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ABSTRACT  
 
Anxiety is known to dysregulate the salience, default mode, and central executive networks of the human 
brain, yet this phenomenon has not been fully explored across the STEM learning experience, where 
anxiety can impact negatively academic performance. Here, we evaluated anxiety and large-scale brain 
connectivity in 101 undergraduate physics students. We found sex differences in STEM-related but not 
clinical anxiety, with longitudinal increases in science anxiety observed for both female and male students. 
Sex-specific impacts of STEM anxiety on brain connectivity emerged, with male students exhibiting distinct 
inter-network connectivity for STEM and clinical anxiety and female students demonstrating no significant 
within-sex correlations. Anxiety was negatively correlated with academic performance in sex-specific 
ways at both pre- and post-instruction. Moreover, math anxiety in male students mediated the relation 
between default mode-salience connectivity and course grade. Together, these results reveal complex sex 
differences in the neural mechanisms driving how anxiety impacts STEM learning. 
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Today’s universities and colleges are tasked with the challenge of developing novel strategies for 
improving undergraduate academic performance and ensuring that students are prepared for successful 
careers. In particular, emphasis is placed on enhancing student outcomes and generating enthusiasm for 
the science, technology, engineering, and mathematics (STEM) disciplines. However, STEM students 
encounter unique challenges given the time-consuming and intensive coursework. As such, many students 
often struggle with STEM-related anxiety, which manifests as an unease, avoidance, or fear of learning 
science or math topics. STEM anxiety can inhibit performance in classroom settings and increase 
avoidance of STEM classes altogether1-3. In particular, female students are presented with numerous 
STEM-related barriers that adversely impact achievement and performance4,5, including stereotype 
threat6, gender-based bias7,8 and lack of non-stereotypical role models9,10.  As a result, female STEM 
students, relative to their male counterparts, are disproportionately affected by higher rates of STEM 
anxiety11-17. 
 
Despite the wealth of literature regarding STEM anxiety, little work has characterized the large-scale brain 
networks that may be linked with this barrier to learning and achievement. However, significant prior 
neuroimaging research has contributed to our understanding of the neurobiological substrates of clinical 
anxiety and related psychiatric disorders (for reviews see: e.g., Shin et al.18; Etkin et al.19; Peterson et al.20; 
Mochcovitch et al.21; Duval et al.22; Williams et al.23; Kim et al.24). In the context of psychopathology, a 
relatively recent paradigm shift from functional localization studies to large-scale brain network studies 
has occurred. Psychopathological processes, especially those found in mood disorders, are associated 
with aberrant organization and functioning of three key networks. First, the salience network (SN), 
anchored in the dorsal anterior cingulate cortex and frontoinsular cortex, plays a critical role in saliency 
detection, and attentional capture25,26. Second, the default mode network (DMN), which includes the 
major nodes of the posterior cingulate and medial prefrontal cortices, is involved in self-referential 
processes and typically deactivates during stimulus-driven cognitive tasks27-29. Third, the central executive 
network (CEN) is a frontoparietal system that includes the dorsolateral prefrontal and lateral posterior 
parietal cortices and is involved with cognitive processes such as working memory, problem solving, and 
goal-directed behavior25,30. The interactions of these three large-scale networks underlies a unifying 
tripartite network model that seeks to characterize the maladaptive network organization and function 
common across psychiatric disorders31,32. Within anxiety-related disorders, increased interactions 
between the SN, DMN, and CEN have been consistently observed33-36 and SN-CEN and DMN-SN 
interactions have been associated with trait anxiety in obsessive compulsive disorder35 and diagnostic 
status in social anxiety disorder36. 
 
Here, we sought to bridge these two research domains by examining how STEM anxiety impacts brain 
activity, with an emphasis on how functional connectivity between the SN, DMN, and CEN may differ 
among female and male students. To this end, we collected self-report questionnaire and neuroimaging 
data from 101 university students (46F, 55M) enrolled in an introductory physics course. Introductory 
physics is a STEM gateway course that is challenging for many students. Students completed behavioral 
and resting state functional magnetic resonance imaging (rs-fMRI) sessions at the beginning (pre-
instruction) and ending (post-instruction) of the course. Science, spatial, and math anxiety questionnaires 
were completed to collectively assess STEM-related anxiety11,37,38. In addition, the Beck anxiety inventory 
was completed to assess clinical anxiety symptoms39. To examine the relationships among STEM anxiety, 
brain connectivity, and sex, we addressed the following fundamental questions. First, are there sex 
differences in anxiety scores? Second, is there a relationship between STEM and clinical anxiety and 
functional connectivity? Third, are anxiety scores correlated with academic performance? Finally, does 
anxiety mediate the relationship between functional connectivity and academic performance? We 
predicted that anxiety scores would be significantly different for female versus male students. We also 
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anticipated that functional connectivity would be correlated with STEM anxiety among both females and 
males, particularly when considering the SN. Finally, we hypothesized that STEM anxiety would be 
negatively correlated with academic performance for both female and male students. 
 
