is a quadratic
relationship.
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Supplemental Figure 3: Comparison between model residuals from the observed
counts of each dataset, and residuals from data generated by Gamma (for
DNA) and Negative Binomial (for RNA) using the model parameters. Quantile-
quantile comparisons indicate that the observed noise and the generated noise
follow similar distributions.
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Supplemental Figure 4: Correlations of MPRAnalyze’s alpha estimate with the
naive ratio-based estimates. Correlations are Pearson’s r.
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Supplemental Figure 5: P-value CDF of classification analysis of enhancers for
each dataset, stratified by enhancer type. top panels are candidate enhancers;
middle are negative controls, with a reference line of the theoretical uniform
CDF; bottom are positive controls, displayed in log-scale to make them more
informative.
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Supplemental Figure 6: Distribution of BH-corrected P-values of all methods.
Analysis was performed separately for each dataset, then P-values were com-
bined. Positive controls are from the Inoue episomal and chromosomal datasets
only (blue). Candidates (red) and negative controls (green) are from the all
datasets. Continuous line is a the identity line. Dotted lines are set at 0.05
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Supplemental Figure 7: RNA expression levels for transcription factors with
enriched binding sites in differentially active enhancers. NANOG and POU5SF1,
enriched among enhancers that reduce in activity over time, have an expected
corresponding reduction in expression over time. TEAD2 and NRF1 are en-
riched in increasing-activity enhancers according to MPRAnalyze’s results and
indeed show a corresponding increase in expression. MYF5 and GSX1 are en-
riched in increasing-activity enhancers according to mpralm, but not according
to MPRAnalyze.
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Methods

Dataset Collection and Processing

For all datasets included in this paper, we relied on the processing and filtering
performed by the authors of the original papers. This ensures that MPRAn-
alyze’s performance isn’t reflecting any favorable processing steps we chose.
Kwasnieski: The study[10] measured the activity of potential regulatory re-
gions in K562 cells. Regions were selected according to ENCODE annotations
of four groups: enhancers; weak enhancers; repressed enhancers; enhancers ac-
tive in ESCs. The repressed and ESC-annotated nhancers were used as controls,
and were excluded from the analysis after library size normalization factors were
computed. In addition to control classes, each class had internal sets of scram-
bled sequences used as negative controls, which were used as controls in our
analyses. Inoue: The study[9] compared activity in HepG2 cells of liver en-
hancers that were either episomal or chromosomally integrated using a lentivirus
(lentiMPRA). While the study is comparative, the comparison is not between
biological conditions and the results are therefore difficult to validate or in-
terpret. We therefore decided to use the data as two separate quantification
datasets. The datasets were analyzed together to better account for batch and
barcode-specific effects, and « estimates were extracted from the joint model for
each condition separately. Inoue-Kreimer: The study[14] identified enhancers
with temporal activity over the first 72 hours after neural induction. lentiMPRA
was performed in 7 timepoints (0, 3, 6, 12, 24, 48 and 72 hours after undiction).
For the purpose of our analysis, we used only the data from the first timepoint
in the quantification and classification analyses, and timepoints 0 and 72 hours
for the comparative analysis.

Computing Transcription Rate Estimates

All transcription rate estimates were computed for library size normalized MPRA
data, using upper quartile normalization to compute size factors. MPR Ana-
lyze’s o was computed for each dataset using the quantification analysis (See
supplemental methods). Across datasets, batch and barcode-level effects were
modelled in the nested DNA model, but excluded from the RNA model de-
sign. This allows MPRAnalyze to model nuisance effects but asserts that all
barcodes associated with a single enhancer must share the same transcription
rate. The Mean Ratio was computed using only pairs of observations that
are both positive, so for each enhancer: S = {i € [n]|R; # 0, D; # 0}, then:
Mean Ratio= ﬁ dics %' Similarly, the Aggregated Ratio was computed
using only positive observations, without requiring that both measurements of
the pair are positive, so for each enhancer: Sg = {i|R; # 0},Sp = {i|D; # 0},
\TIR\ ZiESR Ri

then A ted Ratio= .
n Aggregated Ratio D,
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Subsampling analysis

For the subsampling analysis, barcodes were sampled down to varying levels
(for Inoue datasets: 15, 30, 45, 60, 75, 90 out of the total 100 barcodes; for
Inoue-Kreimer: 15, 30, 45, 60, 75 of the total 90 barcodes). The analysis uses
three independent replicates of this down-sampling process, so overall for each
enhancer we get a set of 3x K estimates at various numbers of available barcodes,
where K = 6 for the Inoue datasets and K = 5 for Inoue-Kreimer. The analyses
were done on the entire down-sampled dataset in a single run and included the
original data as well as the reduced-barcodes data, to neutralize any effect that
the library size correction might have on the estimates.

Simulating MPRA data

MPRA data was simulated by generating random coefficients for the nested
GLM construction that MPRAnalyze uses. The latent (true) DNA and RNA
counts were generated directly from the model, then log-normal noise was added
to the latent counts to get the observed counts. Formally:

B = {50,517;(;}“ 5150}

Bo ~N (K, 03)
Braten ~N (0, 03410

Bpc ~N (0,0%¢)
4
Dirue = mint (exp (Xdﬁ_))
]%tme = nint (ezp (a . Xdﬁ)>
z (

Dopserved ~ nint (log — Normal (exp (ng) ,U%))

—

Ropserved ~ nint (log — Normal (emp (a . ng) ,U%))

where K controls the intercept term for the construct distribution, the vari-
ance of which is o; 02,,.,,0%5¢ control the size of batch and barcode effects,
respectively; o2, O’% determine the noise levels added to the data; nint is the
nearest-integer function, using base R’s round function. An implementation of
this simulation process ins included in the MPRAnalyze package.

Noise was generated using log-normal noise instead of Gamma/Negative
Binomial to avoid generating data directly from MPRAnalyze’s model, which
might bias the results.

Simulated data in this manuscript was generated with 3 batches, varying
numbers of barcodes, K = 5, and 0y = 0paten = 0Bc = 0p = org = 0.5.
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Transcription Factor Binding Site enrichment analysis

The transcription factor binding site enrichment analysis was performed using
the binary binding matrix computed by Inoue & Kreimer et al. [14], with each
entry indicating the potential for binding (motif-based binding prediction using
Fimo[21], FDR < 10~%) or overlap with transcription factor ChIP-seq peaks
from publicly available data[22, 23].
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