RESULTS 
 
Sex differences in STEM anxiety. Science, spatial, and math anxiety were significantly higher in female 
compared to male students at the beginning of the semester (pre-instruction: Mann-Whitney Uscience = 
944.5, P = 0.028, Cohen’s d (d) = 0.446; Uspatial = 918.5, P = 0.018, d = 0.484; Umath = 788.5, P = 0.001, d = 
0.683), as well as after the course concluded (post-instruction: Uscience = 863.5, P = 0.006, d = 0.566; Uspatial 
= 794.5, P = 0.001, d = 0.674; Umath = 894.5, P = 0.011, d = 0.519); observed P values are reported for all 
statistical comparisons deemed significant after controlling for a false discovery rate of 0.25 using the 
Benjamini-Hochberg Procedure40 (Fig. 1). No significant sex differences were observed for clinical anxiety 
at either time point (pre-instruction: Uclinical = 1032.0, P = 0.111, d = 0.320; post-instruction: Uclinical = 999.5, 
P = 0.069, df = 0.366). When considering how students’ anxiety changed across the semester-long course, 
only science anxiety was observed to differ across time. For female students, science anxiety scores were 
significantly increased at post-instruction (M = 16.43, SD = 10.76) compared to pre-instruction (M = 6.41, 
SD = 7.96) (t(45) = -6.63, P < 0.001, d = 1.06). Similar results were observed for male students: science 
anxiety scores were significantly increased at post-instruction (M = 11.28, SD = 9.563) compared to pre-
instruction (M = 3.15, SD = 3.498) (t(55) = -7.671, P < 0.001, d = 1.13). However, a mixed ANOVA indicated 
that there was no significant interaction between participant sex and change in anxiety scores (Fscience(1, 
99) = 0.035, P = 0.852, ηp

2 = 0.00; Fspatial(1, 99) = 0.326, P = 0.569, ηp
2 = 0.003; Fmath(1, 99) = 0.994 , P = 

0.321, ηp
2 = 0.10; Fclinical(1, 99) = 0. .681, P = 0 .411, ηp

2 = 0.007). 
 

  
 
Fig. 1. Sex differences in anxiety. Raw scores for science, spatial, math, and clinical anxiety (as measured by the Beck 
anxiety inventory) for female (purple) and male (green) undergraduate students enrolled in an introductory physics 
course. Anxiety was assessed at the beginning of the semester (i.e., pre-instruction or “PRE”) and at the completion 
of the course (i.e., post-instruction or “POST”). Black asterisks on bottom PRE/POST labels indicate significant sex 
differences in anxiety at PRE or POST. Purple and green asterisks indicate significant increases in science anxiety 
across time. 
 
Neural correlates of anxiety. To assess how functional brain connectivity relates to anxiety, we first 
identified the SN, DMN, and CEN using a data-driven, meta-analytic parcellation41 (Fig. 2), extracted the 
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average network time series from pre-processed rs-fMRI data, and constructed per-participant adjacency 
matrices reflecting the degree of between-network correlation across the three networks42. Motion was 
regressed out and high-motion volumes were censored43. The edge weights between the tripartite 
network connections were calculated as Pearson’s correlation coefficients between each network time 
series (e.g., inter-network functional connectivity between CEN-DMN, DMN-SN, and SN-CEN).  
 

 
 
Fig. 2. Network Parcellation. Network masks for the central executive (cyan), default mode (pink), and salience 
(yellow) networks were adapted from a data-driven, meta-analytic parcellation41 and used to extra network-wise 
signals from pre-processed rs-fMRI data from each participant. 
 
To quantify putative relations between functional connectivity and anxiety, Pearson correlation 
coefficients were computed between the inter-network edge weights and anxiety scores, controlling for 
a false discovery rate of 0.25 using the Benjamini-Hochberg Procedure40 (Fig. 3). At pre-instruction, among 
female students, there were no significant correlations between any of the anxiety scores and inter-
network connectivity. In contrast, male students at pre-instruction exhibited significant correlations 
between science anxiety and CEN-DMN connectivity (r(53) = 0.275, P = 0.042, aFDR = 0.13), science anxiety 
and DMN-SN (r = 0.311, P = 0.021, aFDR = 0.10), spatial anxiety and CEN-DMN (r = 0.366, P = 0.006, aFDR = 
0.02), math anxiety and CEN-DMN (r = 0.325, P = 0.015, aFDR = 0.08), math anxiety and DMN-SN (r = 0.355, 
P = 0.008, aFDR = 0.04), and clinical anxiety and SN-CEN (r = -0.343, P = 0.010, aFDR = 0.06). The correlation 
between clinical anxiety and SN-CEN connectivity was the only significant negative correlation observed, 
as well as the only measure linked with SN-CEN connectivity. All STEM anxiety measures in males were 
positively correlated with the CEN-DMN and DMN-SN connectivity. We also tested for an effect of sex 
across these results and observed that the correlation between clinical anxiety and SN-CEN was 
significantly different between female and male students (Z = -2.927, P = 0.002). 
 
At post-instruction, no significant correlations were observed between anxiety scores and inter-network 
connectivity for female students. Male students at post-instruction exhibited significant correlations 
between spatial anxiety and CEN-DMN (r(53) = 0.381, P = 0.004, aFDR = 0.04), spatial anxiety and DMN-SN 
(r = 0.435, P = 0.001, aFDR = 0.02), and math anxiety and DMN-SN (r = 0.332, P = 0.013, aFDR = 0.06). As 
with pre-instruction results, the significant STEM-related correlations were positive and only impacted 
the CEN-DMN and DMN-SN, but not SN-CEN connectivity. Again, we also tested for an effect of sex across 
these results and observed that the spatial anxiety correlations with CEN-DMN and DMN-SN and 
significantly differed between female and male students (Z = -2.375, P = 0.009 and Z = 3.094, P = 0.001, 
respectively). 
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In addition, we examined the correlations between the change in anxiety scores and the change in 
connectivity from pre- to post-instruction. Of these, ∆anxietyspatial and ∆SN-CEN were significantly 
negatively correlated for females (r(44) = -0.459, P = 0.001, aFDR = 0.02), but not males r(53) = -0.041, P = 
0.764, aFDR = 0.23), and the difference between sexes was statistically significant, Z = 2.208, P = 0.014. 
Thus, for female students, as spatial anxiety increased, connectivity between SN and CEN decreased. 
Conversely, ∆anxietymath and ∆SN-CEN were significantly negatively correlated among male students (r(53) 
= -0.361, P = 0.007, aFDR = 0.02), but not female students r(44) = -0.057, P = 0.707, aFDR = 0.17), and this 
difference between sexes was statistically significant, Z = -1.557, P = 0.06. Thus, for male students, as math 
anxiety increased, connectivity between the SN and CEN decreased.  
 

 
 
Fig. 3. Anxiety and functional brain connectivity. (A) Correlation values are shown between science, spatial, math, 
and clinical anxiety (columns) and between-network tripartite connectivity between the SN, DMN, and CEN networks 
(rows). Correlations are displayed for pre-instruction (“PRE”), post-instruction (“POST”), and the change across time 
(“POST > PRE”). Each square represents the correlation between anxiety and inter-network connectivity, with the 
upper diagonal displaying the value for female students and the lower diagonal representing male students. Positive 
and negative correlations are indicated by the color bars. Significant within-sex correlations are indicated by a white 
star, while significant between-sex correlations are indicated by a black box with an asterisk. (B) An alternative 
visualization of the results is provided to delineate the between-network correlations with anxiety in male students. 
While female students exhibited no significant correlations between anxiety and brain connectivity at pre- or post-
instruction, male students exhibited several significant correlations at both time points. Males exhibited a general 
tendency to show fewer significant correlations at post- compared to pre-instruction impacting a reduced set of 
tripartite connections. 
 
Sex, anxiety, and academic performance. Traditional measures of academic performance include 
measures of students’ grades. We collected each student’s overall GPA prior to taking the course, as well 
as their final physics course grade. First year students were excluded (2F, 6M) from the GPA analysis since 
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they entered the physics course with a GPA of zero. No significant sex differences were observed for 
incoming GPA (UGPA = 1051.5, P = 0.838, d = 0.293) or physics course grade (Ugrade = 1056.5, P = 0.148, d = 
0.286). 
 
To quantify the relation between anxiety and academic performance, Pearson correlations were 
computed separately for female and male students, controlling for a false discovery rate of 0.25 using the 
Benjamini-Hochberg Procedure40 (Fig. 4). Among female students at pre-instruction, GPA was positively 
correlated with spatial anxiety (r(42) = 0.381, P = 0.011, aFDR = 0.06) while course grade was negatively 
correlated with math anxiety (r(44) = -0.321, P = 0.030, aFDR = 0.09) and clinical anxiety (r(44) = -0.534, P 
< 0.001, aFDR = 0.03). Among male students at pre-instruction, GPA was only negatively correlated with 
math anxiety (r(47) = -0.358, P = 0.012, aFDR = 0.03). The correlation between GPA and clinical anxiety at 
pre-instruction significantly differed between females and males (Z = 2.364, P = 0.009). Among female 
students at post-instruction, GPA was negatively correlated with clinical anxiety (r(42) = -0.315, P = 0.037, 
aFDR = 0.06), and grade was negatively correlated with both math anxiety (r(44) = -0.293, P = 0.048, aFDR = 
0.09) and clinical anxiety (r(44) = -0.401, P = 0.006, aFDR = 0.03). Among male students at post-instruction, 
GPA was negatively correlated with science anxiety (r(47) = -0.370, P = 0.009, aFDR = 0.09) and math anxiety 
(r(47) = -0.449, P = 0.001, aFDR = 0.03), and similarly, grade was also negatively correlated with science 
anxiety (r(53) = -0.354, P = 0.008, aFDR = 0.06) and math anxiety (r(53) = -0.422, P = 0.001, aFDR = 0.03). 
Thus, in general, high levels of post-instruction STEM anxiety were associated with poor academic 
performance. No significant sex differences at post-instruction were observed. 
 

 
 

Fig. 4. Sex, anxiety, and performance. Correlation values are shown between science, spatial, math, and clinical 
anxiety (columns) and pre-semester GPA and physics course grade (rows). Correlations are provided for pre-
instruction (“PRE”), post-instruction (“POST”), and the change across time (“POST > PRE”). Each square represents 
the correlation between anxiety and GPA/grade, with the upper diagonal displaying the value for female students 
and the lower diagonal representing the male students. Positive and negative correlations are indicated by the color 
bars. Significant within-sex correlations are indicated by a white star, while significant between-sex correlations are 
indicated by a black box with an asterisk. 
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Next, we examined the correlations between the change in anxiety scores and academic performance. 
Female students demonstrated no significant correlations between GPA or grade and the change in any 
anxiety measure. Conversely, male students exhibited significant negative correlations between grade 
and ∆anxietyscience (r(53) = -0.393, P = 0.003, aFDR = 0.03), ∆anxietyspatial (r = -0.339, P = 0.011, aFDR = 0.06), 
and ∆anxietymath (r = -0.296, P = 0.028, aFDR = 0.09), as well as between GPA and ∆anxietyscience (r(47) = -
0.416, P = 0.003, aFDR = 0.03). A significant sex effect was observed for the correlation between grade and 
∆anxietyspatial (Z = -2.033, P = 0.021).  
 
Anxiety mediates brain function and performance. Lastly, we investigated if functional brain connectivity 
was correlated with academic performance at pre- or post-instruction, controlling for a false discovery 
rate of 0.25 using the Benjamini-Hochberg Procedure40 (Fig. 5a). For female students, no significant 
correlations were observed between inter-network brain correlations and GPA or course grade at either 
time point. For male students, there was a significant, negative correlation between DMN-SN connectivity 
and course grade at post-instruction (r(53) = -0.267, P = 0.049, aFDR = 0.09). Given this result, we then 
asked to what extent anxiety might mediate the relationship between brain connectivity and academic 
performance. We investigated four separate mediation models among male students to determine if post-
instruction science, spatial, math, or clinical anxiety was a mediating variable on DMN-SN connectivity and 
course grade. We observed including math anxiety as a variable reduced the total effect of DMN-SN and 
course grade, which was no longer significant (indirect effect = -0.544, SE = 0.267, P = 0.042; 95% 
confidence intervals (CIs) = -1.161, -0.128) (Fig. 5b). Science, spatial, and clinical anxiety were not found 
to mediate DMN-SN connectivity and course grade. 

 

 
 
Fig. 5. Post-instruction math anxiety mediates the relation between DMN-SN connectivity and physics course grade. 
(A) Correlation values are shown between pre-semester GPA and physics course grade (columns) and between-
network tripartite connectivity between the SN, DMN, and CEN networks (rows). Correlations are provided for pre-
instruction (“PRE”) and post-instruction (“POST”). Each square represents the correlation between GPA/grade and 
inter-network connectivity, with the upper diagonal displaying the value for female students and the lower diagonal 
representing the male students. Positive and negative correlations are indicated by the color bars. Significant within-
sex correlations are indicated by a white star. (B) Results of the mediation analysis indicated that every 1-unit increase 
in post-instruction DMN-SN connectivity was associated with a a = 1.151 (SE = 0.427, P = 0.007) unit increase in post-
instruction math anxiety. Adjusting for post-instruction DMN-SN connectivity, every unit increase in post-instruction 
math anxiety was associated with a b = -0.472 (SE = 0.144, P = 0.001) unit decrease in course grade. Increases in post-
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instruction DMN-SN connectivity were associated with decreases in course grade, indirectly through increases in post-
instruction math anxiety. Specifically, for every a = 1.151-unit increase in post-instruction math anxiety, there was a 
ab = -0.544 (SE = 0.267, P = 0.042) unit decrease in course grade. Importantly, a bias-corrected bootstrapped 
confidence interval with 10,000 samples44 did not contain 0, 95% CI [-1.161, -0.128], indicating a significant indirect 
effect (ab). Last, there was no sufficient evidence that post-instruction DMN-SN connectivity was significantly 
associated with course grade, independent of its association with post-instruction math anxiety, c’ = -0.624 (SE = 
0.624, P = 0.318). 
 
DISCUSSION 
 
Our results identified significant sex differences in STEM, but not clinical anxiety, among undergraduate 
physics students, with females experiencing higher levels of STEM anxiety compared to their male 
counterparts, in agreement with prior work11,37,38. While we observed significantly increased science 
anxiety from pre- to post-instruction in both female and male students, we found no evidence of an 
interaction between sex and change in anxiety scores. That is, our results do not suggest that the 
introductory physics course in our study differentially impacts changes in anxiety for female and male 
students. This is important from the perspective of educators who seek to create inclusive classrooms that 
are free from instructionally derived bias. 
 
Previous studies have shown that the SN, DMN, and CEN are impacted by clinical anxiety19,33-35,45,46, 
including trait anxiety in a non-clinical adolescent sample47. We were surprised to see that female students 
exhibited no significant correlations between functional brain connectivity and anxiety at either time 
point. In contrast, male students exhibited multiple significant correlations between functional 
connectivity and anxiety at both pre- and post-instruction, suggesting anxiety-related disruption of inter-
network equilibrium33 between the SN, DMN, and CEN. For male students with high anxiety, strong inter-
network connectivity was observed between the CEN and DMN and between DMN and SN, in agreement 
with previous studies33-35. These results provide additional STEM-relevant support for the importance of 
suppressing self-referential cognition48 and identifying salient, task-relevant stimuli that should be relayed 
to the CEN49-51. DMN-SN connectivity was negatively correlated with course grade in male students at 
post-instruction, further supporting the importance of toggling off internal processing when salient events 
are detected in the context of STEM learning. 
 
Male students exhibited a general trend of fewer significant brain-anxiety correlations at post- compared 
to pre-instruction, despite increased science anxiety. Although speculative, this tendency is suggestive of 
a cognitive or physiological mechanism at play and may provide directions for future work. As male 
students are faced with the challenges of their first university-level physics course, the brain may 
accommodate the increases in science anxiety and balance the response to such challenges. In contrast, 
female students experience greater obstacles in STEM education5,6,52 that can trigger anxiety as early as 
the preschool and elementary years53-55. The null female results may point to a lack of vulnerability, 
suggesting that their relatively higher STEM anxiety does not hinder salience-related central executive 
and self-referential processes. Female students may experience an earlier adaptive period as their STEM 
anxiety increases, resulting in a compensatory mechanism that down-regulates the anxiety-brain 
correlations, possibly via a reallocation of neural resources or a functional reorganization of anxiety-
related systems. Overall, it is unclear if the sex differences in functional connectivity observed here reflect 
experiential differences in STEM anxiety-related developmental trajectories due to disruptions in emotion 
regulation56, attentional control57-59, motivation and drive60-62, disengagement and avoidance63, coping 
strategy64 or a combination of these influences. Further work is needed to investigate sex differences in 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528075doi: bioRxiv preprint 

https://doi.org/10.1101/528075
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

developmental STEM trajectories, to determine if female students experience STEM-related anxiety and 
learn strategies for counterbalancing their anxiety at an earlier educational stage. 
 
Aberrant connectivity between the CEN and SN in anxious individuals may result from a diminished ability 
to exert cognitive control and regulate emotional responses26. Previous work has shown that university 
students with high math anxiety exhibit increased SN activity when anticipating a math problem65, yet 
math cue-related activity increased in the CEN as math deficit decreased, suggesting that increased 
recruitment of cognitive control processes may improve performance in math66. Relatedly, lower math 
anxious children showed increased activation in regions of the CEN and DMN during math problem solving 
compared to higher math anxious children67 although the reverse was shown by Supekar et al.68 during 
successful math trials. This prior work in task-based fMRI has not addressed sex-related differences in the 
neural correlates of anxiety. Here, we showed math anxiety was consistently related to brain connectivity 
and performance for both sexes compared to other anxiety measures. Specifically, although math anxiety 
did not significantly impact SN-CEN inter-network connectivity in male students at pre- or post-
instruction, the change in math anxiety was negatively correlated with the change in SN-CEN connectivity 
over the course of instruction. That is, as math anxiety increased across the semester for male students, 
SN-CEN connectivity also increased. Although higher levels of math anxiety are reported by female 
students, math anxiety has been more strongly linked to poor performance in precollege male students69. 
Our results related to math anxiety in male students suggest that the SN-CEN pathway may play a critical 
role in longitudinal changes across a semester of STEM learning, but that the DMN-SN pathway is more 
strongly related to course performance, with math anxiety mediating this relationship. 
 
Our study is limited by several concerns. First, students diagnosed with psychiatric or neurologic disorders 
were excluded; participants were also excluded if they reported use of psychotropic medications. Thus, 
our results may not generalize to a broader community of students that includes those diagnosed with 
and receiving treatment for clinical disorders of anxiety and depression. Second, although our primary 
analyses treated STEM and clinical anxiety as independent constructs, we acknowledge that this may not 
be the case for some students. As such, we conducted additional analyses via partial Pearson correlations 
that produced approximately equal, and even in some instances stronger, associations between STEM 
anxiety, functional connectivity, and academic performance when controlling for clinical anxiety 
(Supplemental Information). Third, the timeline of the study created logistic challenges in that all data 
collection was carried out during short periods of time at the beginning and ending of each semester. As 
a result, while MRI sessions were completed following the final exam, our post-instruction behavioral data 
were generally scheduled the week prior to finals week (a period of time generally associated with 
increased anxiety levels among students). It is unclear how our results may be confounded by the 
temporal mismatch of MRI and behavioral sessions. Fourth, additional clarity may have been provided by 
including additional measures (e.g., the Positive and Negative Affect Schedule) to assess participant mood 
states on the day of scanning. Last, anxiety was assessed exclusively via self-report rating scales. Future 
work should include additional multi-method designs such as task-based fMRI with concurrent 
psychophysiological indexes of sympathetic and parasympathetic activity (e.g., respiratory sinus 
arrhythmia and skin conductance, respectively). 
 
Overall, our results indicate that female and male students experience different levels of STEM anxiety 
and exhibit different neurobiological systems-level support for this anxiety, which differentially impacts 
their academic success. That this occurs despite no sex differences in performance (e.g., GPA or course 
grade) is notable, and in agreement with two recent meta-analyses70,71 that provide strong evidence 
disproving the persistent stereotypes that male students outperform female students in math and 
science. Importantly, the course studied here was shown to be equal (i.e., did not adversely impact female 
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anxiety more than male anxiety), but not equitable (i.e., did not reduce sex differences). The gender gap 
in STEM remains largely unexplained72, yet our results suggest that female students maintain performance 
compared to their male counterparts while responding differently to obstacles and challenges associated 
with STEM learning. Organizations supporting women in STEM have long promoted the idea that reduced 
female representation in STEM is due to poor climate for women rather than lack of ability or interest. 
Our results support this framework. We recommend that positive changes in favor of promoting women 
in STEM should focus on addressing climate issues that contribute to STEM anxiety. At the elementary 
and secondary school level this could include improving parental and teacher support, which has been 
shown to significantly impact girls’ anxiety, confidence, and performance53,73,74. At the university level, 
this could include increasing visible role models (e.g., women as STEM faculty and in senior leadership 
positions75), revising ineffective Title IX policies, and enacting a zero-tolerance policy for sexual 
harassment and abuse at institutions, research societies, and federal funding agencies. It is incumbent 
upon university leaders to optimize pathways for all students entering the national STEM workforce. 
Instructional techniques focused on helping students learn content while building positive affect may be 
of particular importance in supporting learning that is inclusive for all students, thereby retaining 
individuals that drop out of STEM careers due to these climate-related factors. Continued development 
of instructional practices should emphasize the important distinction between equality and equity.  
 
Broadly, female and male STEM students experience different learning environments, societal 
expectations, and academic opportunities, which all contribute to socio-emotional brain development, 
necessitating rigorous and objective standards for the study of sex and gender in neuroimaging research76. 
Our results demonstrate that sex differences in brain networks are not fixed and that STEM anxiety has 
an impact on shaping both female and male students’ brains during the physics learning process. We 
conclude that there are significant sex differences between STEM anxiety linked with large-scale brain 
networks and recommend future research to determine how reducing barriers and making the climate 
more equitable may enable a more inclusive STEM community. 
 
METHODS 
 
Participants and Study Design. One hundred and one healthy right-handed undergraduate students 
(mean age = 19.94 ± 2.46 years, range = 18-25 years; 48 females) who completed a semester of 
introductory calculus-based physics at Florida International University (FIU) took part in this study. 
Participants self-reported that they were free from cognitive impairments, neurological and psychiatric 
conditions, and did not use psychotropic medications. The physics course emphasized problem solving 
skill development and covered topics in classical Newtonian mechanics, including motion along straight 
lines and in two and three dimensions, Newton’s laws of motion, work and energy, momentum and 
collisions, and rotational dynamics. Students completed a behavioral and MRI session at two time points 
at the beginning (“pre-instruction”) and conclusion (“post-instruction”) of the 15-week semester. Pre-
instruction data collection sessions were generally acquired no later than the fourth week of classes. Post-
instruction sessions were completed no more than two weeks after the final exam. Written informed 
consent was obtained in accordance with FIU’s Institutional Review Board approval. 
 
Behavioral Measures. Participants completed a series of self-report instruments during their pre- and 
post-instruction behavior session, including, but not limited to: the Science Anxiety Questionnaire11, the 
Spatial Anxiety Scale38, the Mathematics Anxiety Rating Scale37, and the Beck Anxiety Inventory39. 
Participants also provided their demographic details (e.g., biological sex, age).  
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Missing Data. A missing value analysis indicated that less than 2% of the data were missing for each 
variable and these were observed to be missing completely at random (MCAR). We chose not to 
implement multiple imputation, expectation maximization, or regression because the data violated the 
assumption of multivariate normality77. Given the small sample size, frequency of missingness (1-2%), and 
lack of systematic reasons for missingness, we implemented item-level mean substitution imputation to 
avoid case-wise deletion of missing data78.   
 
fMRI Acquisition and Pre-Processing. Neuroimaging data were acquired on a GE 3T Healthcare Discovery 
750W MRI scanner at the University of Miami. Resting state functional MRI (rs-fMRI) data were acquired 
with an interleaved gradient-echo, echo planar imaging (EPI) sequence (TR/TE = 2000/30ms, flip angle = 
75°, field of view (FOV) = 220x220mm, matrix size = 64x64, voxels dimensions = 3.4×3.4×3.4mm, 42 axial 
oblique slices). During resting-state scans participants were instructed to remain still with their eyes 
closed. A T1-weighted series was also acquired using a 3D fast spoiled gradient recall brain volume (FSPGR 
BRAVO) sequence with 186 contiguous sagittal slices (TI = 650ms, bandwidth = 25.0kHz, flip angle = 12°, 
FOV = 256x256mm, and slice thickness = 1.0mm). Each participant’s structural T1-weighted image was 
oriented to the MNI152 2mm template using AFNI’s (http://afni.nimh.nih.gov/afni;79-81) 3dresample, then 
skull-stripped using the Brain Extraction Tool (BET; Smith et al.82) from FMRIB’s Software Library (FSL, 
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; Smith et al.82; Jenkinson et al.83). Utilizing FSL’s automated 
segmentation tool (FAST), tissue-type masks were generated to inform nuisance parameters84. Then, 
utilizing FSL’s FLIRT85,86, the middle volume of each functional run was extracted and coregistered with 
the corresponding T1-weighted image. Utilizing FSL’s MCFLIRT with spline interpolation, motion 
correction aligned all volumes of each subject’s rs-fMRI time series with that middle volume. To further 
correct for in-scanner motion effects, functional volumes unduly affected by motion were identified using 
fsl_motion_outliers, with a framewise displacement threshold of 0.2mm43. Resultant motion artifacts 
were removed with ICA-AROMA (https://github.com/rhr-pruim/ICA-AROMA; Pruim et al.87). Then, CSF 
and WM masks were transformed into functional native space, eroded by 1 and 2 voxels, respectively, 
and from each the mean signal was extracted and used to regress out non-neural signals in a final nuisance 
regression step using AFNI’s 3dTproject, which detrended and normalized the rs-fMRI time series, as well. 
Finally, rs-fMRI images were transformed into MNI152 2mm space for further data analysis. 
 
Network Parcellation and Brain Connectivity Analyses. Each participant’s rs-fMRI data were standardized 
and parcellated according to the meta-analytic network components from Laird et al.41. Included in this 
parcellation are the salience network (SN), default mode network (DMN), and central executive network 
(CEN). As these networks were delineated via ICA, some overlap was present between component maps. 
This overlap was resolved by a combination of proportional thresholding and manual editing, performed 
with the Mango image analysis tool (v. 4.0.1, http://ric.uthscsa.edu/mango/; Lancaster et al.88,89 ); final 
networks are shown in Fig. 2. Adjacency matrices were constructed per participant using Nilearn (v. 0.3.1, 
http://nilearn.github.io/index.html), a Python (v 2.7.13) module, built on scikit-learn, for the statistical 
analysis of neuroimaging data42,90. For each of the three networks of interest, a single time series was 
computed as an average of the rs-fMRI time series from all voxels within the network, after further 
regressing out six motion parameters (from MCFLIRT) and censoring high-motion volumes (framewise 
displacement >0.2mm), as well as the immediately preceding volume and two following volumes, 
following recommendations from Power et al.43. Edge weights for each graph were pairwise Pearson’s 
correlations, calculated pairwise for the three networks, which are the graph’s nodes, resulting in a 3x3 
network-wise correlation matrix for each subject. 
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Statistical Analyses. All statistical tests were computed using IBM SPSS software, R Statistical Software, 
and Python tools/packages including Nilearn: Machine learning for Neuroimaging in Python, pandas 
(Python Data Analysis Library), matplotlib, Seaborn: statistical data visualization, Statsmodels, and SciPy. 
Observed P values are reported for statistical comparisons deemed significant after controlling for a false 
discovery rate of 0.25 using the Benjamini-Hochberg Procedure40

.  
 
Data Availability. A GitHub repository was created at http://github.com/nbclab/PhysicsLearning/anxiety 
to archive the source files for this study, including data analysis processing scripts and behavioral data. 
The network masks for the bilateral SN, DMN, and CEN are available via NeuroVault at 
https://neurovault.org/collections/4727/. 
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SUPPLEMENTAL INFORMATION 
 
Participants. The present study recruited students attending Florida International University (Miami, FL) 
as research participants. Eligible participants had never completed a university-level physics course, were 
enrolled in a semester of introductory calculus-based physics (PHY 2048), and met a minimum GPA of 
2.25. Participants self-reported that they were free from cognitive impairments, had not received a 
medical diagnosis for a neurological or psychiatric condition, did not use psychotropic medications, and 
presented at the first scan with no MRI contraindications. 129 individuals were consented into the study. 
During the pre-instruction data acquisition period (i.e., behavioral and MRI), 11 students were removed 
from the study due to scheduling conflicts or ineligibility concerns, yielding pre-instruction data from 118 
healthy, right-handed (0.5 or greater on the Edinburgh Handedness Inventory1), English-speaking 
undergraduate students (mean age = 20.16 ± 2.32 years, range = 18-25 years; 65 females. Following pre-
instruction data collection, 3 students dropped the physics course during the semester and were removed 
from the study, 2 were non-responsive for post-instruction scheduling, 2 were no longer interested in 
participating, 2 were removed due to acquired MRI contraindications or ineligibility, and 1 student was 
unable to schedule their final MRI visit due to scheduling conflicts. Additionally, due to equipment 
malfunction, the post-instruction behavioral data from 4 participants and the post-instruction MRI data 
from 1 participant were lost due to data corruption. A total of 103 participants completed the study at 
post-instruction. Two data sets were removed from the analyses due to technical issues, yielding a final 
sample of 101 participants in the present study. Fig. S1 describes the missing study data across the stages 
of consent, data acquisition, and analysis. The final sample yielded matched (pre- and post-instruction) 
fMRI data sets from 101 students (mean age = 19.93 ± 2.46 years, range = 18-25 years; 48 females). 
 

 
Fig. S1. Study Completeness Summary. Display of the data table’s nullity matrix for the study, describing missing data 
from study consent to all stages of pre- and post-instruction data collection and analysis. Visualization provided by 
missingno, a Python package for visualizing missing data (Bilogur, 20182).   
 
The racial/ethnic demographics of the sample were 3% American Indian or Alaskan Native, 9.9% Asian, 
13.9% Black or African American, 0% Native Hawaiian or Other Pacific Islander, 72.3% White, and 6.9% 
Other. The racial/ethnic demographics of the 65 participants who endorsed a Spanish/Hispanic/Latinx 
ethnicity were: 3% American Indian or Alaskan Native, 2.7% Asian, 2.7% Black or African American, 0% 
Native Hawaiian or Other Pacific Islander, 87.7% White, and 5.5% Other. 
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Study Timeline. Data were collected across six academic semesters from students in 21 separate sections 
of PHY 2048. Pre-instruction imaging sessions were acquired during the period starting one week prior to 
the initial class meeting and ending no more than four weeks into the academic semester, before the first 
physics course exam. Behavioral data were acquired during the same time period with the exception of 
two individuals who completed their pre-instruction behavioral sessions in the fifth week of the semester. 
In general, post-instruction behavioral data were acquired two weeks prior to the start of final exams. 
However, ten students were unable to complete behavioral sessions within this timeline and instead 
completed their sessions during or after finals week. Post-instruction imaging sessions were held after the 
final exam of each physics course. In most cases this meant that students underwent MRI scanning in the 
two weeks following the University’s final exam week. However, in some cases (e.g., due to conflicts in 
individual’s post-semester travel schedules) students were unable to complete post-instruction MRI 
scanning after the semester ended. Thus, a total of 15 individuals completed post-instruction MRI 
scanning during finals week. For these sessions the study team attempted to schedule the MRI scan after 
the completion of the student’s full set of finals exams, resulting in 13 students who completing their post-
instruction MRI scan on the last day of finals week, after all exams had concluded. 
 
Additional Analyses: Controlling for Clinical Anxiety. Although our primary analyses treated STEM 
(science, spatial, and math) and clinical anxiety as independent constructs, we acknowledge that this may 
not be the case for some students. To assess the relationships between STEM anxiety and functional 
connectivity, while controlling for the effect of clinical anxiety, we conducted additional analyses of the 
data by computing partial Pearson correlations. Among female students at pre-instruction, when 
controlling for clinical anxiety, no significant partial correlations were observed between anxiety scores 
and inter-network connectivity. In contrast, when controlling for clinical anxiety, male students at pre-
instruction exhibited significant partial correlations between science anxiety and the DMN-SN inter-
network connectivity (r(55) = 0.317, P = 0.020), spatial anxiety and CEN-DMN (r =  0.352, P = 0.009), math 
anxiety and CEN-DMN (r = 0.284, P = 0.038), and math anxiety and DMN-SN (r = 0.374, P = 0.005). Among 
female students at post-instruction, when controlling for clinical anxiety, no significant partial correlations 
were observed between anxiety scores and inter-network connectivity. In contrast, when controlling for 
clinical anxiety, male students at post-instruction exhibited significant partial correlations between spatial 
anxiety and CEN-DMN connectivity (r(55) = 0.383, P = 0.004), spatial anxiety and DMN-SN (r = 0.437, P = 
0.001), and math anxiety and DMN-SN  (r = 0.340, P = 0.012). Importantly, these supplemental results are 
consistent with our primary results shown in Fig. 3, producing approximately equal, and even in some 
instances stronger, associations between STEM anxiety and functional connectivity in male students when 
controlling for clinical anxiety. 
 
Next, we examined the correlations between anxiety scores and academic performance, controlling for 
clinical anxiety. Among female students at pre-instruction, when controlling for clinical anxiety, GPA was 
positively partially correlated with spatial anxiety (r(44) = 0.413, P = 0.006). Among male students at pre-
instruction, when controlling for clinical anxiety, GPA was negatively partially correlated with math anxiety 
(r(49) = -0.330, P = 0.022). Among female students at post-instruction, when controlling for clinical 
anxiety, no significant partial correlations were observed between anxiety and academic performance. 
Among male students at post-instruction, when controlling for clinical anxiety, GPA was negatively 
partially correlated with science anxiety (r(49) = -0.360, P = 0.012) and math anxiety (r(49) = -0.449, P = 
0.001), grade and science anxiety (r(55) = -0.341, P = 0.012), and grade was negatively partially correlated 
with math anxiety (r(55) = -0.415, P = 0.002). Again, these supplemental results are generally consistent 
with our primary results shown in Fig. 4, although some significant correlations in female students were 
no longer observed to be significant after controlling for clinical anxiety.  
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Lastly, we investigated if rs-fMRI connectivity was correlated with academic performance at pre- or post-
instruction, controlling for clinical anxiety. Among female students, when controlling for clinical anxiety, 
no significant partial correlations were observed between inter-network brain connectivity and GPA or 
course grade at either time point. Among male students at post-instruction, when controlling for clinical 
anxiety, DMN-SN connectivity was negatively partially correlated with course grade (r(55) = -0.296, P = 
0.030) and SN-CEN connectivity was negatively partially correlated with course grade (r(55) = -0.271, P = 
0.047). These supplemental results are consistent with our primary results shown in Fig. 5a and provide 
added insight to the relationship between SN-CEN and academic performance. Overall, our results when 
controlling for clinical anxiety provide strong support for the primary results presented in this study.  
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